
1

Programming and Proving in
Homotopy Type Theory

Daniel R. Licata

Carnegie Mellon University &
Institute for Advanced Study

2

Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than

3

Hales’ proof (1998)

4

Reduces Kepler Conjecture to proving that a
function has a lower bound on 5,000 different
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
 300 pages of math
 + 50,000 LOC (revised 2006: 15,000 LOC)

Proofs can be hard to check

5

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

Proofs can be hard to check

5

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”

6

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Computer-checked math

Hales’
proof
of Kepler
conjecture

7

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Your code,
and proofs
about it

Computer-checked software

Computer-assisted proofs

8

Proof assistant

• Interactive proof editor

•Automated proofs

•Libraries

Computer-assisted proofs

9

are much easier to believe:
computer does the journal reviewing

can use computational methods
and still be fully rigorous

broaden access:
computer as gifted&talented teacher

are easier to write?

Kepler proof (85% done)

10

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

Kepler proof (85% done)

10

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

Kepler proof (85% done)

10

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

Kepler proof (85% done)

10

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!

Now’s the time

11

Kepler conjecture [2013?, HOL Light]

Four-color theorem [2005, Coq]

Feit-Thompson theorem [2012, Coq]

Correctness of a C compiler [2006, Coq]

Correctness of Standard ML [2009, Twelf]

Recent successes:

Mathematicians are interested!

Year-long program at IAS hosted by Voevodsky

Making better proof assistants

12

PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by working mathematicians

Graphics: visualization

13

PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by “working mathematicians”

Graphics: visualization

Making better proof assistants

Homotopy Type Theory

14

Proof
checker

Correct!

Incorrect

Your
proof

Logic &
Programming
Language

Homotopy Type Theory

14

Proof
checker

Homotopy
Type Theory

Correct!

Incorrect

Your
proof

Type Theory

15

Basis of many successful proof assistants
(Agda, Coq, NuPRL, Twelf)

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort : list<int> ! list<int>

Propositions as Types

16

1.A theorem is represented by a type

2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

Propositions as Types

16

1.A theorem is represented by a type

2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

proof :

Propositions as Types

16

1.A theorem is represented by a type

2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of
 [] => reflexivity
 (x :: xs) => ...

proof by case analysis represented
by a function defined by cases

Type are sets?

17

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

Traditional view:

 set theory

Type are sets?

17

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

 set theory

Type are sets?

17

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

In (intensional) type theory, an equation has
a non-trivial <proof>

 set theory

<proof> :

category theory homotopy theory

type theory

Homotopy Type Theory

18

19

Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :
<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...

<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...
Proofs, 2-proofs, 3-proofs, …
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

20

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...
Proofs, 2-proofs, 3-proofs, …
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> :

∞-groupoid:
each level has a
group structure,
and they interact

category theory homotopy theory

type theory

Homotopy Type Theory

21

new possibilities
for computer-
checked proofsnew programs

22

I am developing
a computational theory of ∞-groupoids

and applying it to
computer-checked math and software

Results

23

1.I have developed computer-checked proofs of
theorems in homotopy theory [LICS’13]

2.I have discovered how to run programs in
Homotopy Type Theory, for the special case
of 2-dimensional type theory [POPL’12]

3.I have applied these new concepts to
computer-checked software [thesis + MFPS’11]

Outline

24

1.Computer-checked homotopy theory

2.Computer-checked software

Outline

25

1.Computer-checked homotopy theory

2.Computer-checked software

Homotopy Theory

26

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Homotopy Theory

26

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Synthetic vs Analytic

27

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Synthetic vs Analytic

27

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a set of points, given continuously

Synthetic homotopy theory

28

type theory

<program> : <type>
<prog1> = <prog2>

 homotopy theory

<proof> :
<proof1> = <proof2><2-proof> :

...
points
paths

homotopies

...

space <type>

Synthetic homotopy theory

28

type theory

<program> : <type>
<prog1> = <prog2>

 homotopy theory

<proof> :
<proof1> = <proof2><2-proof> :

...
points
paths

homotopies

...

