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Homotopy theory

A branch of topology,
the study of spaces and continuous deformations
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Deformation of one path into another

d

P

[image from wikipedia]




HoMmotopy

Deformation of one path into another

a..

b

[image from wikipedia]




HoMmotopy

Deformation of one path into another

= 2-dimensional path between paths

[image from wikipedia]




HoMmotopy

Deformation of one path into another

Qe P
.k -“\“
Y
Y
\-
\
\
\
D

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between

homotopies, ....
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Synthetic vs Analytic

Synthetic geometry (Euclid)

Analytic geometry

(Descartes)

POSTULATES.

L .
Ler it be granted that a straight line may be drawn {rom any one
point to any other point.
. 1.
That a terminated straight line may be produced to any length in a
straight line.
I
And that a circle may be described from any centre, at any distance

(x2,92)

d
Y3 =l

from that centre. (z1.11) To — Ty
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Synthetic vs Analytic

Analytic geometry

Synthetic geometry (Euclid)
(Descartes)

POSTULATES.

Ler it be granted that a straight line may be drawn from any one
point to any other point.

(z2,y2)

- 1.
That a terminated straight line may be produced to any length in a d Yo — Y1

straight line.
I
And that a circle may be described from any centre, at any distance
from that centre. (z1,11) To — Ty

-

Classical homotopy theory is analytic:
* a space is a set of points equipped with a topology

* a path is a continuous map [0,1] = X

[image from wikipedia]




Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem> = <elemy>

homotopies <2-proof> : <proofi> = <proofz
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Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem> = <elemy>
homotopies <2-proof> : <proofi> % <proofz>

A path is not a map [0,1]—=X; it is a basic notion

Id(<eleml>,<elemZ>)
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Spaces as types

a space is a type A path operations
p=> T 1d :a =a (refl)
p~t : b =a (sym)

a = ¢ (trans)

Id

points are

elements |
a- A paths are

proofs of equality
p :a=aAb




Spaces as types

a space is a type A path operations
-~ P 1d : a =a (refl)
p-1 . b =a (sym)

qgop : a=c (trans)

homotopies
1dop=2p
points are plo p = id
elements lth
a:A paths are r o (q o p)
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Spaces as types

a space is a type A path operations
1d :a = a (refl)
p~t : b =a (sym)

qop : a=c (trans)

homotopies
1dop=2p
points are plo p = id
elements th
a:A paths are r o (q o p)

prooff of equality =(roqg)op
p:a=ab




FPath induction

Type of paths is inductively

from a to somewhere generated by
2
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FPath Induction

Type of paths is inductively
from a to somewhere generated by

y2
d
p2 |
p1 - p3 a

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of

C(y,p) forall y and p: a=y,
suffices to give an element of

C(a,1d)




Composition, analytically
M‘/@

Given pathspandg : [0,1] » Xwhere p(1) = q(0)
define composition by:

(g o p)(x) = p(2x) if @

< x < 1/2
| g(Z2x - 1) if 1/2 < x <1

<




Composition, synthetically

P
g

a C
b

Given paths p:a=b and g: b=c
define composition (g o p) by path induction:

id 9
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Composition, synthetically

P

b

Given paths p:a=b and g: b=c
define composition (g o p) by path induction:

% Suffices to consider case where b isa, and p is 1d

id 9
C
a




Composition, synthetically

P

b

Given paths p:a=b and g: b=c
define composition (g o p) by path induction:

% Suffices to consider case where b isa, and p is 1d
id 9

d

C

* In this case the composite is g




Assoclativity, analytically
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ro(gop)=(Croqgop




Assoclativity, synthetically

© I
Qg

v a,b,c,d, p:a=b, qg:b=c, r:c=d.
ro(gop)=(Croqgop

* By path induction, suffices to consider case where all
points are a and all paths are 1d:

