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Homotopy [ heory

A branch of topology,

the study of spaces and continuous deformations
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HoMmotopy

Deformation of one path into another

—-— . p
-k -“\“

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between

homotopies, ....
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HOMOotopy groups

ki homotopy group
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lype heory

An alternative to set theory, organized around types:

* Basic data types (N, Z, booleans, lists, ...)

% Functions

C
C

C

oubl

oub’

e : N s N
e 0 =0

oub’

e (n +1) = double n + 2

* Unifies sets and logic




Propositions as lypes

1.A proposition is represented by a type
2.A proof is represented by an element of that type

vx: N. double(x) = 2*X

type of proofs of equality
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Propositions as lypes

1.A proposition is represented by a type
2.A proof is represented by an element of that type

proof : vx: N. double(x) = 2*x

proof @ = reflexivity
proof (n +1) = ...

\

proof by case analysis represented
by a function defined by cases




Type are sets”

Traditional view:

type theory set theory
<element> : <type> X € S
<elemi> = <elemz> X =Y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2




Type are sets”

Traditional view:

type theory set theory
<element> : <type> X € S
<proof> :<elem> = <elemy> X =Y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2

In type theory, an equation has a <proof>




Homotopy lype [heory

type theory

category theory homotopy theory




lypes are «-groupolids

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]
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lypes are «-groupoids

type theory set theory
<elem> : <type> X € S
<proof> :<elemi> = <elemy> X =Y

<Z2-proof> : <proofi> = <proofy>
<3-proof> : <2-proofi> = <Z2-proofz>




Homotopy lype [heory

new principles T l new proofs

category theory homotopy theory

type theory




Computer-checked proofs

Type Theory

\ i / Correct!

checker
\ Incorrect




Synthetic vs Analytic

Synthetic geometry (Euclid)

Analytic geometry

(Descartes)

POSTULATES.

L .
Ler it be granted that a straight line may be drawn {rom any one
point to any other point.
. 1.
That a terminated straight line may be produced to any length in a
straight line.
I
And that a circle may be described from any centre, at any distance

(x2,92)

d
Y3 =l

from that centre. (z1.11) To — Ty
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Synthetic vs Analytic

Synthetic geometry (Euclid) Analytic geometry

POSTULATES.
L - (x2,y2)
Ler it be granted that a straight line may be drawn from any one
point to any other point.
: 1L
That a terminated straight line may be produced to any length in a d Y2 — Y1
straight line.
1L
And that a circle may be described from any centre, at any distance )|
from that centre. (Z1,31) T2— T

Classical homotopy theory is analytic:
* a space is a set of points equipped with a topology

*a pathisamap [0,1] = X

[image from wikipedia]
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Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem;> = <elemy>

homotopies <2-proof> : <proofi> = <proofz




Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem;> = <elemy>
homotopies <2-proof> : <proofi> = <proofz

A path is not a map [0,1]—=X; it is a basic notion
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Spaces as types

a space is a type A path operations

. 1d : M =M (refl)
ot : N =M (sym)
Boa : M=P (trans)

Id

points are

elements |
M- A paths are

proofs of equality
X : M =2 N




Spaces as types

a space is a type A path operations

x—> 1d : M =M (refl)
ot : N =M (sym)
Boa :M=P (trans)

Id

homotopies
1d 0 0¥ = «
points are olo o = 1d
elements lth
M:A patns are Yy o (Bo o)

proofs of equality = (y 0 B) 0 «
x : M=z N
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Spaces as types

a space is a type A path operations
1d : M =M (refl)
1 : N =M (sym)

Boao :M=P (trans)

homotopies
1d 0 0 = &
points are olo o = 1d
elements th
M:A paths are Yy o (B o )

proofs of equality = (y 0 B) 0 «
x : M=z N
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We can do
computer-checked proofs
N synthetic homotopy theory

% Proofs are constructive™: can run them

* Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and oo-topol*

* New type-theoretic proofs/methods

*work Iin progress
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Some results

Homotopy Theoretic Type Theoretic

rMSW\ +(S7)

Hopf fibration /

& T12(S?) T m2(S?)