space <type>

A path is not a set of points; it is a primitive notion

Spaces as types

29

M
N

α

Spaces as types

29

M
N

α

a space is a type A

Spaces as types

29

M
N

α

points are
programs
M:A

a space is a type A

Spaces as types

29

M
N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

Spaces as types

29

M
N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

Spaces as types

29

M
N

αid

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id : M = M (refl)

Spaces as types

29

M
N

αid
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id : M = M (refl)
α-1 : N = M (sym)-1

Spaces as types

29

M
N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Spaces as types

29

M
N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Fundamental group:
group of loops

Spaces as types

29

M
N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Fundamental group:
group of loops

modulo homotopy

Homotopy

30

Deformation of one path into another

α

β

Homotopy

30

Deformation of one path into another

[image from wikipedia]

α

β

Homotopy

30

Deformation of one path into another

[image from wikipedia]

α

β

Homotopy

30

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy

30

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

α = β<2-proof> :

Homotopy

30

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between
homotopies, ….

α = β<2-proof> :

31

We can do homotopy theory
by writing functional programs

Functions on sets

32

Function on a set gives the image of each element:

not : Bool ! Bool
not(true) = false
not(false) = true

Functions on spaces

33

Function on a space gives the image of each point

loop

base base

Circle Circle

Functions on spaces

33

Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

Functions on spaces

33

Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop

identity

Functions on spaces

33

Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop-1

reverse

Circle Recursion

34

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

Circle Recursion

34

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

This specifies the image for all paths because

1.circle is inductively generated by loop: all paths
are built from loop by identity, inverse, composition

2.all functions are homomorphisms

Homomorphism

35

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop)
Computation steps:

Homomorphism

35

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop)
= (reverse loop) o (reverse loop) homomorphism

Computation steps:

Homomorphism

35

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop)
= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

Computation steps:

Homomorphism

35

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop)

= (loop o loop)-1

= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

group laws

Computation steps:

Homomorphism

36

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop)

= (loop o loop)-1

= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

group laws

Computation steps:

Circle induction

37

reverse : Circle ! Circle
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

Theorem: ∀p. reverse(p) = p-1
Proof: uses circle induction:
 To prove a predicate P for all points on the circle,
 suffices to prove P(base),
 continuously in the loop

38

We can do interesting
homotopy theory synthetically

39

=|

Telling spaces apart

39

=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart

Homotopy Groups

40

Homotopy groups of a space X:

π1(X) is fundamental group (group of loops)

π2(X) is group of homotopies (2-dimensional loops)

π3(X) is group of 3-dimensional loops

…

Homotopy groups

41

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

[image from wikipedia]

Computer-checked proofs

42

[image from wikipedia]

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

Computer-checked proofs

42

[image from wikipedia]

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)

Proofs are programs: you can run them

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)

Proofs are programs: you can run them

Computer-checked proofs shorter than “informalized”

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)

Proofs are programs: you can run them

Computer-checked proofs shorter than “informalized”

Proofs are new: I discovered a type-theoretic
method that is used in all of these proofs

Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

[LICS’13]

Fundamental group of circle

44

1.winding : (base = base) ! ℤ
2.loopn : ℤ ! (base = base)

loop

baseTwo functions:

1.∀n:ℤ. winding(loopn) = n
2.∀p. loopwinding(p) = p
3.∀n,m. loopn+m = loopn o loopm

[LICS’13]

Three proofs:

Fundamental group of circle

44

1.winding : (base = base) ! ℤ
2.loopn : ℤ ! (base = base)

loop

base

uses circle recursion

Two functions:

1.∀n:ℤ. winding(loopn) = n
2.∀p. loopwinding(p) = p
3.∀n,m. loopn+m = loopn o loopm

[LICS’13]

Three proofs:

Fundamental group of circle

44

1.winding : (base = base) ! ℤ
2.loopn : ℤ ! (base = base)

loop

base

uses circle recursion

induction principles for
circle, paths, int; and
calculations using my
computational
interpretation

Two functions:

1.∀n:ℤ. winding(loopn) = n
2.∀p. loopwinding(p) = p
3.∀n,m. loopn+m = loopn o loopm

[LICS’13]

Three proofs:

