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Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than
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Hales’ proof (1998)
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Reduces Kepler Conjecture to proving that a 
function has a lower bound on 5,000 different 
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
     300 pages of math 
  + 50,000 LOC (revised 2006: 15,000 LOC)



Proofs can be hard to check
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In 2003, after 4 years’ work, 
12 referees had checked lots of lemmas,
but gave up on verifying the proof



Proofs can be hard to check
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In 2003, after 4 years’ work, 
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”
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Proof
checker

Correct!

Incorrect

Logic & 
Programming
Language

Computer-checked math

Hales’ 
proof
of Kepler
conjecture
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Proof
checker

Correct!

Incorrect

Logic & 
Programming
Language

Your code, 
and proofs 
about it

Computer-checked software



Computer-assisted proofs
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Proof assistant

• Interactive proof editor

•Automated proofs

•Libraries



Computer-assisted proofs
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are much easier to believe:
computer does the journal reviewing

can use computational methods
and still be fully rigorous 

broaden access:
computer as gifted&talented teacher

are easier to write?



Kepler proof (85% done)
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15 hours to run 
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Kepler proof (85% done)

10

300 pages of math +
15,000 lines of code

15 hours to run 

350,000 lines of
math + code

>2 years to run 

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!



Now’s the time
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Kepler conjecture [2013?, HOL Light]

Four-color theorem [2005, Coq]

Feit-Thompson theorem [2012, Coq]

Correctness of a C compiler [2006, Coq] 

Correctness of Standard ML [2009, Twelf]

Recent successes:

Mathematicians are interested!

Year-long program at IAS hosted by Voevodsky



Making better proof assistants

12

PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by working mathematicians

Graphics: visualization
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PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by “working mathematicians”

Graphics: visualization

Making better proof assistants



Homotopy Type Theory
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Proof
checker

Correct!

Incorrect

Your
proof

Logic & 
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Language



Homotopy Type Theory
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Proof
checker

Homotopy 
Type Theory

Correct!

Incorrect

Your
proof



Type Theory
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Basis of many successful proof assistants 
(Agda, Coq, NuPRL, Twelf)

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort  : list<int> ! list<int>



Propositions as Types

16

1.A theorem is represented by a type

2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality
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proof :



Propositions as Types
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1.A theorem is represented by a type

2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of 
            [] => reflexivity
            (x :: xs) => ... 

proof by case analysis represented 
by a function defined by cases



Type are sets?
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type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

Traditional view:   

  set theory
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Type are sets?

17

type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:   

In (intensional) type theory, an equation has
a non-trivial <proof> 

  set theory

<proof> : 



category theory homotopy theory

type theory

Homotopy Type Theory
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Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]
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Types are ∞-groupoids

20

type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

  set theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
Proofs, 2-proofs, 3-proofs, … 
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> : 

∞-groupoid: 
each level has a 
group structure, 
and they interact



category theory homotopy theory

type theory

Homotopy Type Theory

21

new possibilities
for computer-
checked proofsnew programs
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I am developing
a computational theory of ∞-groupoids 

and applying it to
computer-checked math and software 



Results
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1.I have developed computer-checked proofs of 
theorems in homotopy theory [LICS’13] 

2.I have discovered how to run programs in 
Homotopy Type Theory, for the special case
of 2-dimensional type theory [POPL’12] 

3.I have applied these new concepts to
computer-checked software [thesis + MFPS’11]



Outline
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1.Computer-checked homotopy theory

2.Computer-checked software
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1.Computer-checked homotopy theory

2.Computer-checked software



Homotopy Theory
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A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]
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A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]



Synthetic vs Analytic
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a set of points, given continuously



Synthetic homotopy theory
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type theory                                

<program> : <type>
<prog1> = <prog2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
points
paths

homotopies

...

space <type>



Synthetic homotopy theory
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type theory                                

<program> : <type>
<prog1> = <prog2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
points
paths

homotopies

...

space <type>

A path is not a set of points; it is a primitive notion
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M
N