1d o (1d o 1d) = (1d o 1d) o 1d




Assoclativity, synthetically

© I

v a,b,c,d, p:a=b, qg:b=c, r:c=d.
ro(gop)=(Croqgop

* By path induction, suffices to consider case where all
points are a and all paths are 1d:

1d o (1d o 1d) = (1d o 1d) o 1d
% By definition of 0, both sides equal 1d




lype theory IS
a logic of
nomotopy theory




Computer-checked proofs

Type Theory

\ i / Correct!

checker
\ Incorrect




Computer-checked proofs

_o— + {A : Type} {a b c : A}
- Path b ¢ - Path a b - Path a c

q-1d=(

-—assoc : {A : Type} {ab cd : A}
{p : Path'a b) (g : Path b ¢) (r : Path ¢ d)

= Pakl (r'= (q = p)) CCr= q) «p)
--aSSOC 1d 1d 1d = 1d
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We can do
computer-checked proofs
N synthetic homotopy theory

% Proofs are constructive™: can run them

* Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and oo-topol*

* New type-theoretic proofs/methods

*work Iin progress

15




Homotopy In HO T |

m(S') =Z Freudenthal Van Kampen
Mk<n(S") = 0 ma(S") = Z Covering spaces
Hopf fibration K(G,n) Whitehead
no(S?) =7 Cohomology for n-types
Ma(S?) = Z axioms

James Blakers-Massey

Construction

3\ —
4(S®) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Homotopy N Aol [

Freudenthal Van Kampen
rtk<n(S ) = ma(S") =7 Covering spaces
Hopf fibration K(G,n) Whitehead
n(S?) =Z Cohomology for n-types
Ma(S2) = axioms
James Blakers-Massey

Construction

3\ —
4(S®) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

16



Example:
The Fundamental Group
of the Circle
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The Circle

Circle St is inductively generated by

point base : St
loop : base

= base

(:::;;::; loop

base
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The Circle

Circle St is inductively generated by

point base : St

path  loop : base = base

(:::;;::; loop

base

18




The Circle

Circle St is inductively generated by

-1
point base : Si loop
path  lLoop : base = base “base

loop

Free type: equipped with structure by path induction
1d inv : loop o loop?t = 1id
loop-?
loop o loop

18




The Circle

Circle recursion: loop
function St » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

19




The Circle

Circle recursion: loop
function St » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

19




Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
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Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loopt

loop o loop
loop~t o loop
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Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1

loop o loop
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loop o loopt id
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Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loopt id




Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0




Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

id 0
Loop 1 |

integers are “codes”
Loop- ! -1 for paths on the
loop o loop 2 circle
loop™t o loop -2

loop o loop™t = id 0




Fundamental group of circle
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i.e. the type (base = base)
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Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base = base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle is isomorphic to Z

21




Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base = base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle\is isomorphic to Z

0-truncation (set of connected components)
of Q(S")

21




Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof: two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)




Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof: two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)

loop? = 1id

loop*" = loop o loop o .. loop (n times)
loop™ = loop™ o loop™t o .. Lloop™t (ntimes)




Universal Cover

< 2 > W-i.nd . Q(Sl> > /
T, —— defined by lifting a loop

Q_._y . to the cover, and givi
< , giving

the other endpoint of O
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Universal Cover

< 2 > W-i.nd . Q(Sl> > /

defined by lifting a loop
R L
Q_‘_y\ to the cover, and giving
the other endpoint of O

<> g

base

lifting Is functorial
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Universal Cover

s wind : QC(SY) » Z

defined by lifting a loop
to the cover, and giving
the other endpoint of O

|

<> g

K3

base

lifting Is functorial
lifting Loop adds 1
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Universal Cover

base

lifting Is functorial

lifting Loop adds 1

lifting Loop~! subtracts 1

wind : Q(S) - 7

defined by lifting a loop
to the cover, and giving
the other endpoint of O

23




Universal Cover

& 2) wind : Q(Sl> > /
Q,_y - defined by lifting a loop
0~ to the cover, and giving

the other endpoint of O

S Example:
lifting is functorial wind(loop o loop™)
=0+ 1-1

lifting Loop adds 1 0

lifting Loop~! subtracts 1

23




Floration = Family of types

Fibration (classically): T
map p: E — B such that Q._\)
any path from p(e) toy \
lifts to a path in E from e
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to some point in p~1(y) o