}

th(S")
—

Freudenthal

|

Th(S")




Outline

1.m(SN =Z
2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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Higher Inductive types

Circle is inductively generated by Q
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Higher Inductive types

Circle is inductively generated by

1 loop

point base : Circle loop
path loop : base = base “base

Free co-groupoid with these generators
1d inv : loop o loop?t = 1id
loop-?
loop o loop

20




Higher Inductive types

Circle recursion: Q loop
function Circle -» X determined by

base

base’ : X i

base’

loop’ : base’ = base’




Higher Inductive types

Circle recursion: Q loop
function Circle » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

21
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Definition. Q(S") is the space of loops at base
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Theorem. Q(S") is equivalent to Z,
by a map that sends o to +
Proof: two mutually inverse functions

winding : Q(SY) - Z
Loop" . 7 » Q(SH
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Fundamental group of circle

Definition. Q(S") is the space of loops at base
i.e. the type (base = base)

Theorem. Q(S") is equivalent to Z,
by a map that sends o to +
Proof: two mutually inverse functions

winding : Q(SY) - Z
loop"” : Z » Q(SYH)

Corollary: m1(S?) is isomorphic to Z
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i.e. the type (base = base)

Theorem. Q(S") is equivalent to Z,
by a map that sends o to +
Proof: two mutually inverse functions

winding : Q(S1) - Z
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Fundamental group of circle

Definition. Q(S") is the space of loops at base
i.e. the type (base = base)

Theorem. Q(S") is equivalent to Z,
by a map that sends o to +
Proof: two mutually inverse functions

winding : Q(S1) - Z
100[9” VA chl) 0-truncation

/ (set of connected
. . components
Corollary: 11(S")1s isomorphic to Z of Q'()S” )

rk(S7) trivial otherwise
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Universal Cover

< 2 > W . Q(Sl> > /
T, —— defined by lifting a loop
Q_._y . to the cover, and givi
< , giving

the other endpoint of O
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defined by lifting a loop
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the other endpoint of O

|

<> g
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base

lifting Is functorial
lifting Loop adds 1
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Universal Cover

base

lifting Is functorial

lifting Loop adds 1

lifting Loop~! subtracts 1

w : Q(SYH 5 7

defined by lifting a loop
to the cover, and giving
the other endpoint of O
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Universal Cover

base

lifting Is functorial

lifting Loop adds 1

lifting Loop~! subtracts 1

w : Q(SYH 5 7

defined by lifting a loop
to the cover, and giving
the other endpoint of O

Example:

w(loop o loop1)
0 +1 -1

0
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Floration = Family of types

Fibration (classically): .

map p: E — B such that 3 B
any path from p(e) toy N

lifts to a path in E from e !
to some point in p~1(y) CrD g

Family of types (E(X))x:s
* Fibers: E(b) ‘s a type for all b : B
% transport: equivalence E(b1)>E(b2) forall p:bi=gb;

p(b)

\ sends e < E(x) to other endpoint of lifting of p
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Universal Cover ==

family of types (Cover(x))x:s1 T

base

By circle recursion, it suffices to give
% Fiber over base: Z

% Equivalence Z = Z as lifting of Loop:
successor
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: A N—
Universal Cover ==

family of types (Cover(x))x:s1 Ty gl

base

By circle recursion, it suffices to give
% Fiber over base: Z

% Equivalence Z = Z as lifting of Loop:  usesunivalence
successor
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Universal Cover é)r) ]

D

4

family of types (Cover(x))x:s1 Ty gl

base

By circle recursion, it suffices to give
% Fiber over base: Z

% Equivalence Z = Z as lifting of Loop:  usesunivalence
successor

Defining equations:
Cover(base) := Z

transportcover(loop) := successor

25




Winding number == T

S » o2
w : Q(SYH) - Z e
w(p) = transportcover(p, @) lift p to cover,

starting at 0




Winding number

w : Q(SH -5 7
w(p) = transportcover(p,0)

w(loop=t o loop)

lift p to cover,
starting at 0




I ' S
Winding number == .
S

w : Q(SYH) - Z ooe
B = transporteo(p,0)  Mptco

w(loopt o loop)
= transportcover(loopt o loop, 0)




winding numoer == .
P

W
w(p) = transportcover(p,0)

Q(SYH » 7

lift p to cover,
starting at 0

w(loopt o loop)

transportcover(loopt o loop, @)
transportcover(loopt, transportcover(loop,d))

26




winding numoer == .
Cons 2 ool

w : Q(SH - 7 ooe
B = transporteo(p,0)  Mptco

w(loop! o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

26




winding numoer == .
Cons 2 ool

w : Q(SH - 7 ooe
B = transporteo(p,0)  Mptco

w(loop! o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

0
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Fundamental group of the circle
The book Computer-checked
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2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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The Hopf fibration

The Hopft fibration

Sl
he Hopf fibration is a fibration with
e base S? Y
: S3
o fiber St
e total space S3 i
S2

The Hopf fibration is a family of circles, parametrized by S® and
whose “union” is S3.
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The Hopf fibration

The spheres

Definition

The suspension of a space A (denoted 2 A) is generated by
e [wo points n,s: 2A
o Forevery a: A, apath m(a) :n=gas

Definition

S"H = 38"
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The Hopf fibration

Fibrations over S?

