Programming and Proving in Homotopy Type Theory

Daniel R. Licata

Carnegie Mellon University & Institute for Advanced Study

Kepler Conjecture (1611)

No way to pack equally-sized spheres in space has higher density than

Hales' proof (1998)

Reduces Kepler Conjecture to proving that a function has a lower bound on 5,000 different configurations of spheres

* This requires solving 100,000 linear programming problems

* 1998 submission: 300 pages of math + 50,000 LOC (revised 2006: 15,000 LOC)

Proofs can be hard to check

In 2003, after 4 years' work, 12 referees had checked lots of lemmas, but gave up on verifying the proof

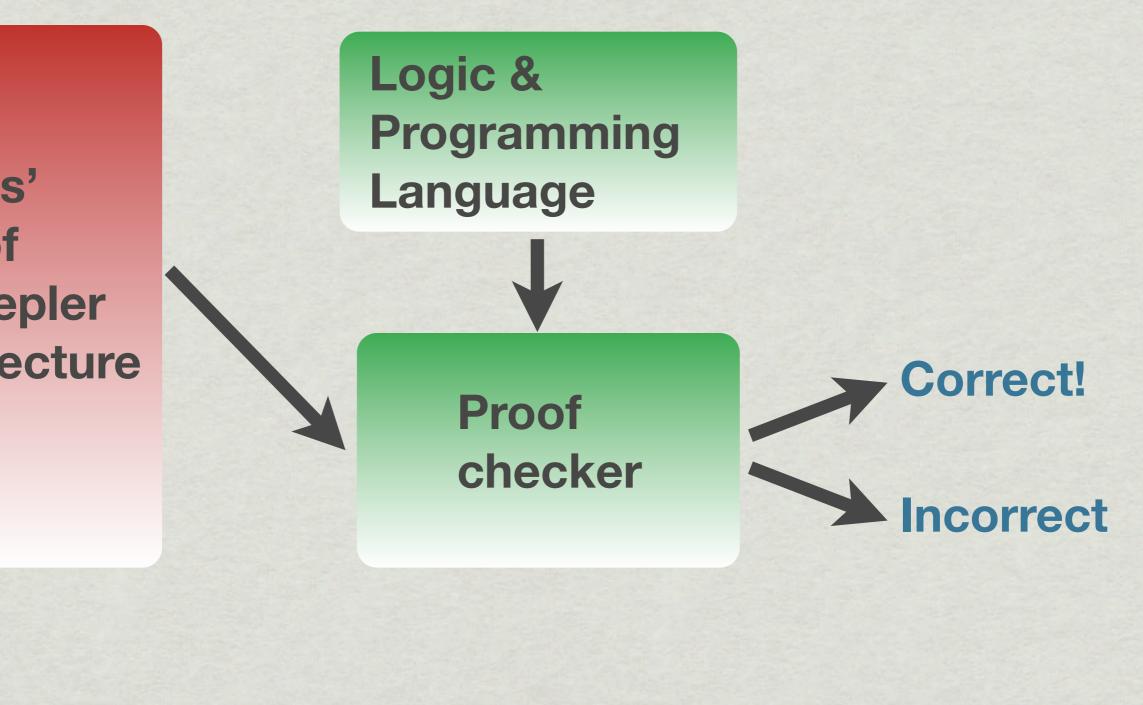
Proofs can be hard to check

In 2003, after 4 years' work, 12 referees had checked lots of lemmas, but gave up on verifying the proof

"This paper has brought about a change in the journal's policy on computer proof. It will no longer attempt to check the correctness of computer code."

