
1

Computer-Checked Proofs in
the Logic of Homotopy Theory

Dan Licata
Institute for Advanced Study



Homotopy theory

2

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]



Homotopy

3

Deformation of one path into another

[image from wikipedia]

p

q

a

b



Homotopy

3

Deformation of one path into another

[image from wikipedia]

p

q

a

b



Homotopy

3

Deformation of one path into another

[image from wikipedia]

p

q

= 2-dimensional path between paths

a

b



Homotopy

3

Deformation of one path into another

[image from wikipedia]

p

q

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 

a

b



Synthetic vs Analytic

4

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]



Synthetic vs Analytic

4

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a continuous map [0,1] → X



Synthetic homotopy theory

5

type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>



Synthetic homotopy theory

5

type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>

Id(<elem1>,<elem2>)



Synthetic homotopy theory

5

type theory                                

<element> : <type>
<elem1> = <elem2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...

points
paths

homotopies

...

space <type>

A path is not a map [0,1]→X; it is a basic notion

Id(<elem1>,<elem2>)



Spaces as types

6

a
b

p



Spaces as types

6

a
b

p

a space is a type A



Spaces as types

6

a
b

p

points are 
elements
a:A

a space is a type A



Spaces as types

6

a
b

p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b



Spaces as types

6

a
b

p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations



Spaces as types

6

a
b

pid

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)



Spaces as types

6

a
b

pid
p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)-1



Spaces as types

6

a
b

p

c

q

id
p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)
q o p : a = c (trans)

-1



Spaces as types

6

a
b

p

c

q

id
p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)
q o p : a = c (trans)

-1

homotopies
id o p = p
p-1 o p = id
r o (q o p) 
   = (r o q) o p 



Spaces as types

6

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

id    : a = a (refl)
p-1     : b = a  (sym)
q o p : a = c (trans)

homotopies
id o p = p
p-1 o p = id
r o (q o p) 
   = (r o q) o p 



Path induction

7

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2



Path induction

7

Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2



Composition, analytically 

8

Given paths p and q : [0,1] ! X where p(1) = q(0)
define composition by:

(q o p)(x) = p(2x)     if 0 ≤ x ≤ 1/2
           | q(2x - 1) if 1/2 ≤ x ≤ 1

p
q



Composition, synthetically 

9

Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

q
c

a

id



Composition, synthetically 

9

Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

Suffices to consider case where b is a, and p is id 
q

c
a

id



Composition, synthetically 

9

Given paths p:a=b and q:b=c
define composition (q o p) by path induction:

p
q

a
b

c

Suffices to consider case where b is a, and p is id 

In this case the composite is q

q
c

a

id



Associativity, analytically 

10

p
q

r

r o (q o p)
p q r

0 1/2 3/4 1

(r o q) o p
p q r

1

1/40 1/2 1



Associativity, analytically 

10

p
q

r

r o (q o p)
p q r

0 1/2 3/4 1

(r o q) o p
p q r

1

1/40 1/2 1



Associativity, synthetically

11

p
q

r

∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

a b
c

d



Associativity, synthetically

11

p
q

r

∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

By path induction, suffices to consider case where all 
points are a and all paths are id:
id o (id o id) = (id o id) o id

a b
c

d



Associativity, synthetically

11

p
q

r

∀ a,b,c,d, p:a=b, q:b=c, r:c=d.
   r o (q o p) = (r o q) o p

By path induction, suffices to consider case where all 
points are a and all paths are id:
id o (id o id) = (id o id) o id
By definition of o, both sides equal id

a b
c

d



Type theory is
a logic of

homotopy theory

12



13

Proof
checker

Correct!

Incorrect

Homotopy 
Type Theory

Computer-checked proofs

Your proof



14

Computer-checked proofs



15

We can do
computer-checked proofs
in synthetic homotopy theory



15

We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them



15

We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*



15

We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods



15

We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress



Homotopy in HoTT

16

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 



Homotopy in HoTT

16

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 



Example:
The Fundamental Group
of the Circle

17



The Circle

18

Circle S1 is inductively generated by 
loop

base



The Circle

18

Circle S1 is inductively generated by 

base : S1
loop : base = base

loop

base



The Circle

18

Circle S1 is inductively generated by 

base : S1
loop : base = base

loop

base

point



The Circle

18

Circle S1 is inductively generated by 

base : S1
loop : base = base

loop

base

point

path



The Circle

18

Circle S1 is inductively generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure by path induction

idloop-1
point

path

inv : loop o loop-1 = idid
loop-1
loop o loop

...