αid
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)-1
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paths are
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α : M =A N
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α-1     : N = M  (sym)
β o α : M = P (trans)

-1
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M
N

α

P

β

id
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

Fundamental group: 
group of loops

modulo homotopy



Homotopy
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Deformation of one path into another

α

β
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Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

α = β<2-proof> : 



Homotopy
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Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 

α = β<2-proof> : 
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We can do homotopy theory
by writing functional programs



Functions on sets
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Function on a set gives the image of each element:

not : Bool ! Bool
not(true) = false
not(false) = true



Functions on spaces

33

Function on a space gives the image of each point

loop

base base

Circle Circle
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Functions on spaces
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Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop

identity



Functions on spaces
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Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop-1

reverse



Circle Recursion
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reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase



Circle Recursion

34

reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

This specifies the image for all paths because

1.circle is inductively generated by loop: all paths 
are built from loop by identity, inverse, composition

2.all functions are homomorphisms



Homomorphism
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reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop) 
Computation steps:
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basebase

reverse(loop o loop) 
= (reverse loop) o (reverse loop) homomorphism

Computation steps:
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reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop) 
= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

Computation steps:



Homomorphism

35

reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop) 

= (loop o loop)-1

= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

group laws

Computation steps:



Homomorphism
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reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

reverse(loop o loop) 

= (loop o loop)-1

= (reverse loop) o (reverse loop)
= loop-1 o loop-1

homomorphism

definition

group laws

Computation steps:



Circle induction
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reverse : Circle ! Circle 
reverse(base) = base
reverse(loop) = loop-1

loop loop-1

basebase

Theorem: ∀p. reverse(p) = p-1
Proof: uses circle induction:
           To prove a predicate P for all points on the circle,  
           suffices to prove P(base), 
           continuously in the loop
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We can do interesting
homotopy theory synthetically
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=|

Telling spaces apart
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=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart



Homotopy Groups
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Homotopy groups of a space X:

π1(X) is fundamental group (group of loops)

π2(X) is group of homotopies (2-dimensional loops) 

π3(X) is group of 3-dimensional loops

… 



Homotopy groups
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kth homotopy group
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[image from wikipedia]
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[image from wikipedia]
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1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)
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Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)

Proofs are programs: you can run them

Computer-checked proofs shorter than “informalized” 

Proofs are new: I discovered a type-theoretic
method that is used in all of these proofs



Computer-checked proofs

43

1.πn(Sn) = ℤ (w/ G. Brunerie)

2.πk(Sn) trivial for k < n

3.Freudenthal suspension theorem
(w/ P. Lumsdaine; Blakers-Massey w.i.p)

4.Eilenberg-Mac Lane spaces K(G,n)

[LICS’13]



Fundamental group of circle
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1.winding : (base = base) ! ℤ
2.loopn : ℤ ! (base = base)

loop

baseTwo functions:

1.∀n:ℤ. winding(loopn) = n
2.∀p. loopwinding(p) = p
3.∀n,m. loopn+m = loopn o loopm

[LICS’13]

Three proofs:
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Fundamental group of circle

44

1.winding : (base = base) ! ℤ
2.loopn : ℤ ! (base = base)

loop

base

uses circle recursion

induction principles for 
circle, paths, int; and 
calculations using my 
computational 
interpretation

Two functions:

1.∀n:ℤ. winding(loopn) = n
2.∀p. loopwinding(p) = p
3.∀n,m. loopn+m = loopn o loopm

[LICS’13]

Three proofs:
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Informal Computer-checked

Fundamental group of the circle



Outline
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1.Computer-checked homotopy theory

2.Computer-checked software
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Convert dates between European and US formats,
inside a data structure

Example

Spec: Conversion is a bijection:
converting back and forth
doesn’t change the data
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Type theory Homotopy Type Theory
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[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

convert
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[{key=4,n=“John”,d=(5,30,1956)},
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 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

convert
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 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swap(x,y) = (y,x)

2.Prove that swap is a bijection (it’s self-inverse)

3.Define a parametrized type describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

4.Define
convert(db) = castThere(swap,db)

convert
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Types write code
and proofs for you



Functions on spaces
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Function on a space gives the image of each point

loop

base base

Circle

and each path!