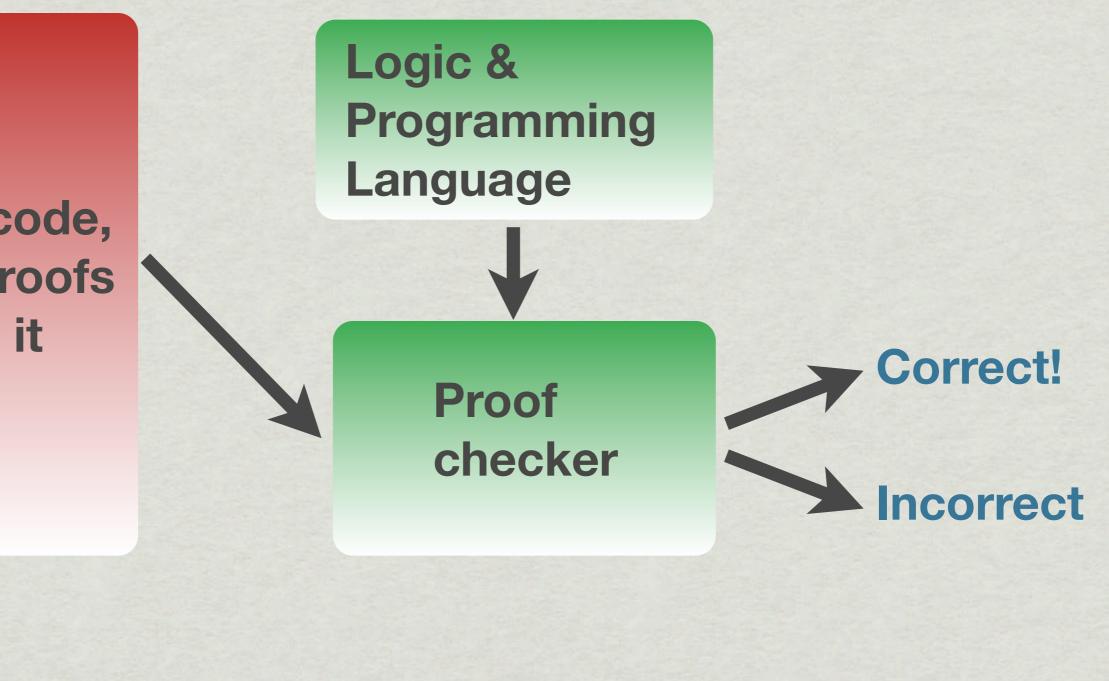
Computer-checked math

Hales' proof of Kepler conjecture



Computer-checked software

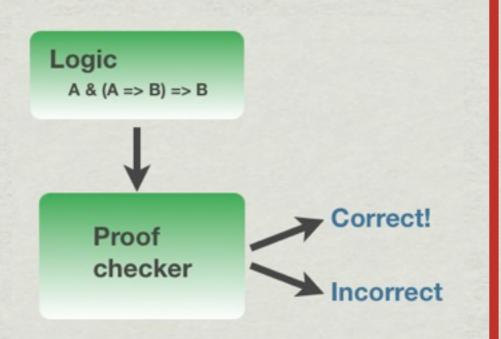
Your code, and proofs about it



Computer-assisted proofs

Proof assistant

- Interactive proof editor
- Automated proofs
- Libraries



Computer-assisted proofs

* can use computational methods
and still be fully rigorous

* broaden access: computer as gifted&talented teacher

* are easier to write?

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

350,000 lines of math + code

*>2 years to run

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

350,000 lines of math + code ~5-10x longer

*>2 years to run

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

350,000 lines of math + code ~

~5-10x longer

#>2 years to run ~2000x slower

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

350,000 lines of math + code ~

~5-10x longer

#>2 years to run ~2000x slower

We have some work to do!

Now's the time

Recent successes:

- * Kepler conjecture [2013?, HOL Light]
- # Four-color theorem [2005, Coq]
- * Feit-Thompson theorem [2012, Coq]
- * Correctness of a C compiler [2006, Coq]
- * Correctness of Standard ML [2009, Twelf]

Mathematicians are interested!