The Circle

19

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

loop

base

loop’
base’



The Circle

19

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id
loop



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id
loop
loop-1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop
loop-1 o loop-1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0



Fundamental group of circle

20

How many different loops are there on 
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the 
circle



Fundamental group of circle

21

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base = base)
       



Fundamental group of circle

21

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +



Fundamental group of circle

21

Corollary: Fundamental group
                 of the circle is isomorphic to ℤ
                

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +



Fundamental group of circle

21

Corollary: Fundamental group
                 of the circle is isomorphic to ℤ
                

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)



Fundamental group of circle

22

Theorem. Ω(S1) is equivalent to ℤ
Proof: two mutually inverse functions

wind  : Ω(S1) ! ℤ

loop- : ℤ ! Ω(S1)



Fundamental group of circle

22

Theorem. Ω(S1) is equivalent to ℤ
Proof: two mutually inverse functions

wind  : Ω(S1) ! ℤ

loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

loop- : ℤ ! Ω(S1)



Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0



Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting is functorial



Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting is functorial



Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting loop-1 subtracts 1

lifting is functorial



Universal Cover

23

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting loop-1 subtracts 1

Example:
    wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial



Fibration = Family of types

24

Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)



Fibration = Family of types

24

Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  (E(x))x:B
Fibers: E(b) is a type for all b:B
transport: equivalence E(b1)→E(b2) for all p:b1=Bb2∼



Fibration = Family of types

24

Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  (E(x))x:B
Fibers: E(b) is a type for all b:B
transport: equivalence E(b1)→E(b2) for all p:b1=Bb2

p-1(b)

∼



Fibration = Family of types

24

Fibration (classically):
 map p: E → B such that
 any path from p(e) to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  (E(x))x:B
Fibers: E(b) is a type for all b:B
transport: equivalence E(b1)→E(b2) for all p:b1=Bb2

p-1(b)

sends e ∈ E(x) to other endpoint of lifting of p

∼



Universal Cover

25

family of types (Cover(x))x:S1



Universal Cover

25

family of types (Cover(x))x:S1

Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give



Universal Cover

25

family of types

uses univalence

(Cover(x))x:S1

Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give



Universal Cover

25

family of types

Cover(base) := ℤ
transportCover(loop) := successor

uses univalence

(Cover(x))x:S1

Fiber over base: the type ℤ

Equivalence ℤ  → ℤ as lifting of loop:
successor

∼

By circle recursion, it suffices to give

Defining equations:



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0) lift p to cover, 

starting at 0



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)



Winding number

26

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0



So far

27

Theorem. Ω(S1) is equivalent to ℤ
Proof: two                               functions

wind  : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

loop- : ℤ ! Ω(S1)
loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)



So far

27

Theorem. Ω(S1) is equivalent to ℤ
Proof: two                               functions

wind  : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

loop- : ℤ ! Ω(S1)
loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

mutually inverse



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]
= transportCover(loop o loopn,0) [def. wind]



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]
= transportCover(loop o loopn,0) [def. wind]
= transportCover(loop,
     transportCover(loopn,0))    [functorial]



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]
= transportCover(loop o loopn,0) [def. wind]
= transportCover(loop,
     transportCover(loopn,0))    [functorial]
= transportCover(loop,n)                [IH]



Composite #1

28

Lemma. ∀n. wind(loopn) = n
Proof: induction on n.  E.g.

wind(loopn+1) 
= wind(loop o loopn)           [def. loop-]
= transportCover(loop o loopn,0) [def. wind]
= transportCover(loop,
     transportCover(loopn,0))    [functorial]
= transportCover(loop,n)                [IH]
= n+1                          [def. Cover]



Composite #1

29



Composite #2

30

Lem. ∀p:base=base. loopwind(p) = p



Composite #2

30

Lem. ∀p:base=base. loopwind(p) = p
Proof: want to apply path induction
           but path induction does not apply to loops 



Composite #2

30

Lem. ∀p:base=base. loopwind(p) = p
Proof: want to apply path induction
           but path induction does not apply to loops 

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3

p2



Composite #2

31

Lem. ∀y:S1, p:base=y. loopwind(p) = p



Composite #2

31

wind(p) = transportCover(p,0)
wind    : base=base ! ℤ

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof:



Composite #2

31

wind(p) = transportCover(p,0)
wind    : base=base ! ℤ

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: need to generalize wind



Composite #2

32

encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: 