Floration = Family of types

Fibration (classically): < -

map p: E — B such that g B
any path from p(e) toy 2

lifts to a path in E from e !
to some point in p~1(y) C,TD g

Family of types (E(X))x:s
% Fibers: E(b) is a type for all b: B
% transport: equivalence E(b1)>E(b2) forall p:bi=gb>




Floration = Family of types
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map p: E — B such that g B
any path from p(e) toy 2

lifts to a path in E from e !
to some point in p~1(y) C,TD g

Family of types (E(X))x:s
* Fibers: E(b) ‘s a type for all b : B
% transport: equivalence E(b1)>E(b2) forall p:bi=gb>
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Floration = Family of types

Fibration (classically): .

map p: E — B such that 3 B
any path from p(e) toy N

lifts to a path in E from e !
to some point in p~1(y) CrD g

Family of types (E(X))x:s
* Fibers: E(b) ‘s a type for all b : B
% transport: equivalence E(b1)>E(b2) forall p:bi=gb;

p(b)

\ sends e < E(x) to other endpoint of lifting of p

24




Universal Cover ==

family of types (Cover(x))x:s1 — .
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Universal Cover ==

family of types (Cover(x))x:s1 T

base

By circle recursion, it suffices to give
% Fiber over base: the type Z

% Equivalence Z = Z as lifting of Loop:
successor

25




T

. SR -
Universal Cover ==

family of types (Cover(x))x:s1 Ty gl

base

By circle recursion, it suffices to give
% Fiber over base: the type Z

% Equivalence Z = Z as lifting of Loop:  uses univalence
successor

25




Universal Cover 8 ]

D

4

family of types (Cover(x))x:s1 Ty gl

base

By circle recursion, it suffices to give
% Fiber over base: the type Z

% Equivalence Z = Z as lifting of Loop:  uses univalence
successor

Defining equations:
Cover(base) := Z

transportcover(loop) := successor

25




Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,9)

lift p to cover,
starting at 0




Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,)

wind(loopt o loop)

lift p to cover,
starting at 0




I ' e
Winding number == .
S

wind : Q(SY) » Z o
wind(p) = transportcover(p,0) lift p to cover,
starting at 0

wind(loopt o loop)
= transportcover(loopt o loop, 0)




winding numoer == .
P

wind : Q(SY) - 7

wind(p) = transportcover(p,)

lift p to cover,
starting at 0

wind(loopt o loop)

transportcover(loopt o loop, @)
transportcover(loopt, transportcover(loop,d))

26




winding numoer == .
SR

wind : Q(SY) » Z o
W'I.ﬂd(p) - tr'anSpOr'tCover'(p,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

26




winding numoer == .
SR

wind : Q(SY) » Z o
W'I.ﬂd(p) - tr'anSpOr'tCover'(p,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

0

26




SO far

Theorem. Q(S") is equivalent to Z
Proof: two functions

wind : Q(SD) - Z
wind(p) = transportcover(p,9)

loop~- : Z » Q(SYH
loop? = 1id
loop™ = loop o loop o .. Loop

(N times)

loop™ = loopt o loopt o .. Lloopt (ntimes)




SO far

Theorem. Q(S") is equivalent to Z
Proof: two mutually inverse functions

wind : Q(SD) - Z
wind(p) = transportcover(p,9)

loop~- : Z » Q(SYH
loop? = 1id
loop™ = loop o loop o .. Loop

(N times)

loop™ = loopt o loopt o .. Lloopt (ntimes)




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.

wind(loop™1)




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.

wind(loop"+l)
= wind(loop o loop") [def. loop]