A fibration over S? is given by
e a space A (over n)
e a space B (over s)

e a “circle of equivalences” between A and B (over m)
<= a function e: S! — (A ~ B)
<= for every x : S!, an equivalence e, : A~ B
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The Hopf fibration

The Hopf fibration in HoTT

A fibration over S? with fiber St and total space S37
o St over n

e S! overs

e for x - St the equivalence ey : St ~ St is the “rotation of
angle” x

Left to do:
e Define the rotation of angle x

e Prove that the total space is S3
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The Hopf fibration

Rotations of S

We want
e: St — (St ~sh)

By definition of S, we need
e an equivalence ey : ST ~ St

e a homotopy e(loop) : €pase = €pase
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We want
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The Hopf fibration

Rotations of S

We want
e: St — (St ~sh)

By definition of S, we need
e an equivalence idg: : S' ~ S?
e a homotopy e(loop) : idg1 = idg:

e(loop) is the homotopy “turning once around the circle”.

loop

W

base
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The Hopf fibration

Homotopy turning once around the circle

A homotopy ide1 = ide1 <= for every x : S!, a path x = x

We need:

e a path
p : base = base

e a (2-dimensional) path

qg:p-*loop=Iloop-p



7T1(81) = Z The Hopf fibration

Homotopy turning once around the circle

A homotopy ide1 = ide1 <= for every x : S!, a path x = x

We need:

e a path
loop : base = base

e a (2-dimensional) path

q : loop * loop = loop * loop



The Hopf fibration

Homotopy turning once around the circle

A homotopy ide1 = ide1 <= for every x : S}, a path x = x

We need:

e a path
loop : base = base

e a (2-dimensional) path

reﬂloop_loop : loop * loop = loop * loop



The Hopf fibration

Total space

We just constructed a fibration with

e base S?
o fiber S?
What is the total space?



The Hopf fibration

Homotopy pushouts

Given a span

Definition

The homotopy pushout Y LIX Z is the space generated by
e Forally: Y, apointl(y): YLXZ

e Forall z: Z, apointr(z): YLX Z

o For all x: X, a path g(x) : I(f(x)) = r(g(x))

The suspension of A is the homotopy pushout of

l]<—A—->1



The Hopf fibration

Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:



The Hopf fibration

Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:

whose total space is St x S*



The Hopf fibration

Join
Definition

The join of A and B is the homotopy pushout of

A< AxB-P.B

Ax B



The Hopf fibration

Join
Definition

The join of A and B is the homotopy pushout of

A< AxB-P.B

Ax B

We have
SPx A=YA
(Ax B)xC =Ax(B* ()



Total space

The Hopf fibration



The Hopf fibration

Total space

St xSt = (ZS°) « St
= (S? x SP) xSt
= S% % (S? xSY)
= ¥ (xSh
—S3

We have the Hopf fibration in homotopy type theory.



The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

7'('4(81) — > 7T4(S3) —> 7'('4(82)

m3(St) —— m3(S3) —— m3(S?)

7'('2(81) — > 72(83) — > 7'('2(82)

7T1(Sl) — 7T1(S3) — 7'('1(82)



The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

0=—— 7'('4(83) —> 7'('4(82)

0 =—— 773(83) — 7T3(Sz)

O — > 7T2(S3) — > 72(82)

/s 7T1(S3) — > 71(82)



The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

0=—— 7T4(83) — > 7'('4(82)

0=—— 773(83) — 7T3(S2)

>7T2




The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

0=—— 7'('4(83) — > 7'('4(82)

0= 7T3(S3) EEAS 7T3(82)

0 / 7a(S2)

>




The Hopf fibration

Homotopy groups

Theorem
We have
m(S?) = Z
T (S?) = mi(S3) for k > 3
In particular
Theorem

Assuming m3(S°) = Z
m3(S%) = Z



The Hopf fibration

7'('4(83)

Theorem

There exists a natural number n such that w4(S*) ~ Z/nZ.