* Year-long program at IAS hosted by Voevodsky

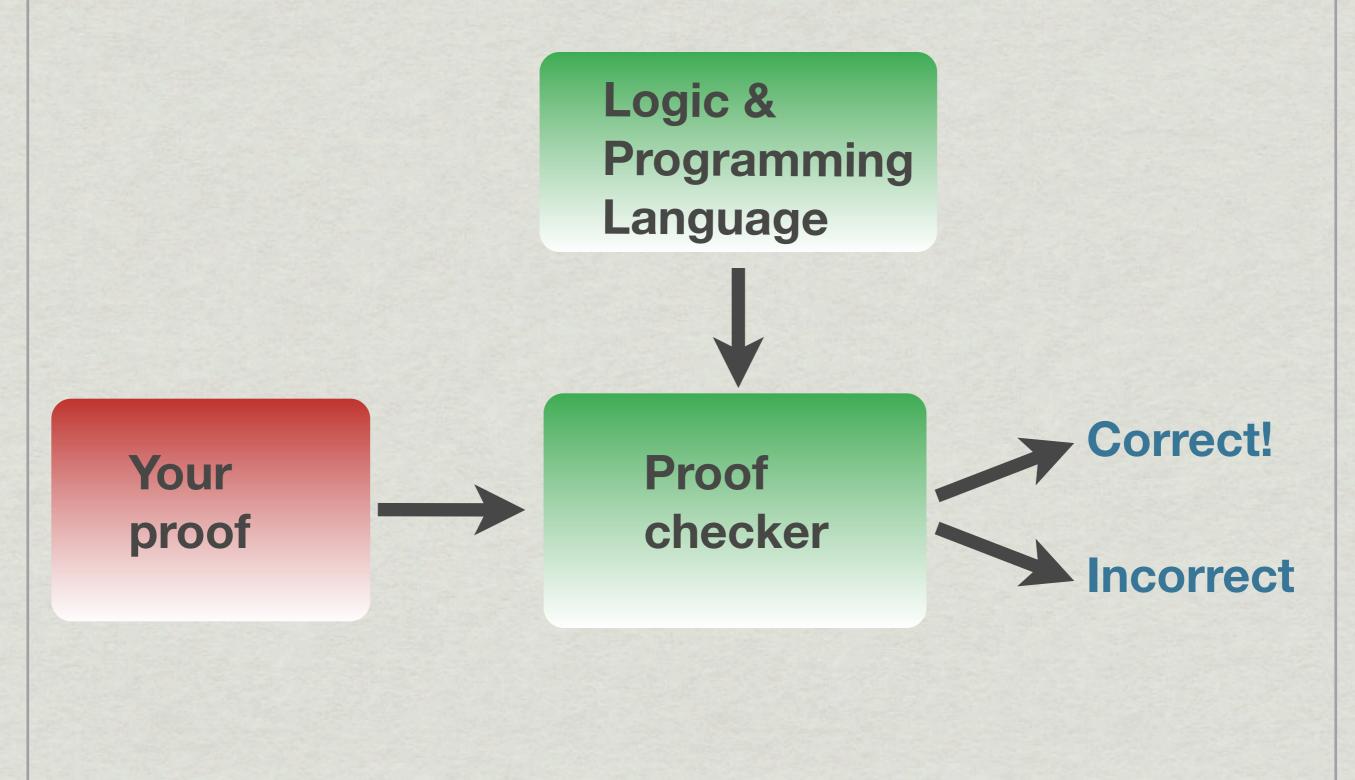
Making better proof assistants

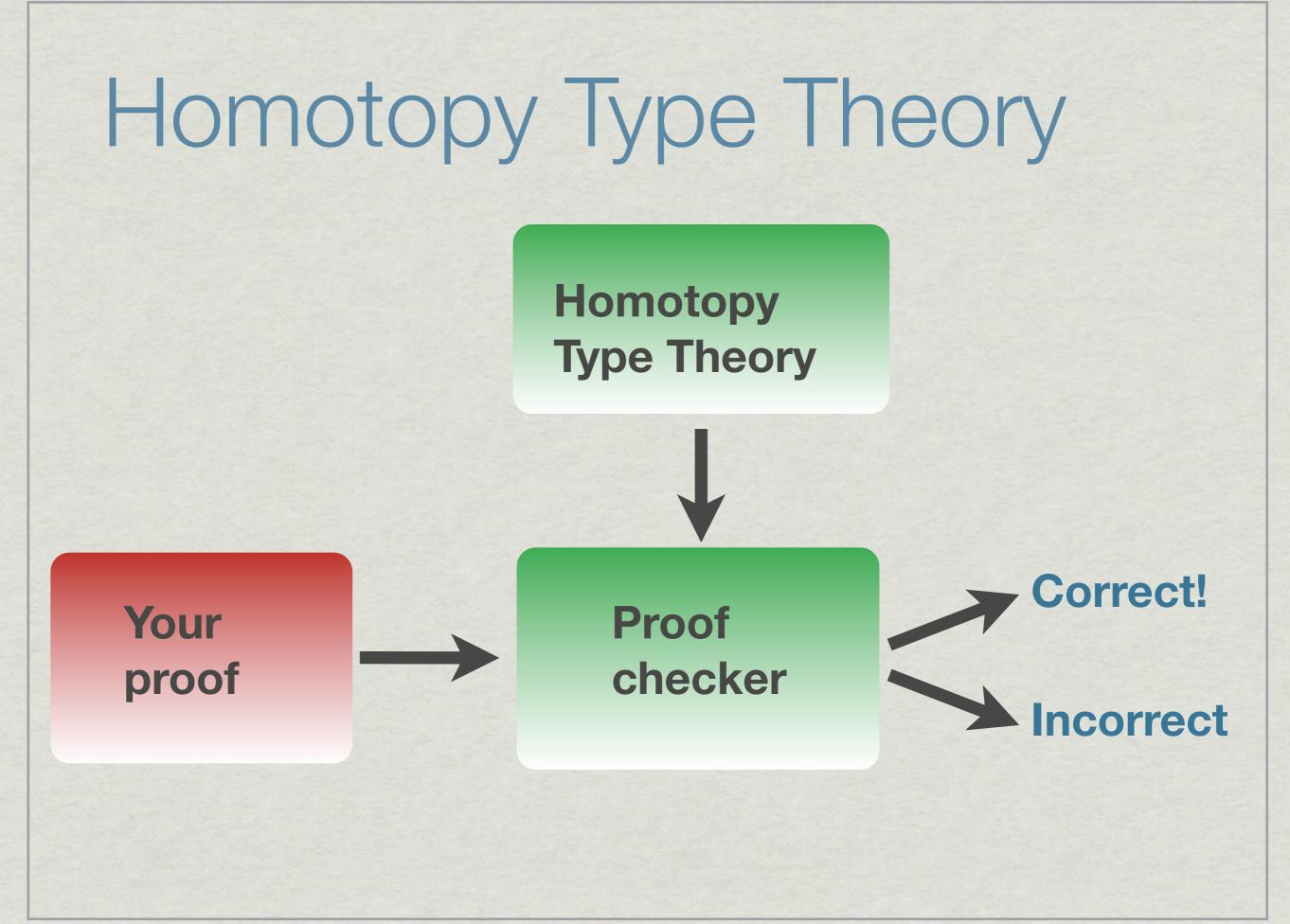
PL: languages for expressing mathematics
SE: managing large codebases
Compilers + distributed computing: speed
Machine learning: automated proof search
HCI: usable by working mathematicians
Graphics: visualization

Making better proof assistants

PL: languages for expressing mathematics SE: managing large codebases Compilers + distributed computing: speed Machine learning: automated proof search HCI: usable by "working mathematicians" Graphics: visualization

Homotopy Type Theory





Type Theory

Basis of many successful proof assistants (Agda, Coq, NuPRL, Twelf)

% Functional programming language
insertsort : list<int> → list<int>
mergesort : list<int> → list<int>