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.
wind(loopn+l)
= wind(loop o loop") [def. loop]
= transportcover(loop o loop",d) [def. wind]




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.

wind(loopn+l)
= wind(loop o loop") [def. loop]
= transportcover(loop o loop",d) [def. wind]
= transportcover(LOOp,

transportcover(loO0Op",0)) [functorial]




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.

wind(loopn+l)
= wind(loop o loop") [def. loop]
= transportcover(loop o loop",d) [def. wind]
= transportcover(LOOp,

transportcover(loO0Op",0)) [functorial]
transportcover(loop,n) [ IH]




Composite #1

Lemma. vn. wind(loop") = n
Proof: induction on n. E.qg.

wind(loopn+l)
= wind(loop o loop") [def. loop]
= transportcover(loop o loop",d) [def. wind]
= transportcover(LOOp,
transportcover(loO0Op",0)) [ functorial]
= transportcover(lOOp,n) [IH]

n+1 [def. Cover]




Composite #1

wind-loopA : (n : Int) - Path (wind (loopA n)) n
wind-loopA Zero = id
wind-loopA (Pos One) = ap= transport-Cover-loop
wind-loopA (Pos (S n)) =
transport Cover (loop - loopAr (Pos n)) Zero =( ap= (transport-- Cover loop (loopAr (Pos n))) ’
transport Cover loop
(transport Cover (loopA (Pos n)) Zero) =¢ ap (transport Cover loop) (wind-loopA (Pos n)) *
transport Cover loop (Pos n) =( ap= transport-Cover-loop ’
succ (Pos n) »
wind-loopA (Neg One) = ap= transport-Cover-!loop
wind-loopA (Neg (S n)) =
transport Cover (! loop - loopA (Neg n)) Zero =( ap= (transport-- Cover (! loop) (loopA (Neg n)))
transport Cover (! loop)
(transport Cover (loopA (Neg n)) Zero) = ap= transport-Cover-!loop ’
pred (transport Cover (loopAr (Neg n)) Zero) =( ap pred (wind-loopA (Neg n)) >
pred (Neg n) @

29




Composite #2

Lem. vp:base=base. loop"thdr) =p




Composite #2

Lem. vp:base=base. loop"thdr) =p

Proof: want to apply path induction
but path induction does not apply to loops
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Composite #2

Lem. vp:base=base. loop"thdr) =p

Proof: want to apply path induction
but path induction does not apply to loops

Type of paths is inductively

from a to somewhere generated by
y2

id
p2 8'
y1 y3
pi aﬁo a

30




Composite #2

Lem. vy:St, p:base=y. loop"tndr) = p




Composite #2

Lem. vy:St, p:base=y. loop"tndr) = p
Proof:

wind . base=base -» Z
wind(p) = transportcover(p,0)

loop~ : Z -» Q(SYH




Composite #2

Lem. vy:St, p:base=y. loop"thdr) =p
Proof: need to generalize wind

wind . base=base -» Z
wind(p) = transportcover(p,0)

loop~ : Z -» Q(SYH




Composite #2

Lem. vy:St, p:base=y. loop"tndr) = p
Proof:

encode : vy:S!'. base=y - Cover(y)
encode(p) = transportcover(p,d)

loop~ : Z » Q(SYH




Composite #2

Lem. vy:St, p:base=y. loop"thdr) =p
Proof: need to generalize loop-

encode : vy:S!'. base=y - Cover(y)
encode(p) = transportcover(p,d)

loop~ : Z » Q(SYH




Composite #2

Lem. vy:St, p:base=y. loop"thdr) =p
Proof: need to generalize wind and loop-

encode : vy:S'. base=y -» Cover(y)
encode(p) = transportcover(p,d)

decode : vy:S!. Cover(y) -» base=y

33




Composite #2

Lem. vy:S?, p:base=y. decodey(encodey(p)) =p

Proof: need to generalize wind and loop-

encode : vy:S'. base=y -» Cover(y)
encode(p) = transportcover(p,d)

decode : vy:S!. Cover(y) -» base=y




Decode

decode : vy:St. Cover(y) » base=y

Defined by circle induction:

decode(base) := loop-
decode(loop) := ..