The Hopf fibration

7T4(SB)

Theorem

There exists a natural number n such that w4(S*) ~ Z/nZ.

e (Classical mathematics: cannot compute n, unless the proof is
nice enough



The Hopf fibration

7T4(83)

Theorem

There exists a natural number n such that w4(S*) ~ Z/nZ.

e (Classical mathematics: cannot compute n, unless the proof is
nice enough

e Constructive mathematics: disallow the axiom of choice and
excluded middle = every proof is nice enough



The Hopf fibration

7T4(83)

Theorem

There exists a natural number n such that w4(S*) ~ Z/nZ.

e (Classical mathematics: cannot compute n, unless the proof is
nice enough

e Constructive mathematics: disallow the axiom of choice and
excluded middle = every proof is nice enough

In this case we can compute the value of n and get 2*

*work in progress



Outline

1.m(SN =Z
2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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Part III: Freudenthal and friends

1. Truncatedness

2. Connectedness

3. Freudenthal Suspension Theorem

1/16



Truncatedness

Definition
A type X is n-truncated (or an n-type) if, by induction on
n> —2:

» n = —2:1if X is contractible, i.e. X ~ 1;

» n > —2: if each path space (x =x x’) of X is
(n — 1)-truncated.
Proposition

Suppose X is n-truncated, for n > —1. Then (X, xg) ~ 1, for all
k> nand xg : X.

[In Top and SSet, the converse holds; but not in all classical
settings, cf. Whitehead’s theorem and hypercompleteness.]

2/16



Truncations

Definition

For any type X, and n > —1, the n-truncation 7, X is the higher
inductive type generated by:

» for x : X, an element x|, : 7,X;
» for f: S"*! — 7, X, and t : S*, a path f(t) = £(0).

Proposition

T, X 15 the free n-truncated type on X: any f: X — Y, with Y
n-truncated, factors uniquely through 7, X.

[Classically: iteratively glue cells on to X to kill homotopy in
dimensions > n.]
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Connectedness (of types)

Definition

X is n-connected if 7,41 X is contractible.

Proposition

TFAE:
» X is n-connected;

> every map from X to an n-type is constant;
> (whenn > 0) m(X, x9) ~ 1, forall k < nand xy : X.

Connectedness (trivial low homotopy groups) is dual to
truncatedness (trivial high homotopy groups).

4 /16



Connectedness (of maps)
Definition

f: A — Bis n-connected if each (homotopy) fiber f ~1(b) is
n-connected. (Warning: indexing conventions vary by +1.)

Proposition

TFAE:
> f is n-connected,;

> f is weakly (or strongly) orthogonal to maps with n-truncated
fibers;
A——Y
(n-conn) f EI(') p (n-trunc)
B ~X
> f is equivalent to the inclusion of A into some extension by cells
of dimensions > n.

5/16



Additivity of connectedness

Lemma (Wedge-product connectedness)

Suppose (X, xg) is i-connected, (Y, yo) is j-connected. Then the
inclusion X U1 Y < X x Y is (i + j)-connected.

1-cell Y 2-cell

1-cell
X0 X

Type-theoretically: to define a function of two variables f (x, y)
into an (i 4 j)-type, enough to define in the cases f(xg,y) and

f(x,y0), agreeing in the case f(xp, yo).
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Freudenthal

Detinition

Recall: the suspension XX is generated by
» N,S: XX
» foreach x: X, a pathm(x) : N =xx S.

Theorem (Freudenthal Suspension Theorem)

Suppose (X, xg) is n-connected. Then the canonical map
X — Q(XX,N) is 2n-connected.

N Idea: want X — (32X, N) to be an equivalence.

Generally (e.g. for ¥S! ~ §?) it isn’t; but within
X a certain dimension range, it is.

Important application: stable homotopy groups
of spheres.

7/ 16



Proof: weak Freudenthal

For now, prove a weaker statement. (Same approach, with
more work, yields full FST.)

Theorem (Weak Freudenthal)

Suppose (X, xg) is n-connected. Then the canonical map
Ton(X) = 1,2 X, N) is an equivalence.

Proof.

Heuristic: to prove a result of the form X ~ (Y, yo), generalise
X to a dependent type X, over y : Y, with X;; ~ X, and prove
Xy~ (Yo =y y) forally : Y.

So: define type X, depending on y : ¥X, and maps

my: Xy, — 7, (N = y), using universal property of ¥XX.