*** Unifies programming and proving:** types are rich enough to do math/verification

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

vx. mergesort(x) = insertsort(x)

f

type of proofs of program equality

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

> proof by case analysis represented by a function defined by cases

Type are sets?

Traditional view:

type theoryset theory<program> : <type> $x \in S$ <prog1> = <prog2>x = y

Type are sets?

Traditional view:

type theoryset theory<program> : <type> $x \in S$ <prog1> = <prog2>x = y

In set theory, an equation is a *proposition*: it holds or it doesn't; we don't ask *why* 1+1=2

Type are sets?

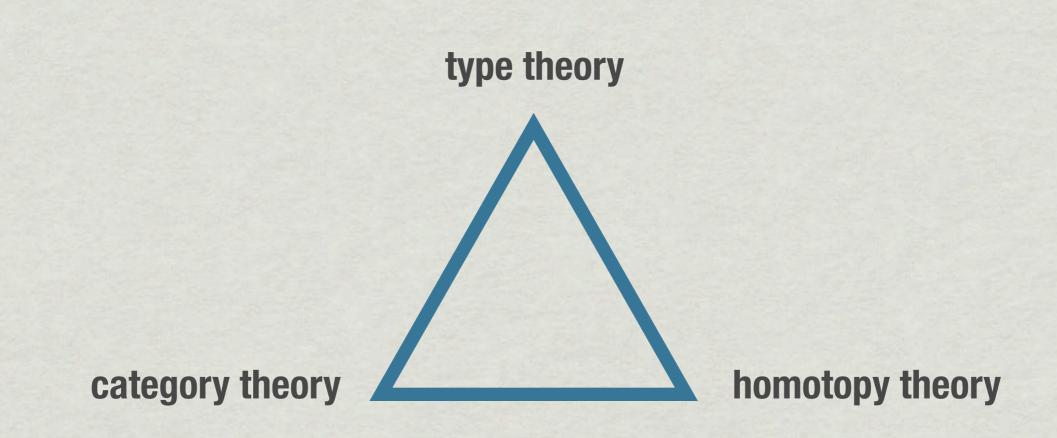
Traditional view:

type theoryset theory<program> : <type> $x \in S$ <tproof> : <prog1> = <prog2>x = y