Decode

decode : vy:St. Cover(y) » base=y

Defined by circle induction: /Cover(base) — base=base

decode(base) := loop-
decode(loop) := ..




Decode

decode : vy:St. Cover(y) » base=y

Defined by circle induction: /Cover(base) — base=base

decode(base) := loop-
decode(loop) := ..

“Loop~ is invariant under going around the Loop
in the fibration Cover(y) » base=y”




Decode

decode : {x : S} - Cover x - Path base x
decode {x} =
Si-induction
(A x' - Cover x' - Path base x')
looph
loopA-respects-loop
X where
loopA-respects-loop : transport (A x' - Cover x' - Path base x') loop loopr = (A n - loopAr n)
loopA-respects-loop =
(transport (A x' - Cover x' -~ Path base x') loop loopAr =( transport-- Cover (Path base) loop loopA >

transport (A x' - Path base x') loop
o loopA
o transport Cover (! loop) ={ A= (L y - transport-Path-right loop (loopA (transport Cover (! loop) y)))

(A p - loop - p)
o loopA
o transport Cover (! loop) =( A= (b y - ap (A x" -~ loop - loopr x') (ap= transport-Cover-!loop)) ’

(A p = loop - p)
o loopA
o pred = id ?
(A n - loop * (loopAr (pred n))) =( A= (A y - move-left-! _ loop (loopr y) (loopA-preserves-pred y)) ’

(A n - loopA n)
L))

36




Composite #2

Lem. vy:S', p:base=y. decode,(encode,(p)) =p

encode : vy:S%. base=y - Cover(y)
encodey(p) = transportcover(p,d)

decode : vy:S'. Cover(y) » base=y
decodepgse(n) = loop"




Composite #2

Lem. vy:St, p:base=y. decodey(encode,(p)) =p
Proof: By path induction, suffices to show
decodepqse(encodepase(1d))
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Proof: By path induction, suffices to show

decodepqse(encodepase(1d))
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= 1d
encode : vy:S'. base=y - Cover(y)
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decode : vy:S'. Cover(y) » base=y
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Lem. vy:St, p:base=y. decodey(encode,(p)) =p
Proof: By path induction, suffices to show

decodepqse(encodepase(1d))

= decodepqse(0)
= loop?
= 1d
encode : vy:S'. base=y - Cover(y)

encodey(p) = transportcover(p,d)

decode : vy:S'. Cover(y) » base=y
decodepgse(n) = loop"




Composite #2

decode-encode : {x : S} (a : Path base x)
- Path (decode (encode a)) o
decode-encode 1d = 1d
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Fundamental group of the circle
The book Computer-checked

abstroct -~ prevert Agdo from morsoliring
Cover : 5* « Type encode-loopr : (n : Int) - Peth (encode (loop* 1)) &
Cover x » Sterec Int (uo succiquiv) x ercode-looph e dJ
encode-loopr (F ) = ap~ trarsport-Cover-100p
tronsport-Cover-10op : Path (tronsport Cover loop) suxc encode-looph (F
tronsport-Cover-100p = oncode (loop”
. . . iy . trensport Cover loop - )
viv el . «( tromaport-cp-assoc Cover loop ) tromsport Cover (oop - loopt (Pos m)) Zero
Deflaition 7235, Defire ix:8")1 « M 4 tronsport (A x « x) Cop Cover loop) = ap= (tromport-- Cover locp (locpr (Foa n))) 0