45

Informal Computer-checked

Fundamental group of the circle

Outline

46

1.Computer-checked homotopy theory

2.Computer-checked software

47

Convert dates between European and US formats,
inside a data structure

Example

Spec: Conversion is a bijection:
converting back and forth
doesn’t change the data

48

Type theory Homotopy Type Theory

49

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

convert

49

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

convert

49

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

2.Prove that swap is a bijection (it’s self-inverse)

convert

49

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

2.Prove that swap is a bijection (it’s self-inverse)

3.Define a parametrized type describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

convert

49

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

2.Prove that swap is a bijection (it’s self-inverse)

3.Define a parametrized type describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

4.Define
convert(db) = castThere(swap,db)

convert

50

Types write code
and proofs for you

Functions on spaces

51

Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop-1

reverse

52

Functions on types

52

1.There(X)=List{key:int, n:string, d:X×int}
is a function on the space of types, so it must also
give an image for each path between types

Functions on types

52

1.There(X)=List{key:int, n:string, d:X×int}
is a function on the space of types, so it must also
give an image for each path between types

2.We define the paths between types to be bijections

Functions on types

A × B

B × A

type
swap

52

1.There(X)=List{key:int, n:string, d:X×int}
is a function on the space of types, so it must also
give an image for each path between types

2.We define the paths between types to be bijections

Functions on types

A × B

B × A

type
swap

3. ∴ There gives an image for swap

53

Cast

 castThere(swap)

applies There to swap: a type-directed program
that builds bigger bijections from smaller ones

54

Computational interpretation of cast:

castThere(swap,db)
There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

54

Computational interpretation of cast:

castThere(swap,db)
= map (castThere1 swap) db

There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

54

Computational interpretation of cast:

castThere(swap,db)
= map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

54

Computational interpretation of cast:

castThere(swap,db)

= map ({key,n,(d,m,y)} =>
 {key,n,(,y)}) db

= map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

54

Computational interpretation of cast:

castThere(swap,db)

= map ({key,n,(d,m,y)} =>
 {key,n,(,y)}) db

= map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

castHere(swap,(d,m))

54

Computational interpretation of cast:

castThere(swap,db)

= map ({key,n,(d,m,y)} =>
 {key,n,(,y)}) db

= map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

castHere(swap,(d,m))

54

Computational interpretation of cast:

castThere(swap,db)

= map ({key,n,(d,m,y)} =>
 {key,n,(,y)}) db

= map (castThere1 swap) db

= map ({key,n,(d,m,y)} =>
 {key,n,(m,d,y)}) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

castHere(swap,(d,m))

55

Type theory Homotopy Type Theory

Writes proofs for you!

56

56

Canonicity for 2-Dimensional Type Theory
POPL’12

More applications

For modular code, can reason about a fast
implementation using a reference implementation:
cast a proof about the reference implementation
to the fast implementation

Can program domain-specific program verification
logics, using cast to implement the structural
properties [thesis + MFPS’11]

57

58

Conclusion

Types are ∞-groupoids

59

type theory
<program> : <type>

<prog1> = <prog2><proof> :
<proof1> = <proof2><2-proof> :

...

Proofs, 2-proofs, 3-proofs, …
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> :

category theory homotopy theory

type theory

Homotopy Type Theory

60

new computer-
checked proofs

new programs
like cast

Papers and code

61

1.Fundamental group of the circle [LICS’13]
Formal homotopy: github.com/dlicata335/

2.Computational interpretation
of 2D type theory [POPL’12]

3.Domain-specific program verification logics
[thesis+MFPS’11]

4.The HoTT Book (coming soon!): doing math
informally in Homotopy Type Theory

5.Blog: homotopytypetheory.org

62

Develop a computational interpretation for
infinite-dimensional types (in progress)

Implement a new proof assistant based on it

Computer-checked math, especially in
category theory and homotopy theory

Computer-checked software

Research Agenda

63

Parallelism and Verification

Goal: fast parallel implementation,
proved correct relative to list implementation,
in a proof assistant!

Research Agenda

64

PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by “working mathematicians”

Graphics: visualization

Make it easier to use proof assistants
to develop math and software

65

I am developing
a computational theory of ∞-groupoids

and applying it to
computer-checked math and software