In set theory, an equation is a *proposition*: it holds or it doesn't; we don't ask *why* 1+1=2

In (intensional) type theory, an equation has a non-trivial <proof>

Homotopy Type Theory



[Hofmann, Streicher, Awodey, Warren, Voevodsky Lumsdaine, Gambino, Garner, van den Berg]

type theory	set theory
<program> : <type></type></program>	$x \in S$
<proof> : <prog1> = <prog2></prog2></prog1></proof>	x = y

type theory
<program> : <type>
<proof> : <prog1> = <prog2>
<2-proof> : <proof1> = <proof2>

set theory $x \in S$ x = y

type theoryset theory<program> : <type> $X \in S$ <proof> : <prog1> = <prog2>X = Y<2-proof> : <proof1> = <proof2><3-proof> : <2-proof1> = <2-proof2>

type theoryset theory<program> : <type> $X \in S$ <proof> : <prog_1> = <prog_2>X = Y<2-proof> : <proof_1> = <proof_2><3-proof> : <2-proof_1> = <2-proof_2>

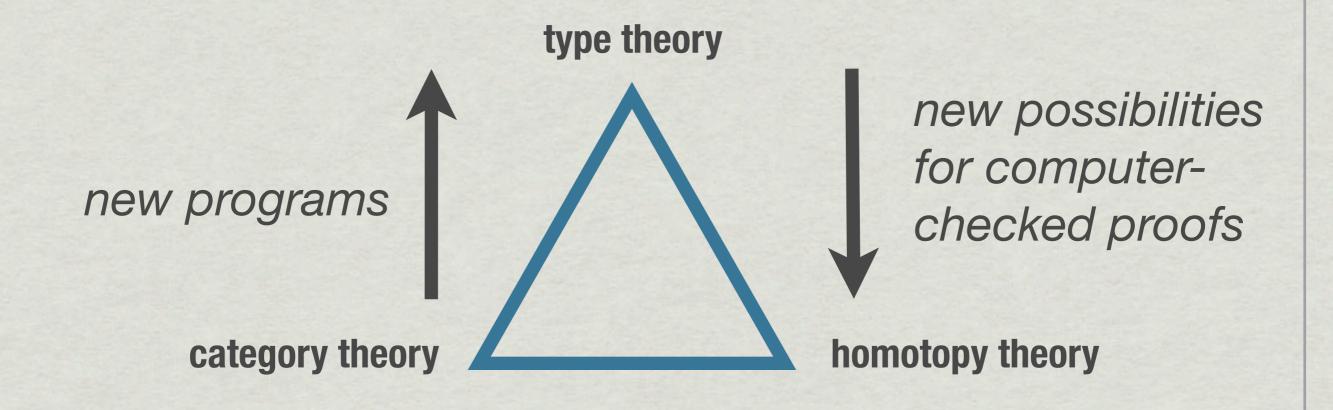
type theoryset theory<program> : <type> $X \in S$ <proof> : <prog_1> = <prog_2>X = y<2-proof> : <proof_1> = <proof_2><3-proof> : <2-proof_1> = <2-proof_2>

Proofs, 2-proofs, 3-proofs, ... all influence how a program runs

type theoryset theory<program> : <type> $X \in S$ <proof> : <prog_1> = <prog_2>X = Y<2-proof> : <proof_1> = <proof_2><3-proof> : <2-proof_1> = <2-proof_2>

Proofs, 2-proofs, 3-proofs, ... all influence how a program runs ∞-*group*oid: each level has a group structure, and they interact

Homotopy Type Theory



I am developing a computational theory of ∞-groupoids and applying it to computer-checked math and software

Results

1.I have developed computer-checked proofs of theorems in homotopy theory [LICS'13]