Circle

loop-1

reverse
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Functions on types
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1.There(X)=List{key:int, n:string, d:X×int} 
is a function on the space of types, so it must also
give an image for each path between types 

Functions on types



52

1.There(X)=List{key:int, n:string, d:X×int} 
is a function on the space of types, so it must also
give an image for each path between types 

2.We define the paths between types to be bijections

Functions on types

A × B

B × A

type
swap
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1.There(X)=List{key:int, n:string, d:X×int} 
is a function on the space of types, so it must also
give an image for each path between types 

2.We define the paths between types to be bijections

Functions on types

A × B

B × A

type
swap

3. ∴ There gives an image for swap
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Cast

            castThere(swap)

applies There to swap: a type-directed program 
that builds bigger bijections from smaller ones
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Computational interpretation of cast:

castThere(swap,db)
There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]
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Computational interpretation of cast:

castThere(swap,db)
=  map (castThere1 swap) db

There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]
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Computational interpretation of cast:

castThere(swap,db)
=  map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}
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Computational interpretation of cast:

castThere(swap,db)

=  map ({key,n,(d,m,y)} =>
        {key,n,(                  ,y)}) db

=  map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}
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Computational interpretation of cast:

castThere(swap,db)

=  map ({key,n,(d,m,y)} =>
        {key,n,(                  ,y)}) db

=  map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

castHere(swap,(d,m))
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Computational interpretation of cast:

castThere(swap,db)

=  map ({key,n,(d,m,y)} =>
        {key,n,(                  ,y)}) db

=  map (castThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

castHere(swap,(d,m))
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Computational interpretation of cast:

castThere(swap,db)

=  map ({key,n,(d,m,y)} =>
        {key,n,(                  ,y)}) db

=  map (castThere1 swap) db

=  map ({key,n,(d,m,y)} =>
        {key,n,(m,d,y)}) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

castHere(swap,(d,m))
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Type theory Homotopy Type Theory

Writes proofs for you!
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Canonicity for 2-Dimensional Type Theory 
POPL’12



More applications

For modular code, can reason about a fast 
implementation using a reference implementation: 
cast a proof about the reference implementation 
to the fast implementation

Can program domain-specific program verification 
logics, using cast to implement the structural 
properties [thesis + MFPS’11]
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Conclusion



Types are ∞-groupoids
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type theory                                
<program> : <type>

<prog1> = <prog2><proof> : 
<proof1> = <proof2><2-proof> : 

...

Proofs, 2-proofs, 3-proofs, … 
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> : 



category theory homotopy theory

type theory

Homotopy Type Theory
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new computer-
checked proofs

new programs
like cast



Papers and code
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1.Fundamental group of the circle [LICS’13]
Formal homotopy: github.com/dlicata335/

2.Computational interpretation
of 2D type theory [POPL’12] 

3.Domain-specific program verification logics
[thesis+MFPS’11]

4.The HoTT Book (coming soon!): doing math 
informally in Homotopy Type Theory

5.Blog: homotopytypetheory.org
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Develop a computational interpretation for 
infinite-dimensional types (in progress)

Implement a new proof assistant based on it

Computer-checked math, especially in 
category theory and homotopy theory

Computer-checked software

Research Agenda
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Parallelism and Verification

Goal: fast parallel implementation,
proved correct relative to list implementation,
in a proof assistant!



Research Agenda
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PL: languages for expressing mathematics

SE: managing large codebases

Compilers + distributed computing: speed

Machine learning: automated proof search

HCI: usable by “working mathematicians”

Graphics: visualization

Make it easier to use proof assistants 
to develop math and software
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I am developing
a computational theory of ∞-groupoids 

and applying it to
computer-checked math and software 