«ap (trorsport O x «- X)) tronsport %:v.' locp . Oaveh & ® ;
t 1 ) ronsgort (over Pos &) Zere
Noop/rec Int (uo succkquiv)) P o O
“xC ((W Cover Qloop® (Pos m)) ZTere)

tremport (A x ~ x) (ue seccliquiv)
“Ctypep

e e (ncode Closp* (FPes n)))
tromsport-Cover-110cp : Poth (tromaport Cover (I loop)) pred m« :\:‘:t)(' loept (Pes m)) )
tronsport-Cover-1100p = ercode-) Neg Ore) = traraport-Cover- 11
transport Cover (1 loop) ““..\z E;,,: s ,),)) .Q. -
=( trorspect-op-assoc Cover (I leop) ) tronsport Cover (1 1o0p « 1oapd O%eg 1)) Zero
tremsport (A x ~ x) (op Cover (1 loop)) « ap= (trorsport- Cover (1 Toop) Cloop* Okeg n))) ?
«C ap (trensport (A x « x)) (ap-! Cover loop) tronsport Cover (1 1oop) (traraport Cover Cloop* Oteg n)) 7o
trensport (A x ~« x) (! (op Cover lecp)) « ap+ treraport-Cover-1loop )
N “(ep Oy~ tronsport G x - x) (1 y)) pred (tromsport Cover (loopr (Meg =) Zers)
Dlocp/rec 1ot (o succlquiv)) = ap pred (encode-loepr (Neg n)) )
trensport (4 x « x) (I (o swcckquiv)) pred (Neg a) »
’ ) «C ap (trensport (A x « X)) (I-ua swcckquiv)
trensgort (A x - x) (uo (leguiv succlquiv)) encode-decode 1 {x 1 5*) « (c 1 Cover X)
= « Poth (encode (decode{x} <)) <
pred « mcode-decods {x} = 5% -induction
2103 Deonding after enonding NGx:$)+ (c: Comrx)

Le 728 fova . - . encode : [x : S') - Poth bese x - Cover x ~ Poth (encode(x} (decode{x} <)) <)
ecode ¢ = tromaport Cover & Zero ercode-loopr O O x' - fat (use<level (use-level (use<level MSetelst _ ) _ ))) x

decode-encode @ {x & 5') (e ! Poth base x)

encode” ! Poth base base - Int
A « Poth (Secode (encode v)) o
o = encode }e decode-encode {1} & =
s ’ P Qoph lero - 14 = . »
TIE locpr (Pos One) = locp o Poth (decode (encode o')) &)
e poes p 1 . %0 ob * Can ou, by ‘e loopr (Pos (5 n)) = locp - loopr (Pos n)
R s e fn < given by appesiing 2 e loop (Neg (ne) = | loop O[5*)-Equiv-Int : Equiv (Poth base base) It

Ehax leoph (Neg (5 n)) = | Toop « leop* (Neg n) O[5 )-Equiv-Int =
100p* -prese~ves -pred tprove (heguiv encode decode decode-encode encode-10oph)
: (n 2 It) - Poth Clocp® (pred n)) (1 loop - losph n)
locpA-preserves-prad (Fos Ore) » | (1-tav-1 locg) O[5 )-is-Iat : (Poth bose base) = Int
loopA-preseves -pred (/ R O[5 )-is-Int « ua OJS*)-Lguiv-Iat
I C-amsec (I Toop) loop Clospt (Fos y)))
w0 o h Gos YD C1-imv-1 Tomw2 w54 )-is-Int ! x One S* base » Int
e s 7 n(53]-is-Int = UnTrunc.soth _ _ HSet-Int - op CTrunc (t1 8)) O[S*J-is~Int
Loopr-praserves-pead (g One) = 14
Lotp-praserves-pead (g (5 0D = 14

. i ) " dotode | (n 1 54) < Cower x - Poth bose »
A . ' " docode () =
3% Anduction
. " ¥ = Cover x' - Poth base »')

+ Cower x" - Poth bone x') loop locg® « (L & +~ locp* n)