2.I have discovered how to run programs in Homotopy Type Theory, for the special case of 2-dimensional type theory [POPL'12]

3.I have applied these new concepts to computer-checked software [thesis + MFPS'11]

Outline

Computer-checked homotopy theory
 Computer-checked software

Outline

1.Computer-checked homotopy theory

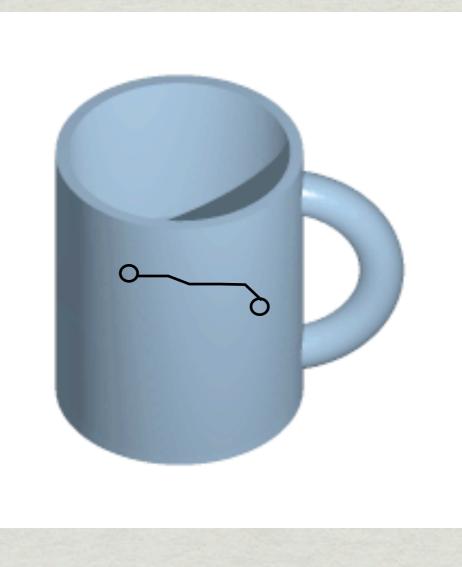
2.Computer-checked software

Homotopy Theory

A branch of topology, the study of spaces and continuous deformations

Homotopy Theory

A branch of topology, the study of spaces and continuous deformations



Synthetic vs Analytic

Synthetic geometry (Euclid)

POSTULATES.

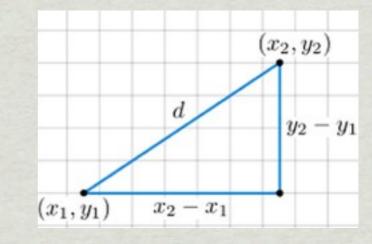
LET it be granted that a straight line may be drawn from any one point to any other point.

I.

That a terminated straight line may be produced to any length in a straight line.

III. And that a circle may be described from any centre, at any distance from that centre.

Analytic geometry (Descartes)



Synthetic vs Analytic

Synthetic geometry (Euclid)

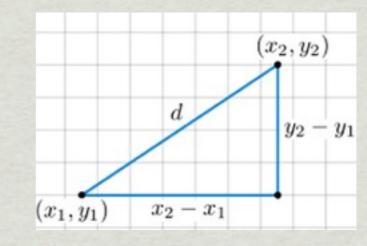
POSTULATES.

I. LET it be granted that a straight line may be drawn from any one point to any other point.

That a terminated straight line may be produced to any length in a straight line.

III. And that a circle may be described from any centre, at any distance from that centre.

Analytic geometry (Descartes)



Classical homotopy theory is analytic: * a space is a set of points equipped with a topology * a path is a set of points, given continuously