8/16



Weak Freudenthal, cont’d

Proof.
To give X, m, for all y : £X, need:

> types and maps 7ty : Xy — 72q(N = N), and
mg : Xg — Tzn(N — S),’

» transport equivalences transportgm(x;): Xy — Xs, for
each x; : X, commuting with my;, mg.

over S: mg := mp(m) : mp(X) = (N = S)
over N: my = Tzn(x — m( ) O WI(XQ) 1) Tzn(X) — Tzn(N — N)

and over m(x), need to define for each x; : X the action
transportg (m(x), —) : Xy — Xs.

9/16



Weak Freudenthal, cont’d

Proof.

... transport over m(x1): need to give, for each x; : X and
z : Xy = mu(X), some element of Xg = 1, (X).

Since RHS is 2n-truncated, may assume z is of form |x;|, some
xp : X. Also, by wedge-product connectedness lemma, enough
to assume one of x1, x» is xg. So: when x1 = xg, return |x;].
When x; = xg, return [x1]. (Check: when x; = xp = xg, these
agree)

(Roughly: defining a multiplication X x 1,(X) — m,(X), with
xg as a two-sided unit.)

So: have m, : X, — (N =y), forall y : £X.

Define converse 7, : (N = y) — X, by n,(p) := transports[xo].
Not hard to prove m, n mutually inverse; so, each m,, is an

equivalence, as desired.




Consequences

From (weak) Freudenthal, immediately have:
Corollary (Homotopy groups of spheres stabilise)
Tk (S") = T 145 (ST, forn > k + 2.

In particular,

Corollary
Tn(S") ~ Z, for alln > 1.

Proof.
» n = 1: by universal cover.
» n = 2: by LES of Hoptf fibration.
> n > 2: by stabilisation.
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(S") In HOTT

k" homotopy group

n-dimensional sphere

% 2% 9| %] 2 2| %
o
o
o

m n2 n3 g L1 Mg ny g o M1 m2 m3 M4 M5
L o 0 0 0 0 0 0 0 0 0 0 0 0
sl z 0 0 0 0 0 0 0 0 0 0 0 0

[image from wikipedia]
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Vlore results




James construction

Refinement of Freudenthal: describes 2(3X) precisely, via a
filtration.

Theorem

Suppose (X, xg) is n-connected, for n > 0. There is a sequence
1 X ——= Ja(X) —=J5(X) —= Js(X) — -

with the maps having respective connectivities (n — 1), 2n, (3n + 1),
..., and such that [, (X) := lim 1, (%) ~ Q(XX).

Conceptually, [ (X) is the free monoid on X; as X is connected,
this is the free group on X.
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Blakers—Massey

Generalization of Freudenthal: describes path spaces in
pushouts.

Theorem (Blakers—Massey theorem)

Suppose given maps f, g as below, with f i-connected, g j-connected.

/ S > Y

fl inr
. Y

Xl—nl>Xl_2Y

Then forall x : X,y : Y, the canonical map Z,,, — (inl x = inr y) is
(i + j)-connected.
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van Kampen

Another tool for pushouts of types:

Theorem (van Kampen theorem)

For any pointed maps f : Z — Xand g : Z — Y, with Z 0-connected,
the fundamental group of the pushout of f and g is the amalgamated
free product (pushout of groups) of m1(X) and 71 (Y) over m(Z):

7T1(X L7 Y) ~ 7T1(X) *11(2) 7T1(Y).

Can also be generalised to non-connected Z.
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Covering spaces

The (beautiful) classical theory of covering spaces transfers
straightforwardly. In particular:

Definition

A covering space of a connected type X is a dependent family
of O-types over X.

Theorem

Covering spaces of X correspond to sets with an action of m1(X).

15/16



Eilenberg—Mac Lane spaces; cohomology

Eilenberg—Mac Lane spaces of Abelian groups can be
constructed as HIT’s:

Theorem

For any (n-truncated) Abelian group G and natural number n > 0,
there is a type K(G, n) such that ,(K(G,n)) ~ G, and
T (K(G,n)) ~ 1 for k # n.

These (and other spectra) can be used to define cohomology of
types.

16 /16



Conclusion




We can do
computer-checked proofs
N synthetic homotopy theory




January 14, 2013

mi(S) =7
Tk<n(S") = 0




April 11, 2013

m(S') =7 Freudenthal
Mk<n(S") = 0 Mn(S") = Z

Hopf fibration K(G,n)

n(S?) =7 Cohomology
Ma(S?) = Z axioms

James Blakers-Massey

Construction

4(S°) = Z»

Van Kampen

Covering spaces

Whitehead
for n-types
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