" o Poth bese x') Toop losph
« Cover (Poth bose) Loop loug” >

»)

k all some e

tromaport Cover (1 loop)

{0y -0 x" < loop - Yosp* ) (ap= tremport-Cover-Iloop))
Gp -~ lop-9)

o loopt

© pred

O =« loop - (hecpt (pred n)))

o Oy~ move-lefe- | Seop (loop* y) Clocp*-preserves-pred ¥))

On - lospr n)

0
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Conclusion




We can do
computer-checked proofs
N synthetic homotopy theory

% Proofs are constructive™: can run them

* Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and oo-topol*

* New type-theoretic proofs/methods

*work Iin progress
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Homotopy In HO T |

m(S') =Z Freudenthal Van Kampen
Mk<n(S") = 0 ma(S") = Z Covering spaces
Hopf fibration K(G,n) Whitehead
no(S?) =7 Cohomology for n-types
Ma(S?) = Z axioms

James Blakers-Massey

Construction

3\ —
4(S®) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Homotopy N Aol [

Freudenthal Van Kampen
rtk<n(S ) = ma(S") =7 Covering spaces
Hopf fibration K(G,n) Whitehead
n(S?) =Z Cohomology for n-types
Ma(S2) = axioms
James Blakers-Massey

Construction

3\ —
4(S®) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Reading list

% 111(S") = Z [Licata and Shulman, LICS’13]

* Other results: forthcoming
Homotopy Type Theory book

% Blog: homotopytypetheory.org

% Formalizations:

gitr
gitr

Ub . con
Ub . con

gitr

Ub . con

/dl1icata335/hott-agda
/hott/hott-agda
/hott/hott [Coq]




Algebraic invariants




Algebraic invariants

fundamental group fundamental group

is non-trivial (Z x Z)

IS trivial




HOoMOotopy groups




HOoMOotopy groups

* Fundamental group m11: group of loops
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HOoMOotopy groups

* Fundamental group m11: group of loops
* To: group of homotopies
* 3. group of homotopies between homotopies




HOMOotopy groups

ki homotopy group
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O 3
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[image from wikipedia]

46




(S") In HOTT

k" homotopy group

n-dimensional sphere

% 2% 9| %] 2 2| %
o
o
o

m n2 n3 g L1 Mg ny g o M1 m2 m3 M4 M5
L o 0 0 0 0 0 0 0 0 0 0 0 0
sl z 0 0 0 0 0 0 0 0 0 0 0 0

[image from wikipedia]
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(S") In HOTT

ki homotopy group

n-dimensional sphere

[image from wikipedia]

m ng ns nig ny ng 0 M1 m2 m3 M4 ms
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Mh(S") = Z for n>1

Proof: Induction on n
% Base case: 1(S") =Z

% Inductive step: mn+1(S™1) = (S
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n-truncation:
best approximation of a type such
that all (n+1)-paths are equal

48




Mh(S") = Z for n>1

Proof: Induction on n
% Base case: 1(S") =Z

% Inductive step: mn+1(S™1) = (S

Key lemma: Tn(S") = Tn(Q(S™1))

/

n-truncation:
best approximation of a type such
that all (n+1)-paths are equal

higher inductive type
generated by
base, : S"

loopn : Q"(SM)

48
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Tn(S") = Th(Q(S™))

n-truncation of S"is the type of “codes” for loops on S

% Decode: promote n-dimensional loop on S"
to n+1-dimensional loop on S™*

%% S5
7%/ ]1 S
| 4
(} /
, )
1
A\t 7
» \—. — A - s




Tn(S") = Tn(Q(S™))

n-truncation of S"is the type of “codes” for loops on S

% Decode: promote n-dimensional loop on S"

to n+1-dimensional loop on S™*

N Er
% Encode: define fibration Code(x: S"1) with
Code(baseni1) := t™(S™)
Code(loopn+1) :=equivalence Tn(S") = 1,(S")
“rotating by Loopn”




2(S?): Hopf fibration
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