Synthetic homotopy theory

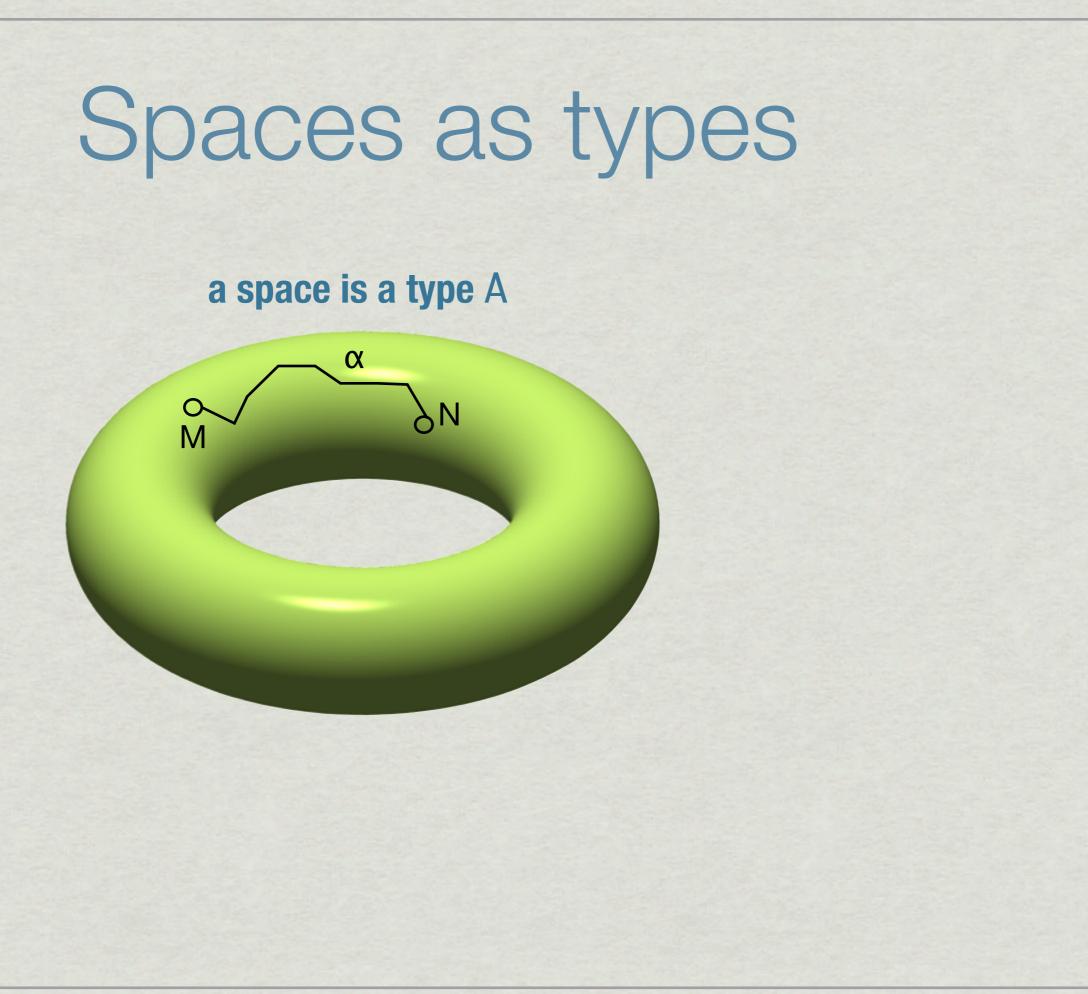
homotopy theory

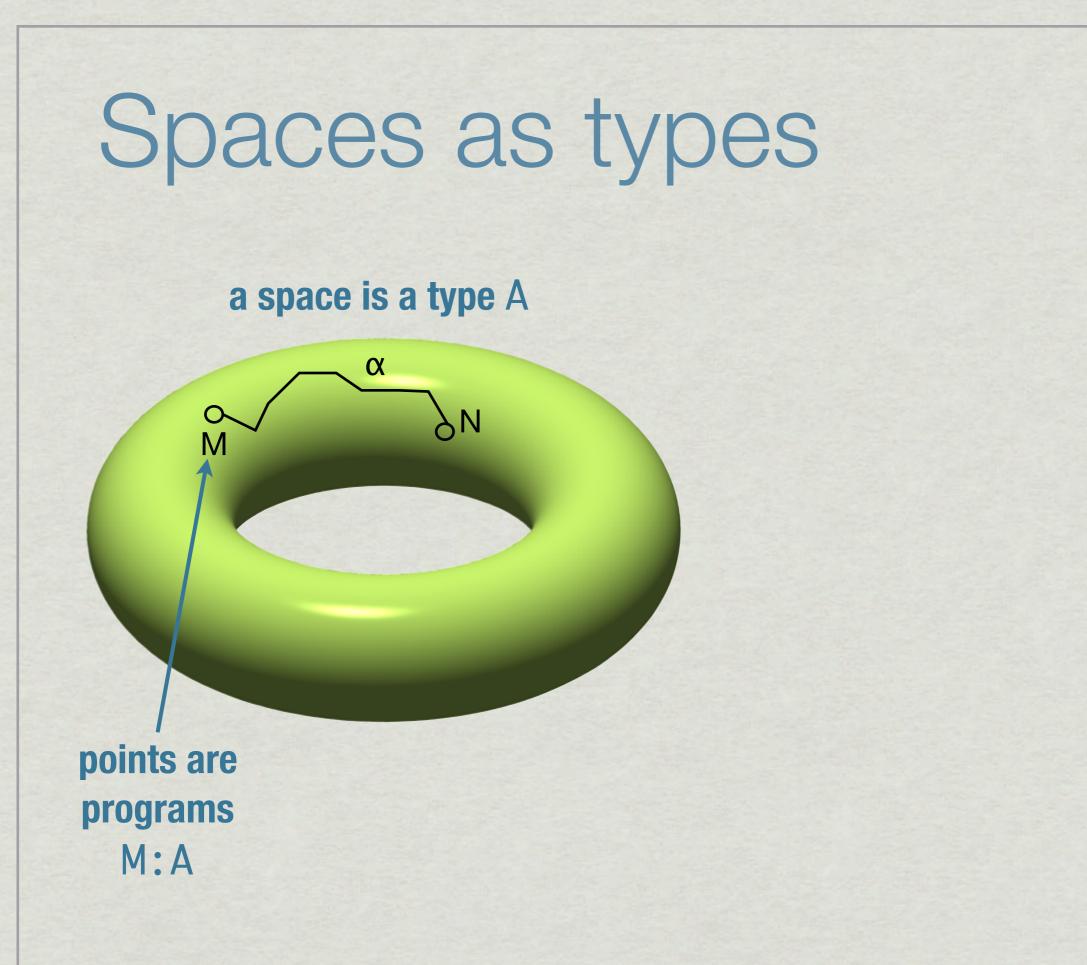
space points paths homotopies type theory
ctype>
<proof</pre>: <type>
<proof</pre>: <proof</pre> = <proof</pre>
<proof</pre>: <proof</pre>

