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A branch of topology,
the study of spaces and continuous deformations
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Homotopy

3

Deformation of one path into another

[image from wikipedia]

p

q

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 

a

b
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)
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Synthetic vs Analytic

4

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a continuous map [0,1] → X
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<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>
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Synthetic homotopy theory

5

type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>

A path is not a map [0,1]→X; it is a basic notion

Id(<elem1>,<elem2>)
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b
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p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)-1
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Spaces as types

6

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)
q o p : a = c (trans)

homotopies
id o p = p
p-1 o p = id
r o (q o p) 
   = (r o q) o p 
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Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2



Path induction
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Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2



Composition, analytically 
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Given paths p and q : [0,1] ! X where p(1) = q(0)
define composition by:

(q o p)(x) = p(2x)     if 0 ≤ x ≤ 1/2
           | q(2x - 1) if 1/2 ≤ x ≤ 1

p
q



Composition, synthetically 
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Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

q
c

a

id
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Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

Suffices to consider case where b is a, and p is id 
q

c
a

id



Composition, synthetically 

9

Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

Suffices to consider case where b is a, and p is id 

In this case the composite is q

q
c

a

id
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r

r o (q o p)
p q r

0 1/2 3/4 1

(r o q) o p
p q r

1
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p
q

r

r o (q o p)
p q r

0 1/2 3/4 1

(r o q) o p
p q r

1

1/40 1/2 1
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∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

a b
c
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p
q

r

∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

By path induction, suffices to consider case where all 
points are a and all paths are id:
id o (id o id) = (id o id) o id

a b
c

d



Associativity, synthetically
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p
q

r

∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

By path induction, suffices to consider case where all 
points are a and all paths are id:
id o (id o id) = (id o id) o id
By definition of o, both sides equal id

a b
c

d



Type theory is
a logic of

homotopy theory
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Proof
checker

Correct!

Incorrect

Homotopy 
Type Theory

Computer-checked proofs

Your proof
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We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress
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Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey
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Covering spaces

Whitehead
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The Circle

18

Circle S1 is inductively generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure by path induction

idloop-1
point

path

inv : loop o loop-1 = idid
loop-1
loop o loop

...
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Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

loop
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loop’
base’



The Circle

19

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the 
circle
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Fundamental group of circle

21

Corollary: Fundamental group
                 of the circle is isomorphic to ℤ
                

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)
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Theorem. Ω(S1) is equivalent to ℤ
Proof: two mutually inverse functions

wind  : Ω(S1) ! ℤ

loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

loop- : ℤ ! Ω(S1)
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Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting loop-1 subtracts 1

Example:
    wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial
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24

Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  (E(x))x:B
Fibers: E(b) is a type for all b:B
transport: equivalence E(b1)→E(b2) for all p:b1=Bb2

p-1(b)

sends e ∈ E(x) to other endpoint of lifting of p

∼
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Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give
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family of types

uses univalence

(Cover(x))x:S1

Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼
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Universal Cover
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family of types

Cover(base) := ℤ
transportCover(loop) := successor

uses univalence

(Cover(x))x:S1

Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give

Defining equations:
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wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)
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Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0
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So far

27

Theorem. Ω(S1) is equivalent to ℤ
Proof: two                               functions

wind  : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

loop- : ℤ ! Ω(S1)
loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

mutually inverse
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28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]
= transportCover(loop o loopn,0) [def. wind]
= transportCover(loop,
     transportCover(loopn,0))    [functorial]
= transportCover(loop,n)                [IH]
= n+1                          [def. Cover]
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Lem. ∀p:base=base. loopwind(p) = p
Proof: want to apply path induction
           but path induction does not apply to loops 

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2
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wind(p) = transportCover(p,0)
wind    : base=base ! ℤ

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof:
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wind(p) = transportCover(p,0)
wind    : base=base ! ℤ

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: need to generalize wind
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encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: 
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encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof:  need to generalize loop- 
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encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

decode  : ∀y:S1. Cover(y) ! base=y

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: need to generalize wind and loop- 
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Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

Proof: need to generalize wind and loop- 

encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

decode  : ∀y:S1. Cover(y) ! base=y
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35

decode  : ∀y:S1. Cover(y) ! base=y

Defined by circle induction:

decode(base) := loop-
decode(loop) := … 

Cover(base) → base=base

“loop- is invariant under going around the loop
 in the fibration Cover(y) ! base=y”
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Composite #2
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Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
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Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
decodebase(n) = loopn

Proof:  By path induction, suffices to show

decodebase(encodebase(id))

= id

= decodebase(0)
= loop0
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The book Computer-checked

Fundamental group of the circle
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We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress
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π1(S1) = ℤ  [Licata and Shulman, LICS’13]

Other results: forthcoming
Homotopy Type Theory book 

Blog: homotopytypetheory.org

Formalizations:
github.com/dlicata335/hott-agda
github.com/hott/hott-agda 
github.com/hott/hott [Coq]
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fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial



Homotopy groups

45



Homotopy groups

45

Fundamental group π1: group of loops



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies

π3: group of homotopies between homotopies



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies

π3: group of homotopies between homotopies

… 
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48

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: τn(Sn) = τn(Ω(Sn+1))  

n-truncation:
best approximation of a type such 

that all (n+1)-paths are equal 

higher inductive type
generated by 
basen : Sn

loopn : Ωn(Sn)  
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τn(Sn) = τn(Ω(Sn+1)) 

Decode: promote n-dimensional loop on Sn

to n+1-dimensional loop on Sn+1 

n-truncation of Sn is the type of “codes” for loops on Sn+1

Encode: define fibration Code(x:Sn+1)  with
Code(basen+1) := τn(Sn)
Code(loopn+1) := equivalence τn(Sn)  → τn(Sn)
               “rotating by loopn”

∼



π2(S2): Hopf fibration