Composite #2

32

encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

loop-   : ℤ ! Ω(S1)

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof:  need to generalize loop- 



Composite #2

33

encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

decode  : ∀y:S1. Cover(y) ! base=y

Lem. ∀y:S1, p:base=y. loopwind(p) = p

Proof: need to generalize wind and loop- 



Composite #2

34

Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

Proof: need to generalize wind and loop- 

encode(p) = transportCover(p,0)
encode  : ∀y:S1. base=y ! Cover(y)

decode  : ∀y:S1. Cover(y) ! base=y



Decode

35

decode  : ∀y:S1. Cover(y) ! base=y

Defined by circle induction:

decode(base) := loop-
decode(loop) := … 



Decode

35

decode  : ∀y:S1. Cover(y) ! base=y

Defined by circle induction:

decode(base) := loop-
decode(loop) := … 

Cover(base) → base=base



Decode

35

decode  : ∀y:S1. Cover(y) ! base=y

Defined by circle induction:

decode(base) := loop-
decode(loop) := … 

Cover(base) → base=base

“loop- is invariant under going around the loop
 in the fibration Cover(y) ! base=y”



Decode

36



Composite #2

37

Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
decodebase(n) = loopn



Composite #2

37

Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
decodebase(n) = loopn

Proof:  By path induction, suffices to show

decodebase(encodebase(id))

= id



Composite #2

37

Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
decodebase(n) = loopn

Proof:  By path induction, suffices to show

decodebase(encodebase(id))

= id

= decodebase(0)



Composite #2

37

Lem. ∀y:S1, p:base=y. decodey(encodey(p)) = p

encode  : ∀y:S1. base=y ! Cover(y)
encodey(p) = transportCover(p,0)
decode  : ∀y:S1. Cover(y) ! base=y
decodebase(n) = loopn

Proof:  By path induction, suffices to show

decodebase(encodebase(id))

= id

= decodebase(0)
= loop0



Composite #2

38



39

The book Computer-checked

Fundamental group of the circle



Conclusion

40



41

We can do
computer-checked proofs
in synthetic homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress



Homotopy in HoTT

42

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 



Homotopy in HoTT

42

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 



Reading list

43

π1(S1) = ℤ  [Licata and Shulman, LICS’13]

Other results: forthcoming
Homotopy Type Theory book 

Blog: homotopytypetheory.org

Formalizations:
github.com/dlicata335/hott-agda
github.com/hott/hott-agda 
github.com/hott/hott [Coq]



Algebraic invariants

44

=|



Algebraic invariants

44

=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial



Homotopy groups

45



Homotopy groups

45

Fundamental group π1: group of loops



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies

π3: group of homotopies between homotopies



Homotopy groups

45

Fundamental group π1: group of loops

π2: group of homotopies

π3: group of homotopies between homotopies

… 



Homotopy groups

46

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

[image from wikipedia]



πk(Sn) in HoTT

47

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

[image from wikipedia]



πk(Sn) in HoTT

47

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

[image from wikipedia]



πn(Sn) = ℤ for n≥1

48

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n



πn(Sn) = ℤ for n≥1

48

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: τn(Sn) = τn(Ω(Sn+1))  



πn(Sn) = ℤ for n≥1

48

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: τn(Sn) = τn(Ω(Sn+1))  

n-truncation:
best approximation of a type such 

that all (n+1)-paths are equal 



πn(Sn) = ℤ for n≥1

48

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: τn(Sn) = τn(Ω(Sn+1))  

n-truncation:
best approximation of a type such 

that all (n+1)-paths are equal 

higher inductive type
generated by 
basen : Sn

loopn : Ωn(Sn)  



τn(Sn) = τn(Ω(Sn+1)) 
n-truncation of Sn is the type of “codes” for loops on Sn+1



τn(Sn) = τn(Ω(Sn+1)) 

Decode: promote n-dimensional loop on Sn

to n+1-dimensional loop on Sn+1 

n-truncation of Sn is the type of “codes” for loops on Sn+1



τn(Sn) = τn(Ω(Sn+1)) 

Decode: promote n-dimensional loop on Sn

to n+1-dimensional loop on Sn+1 

n-truncation of Sn is the type of “codes” for loops on Sn+1

Encode: define fibration Code(x:Sn+1)  with
Code(basen+1) := τn(Sn)
Code(loopn+1) := equivalence τn(Sn)  → τn(Sn)
               “rotating by loopn”

∼



π2(S2): Hopf fibration