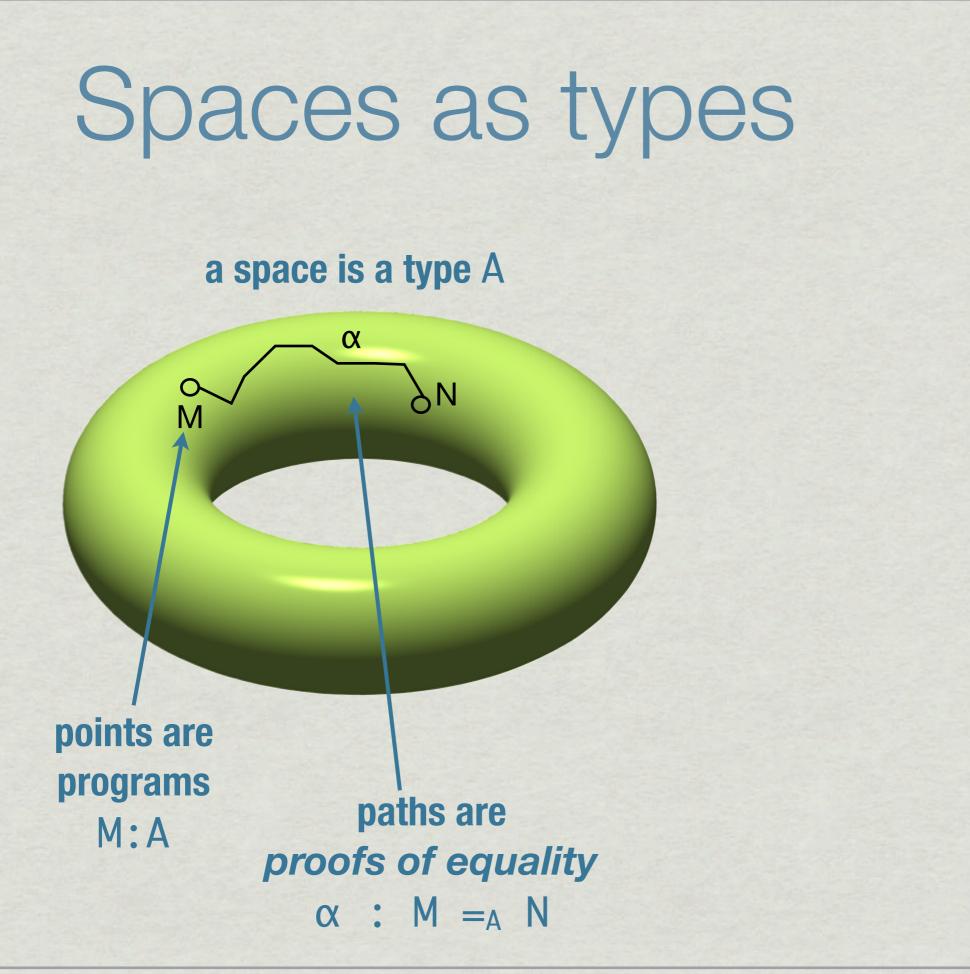
Synthetic homotopy theory

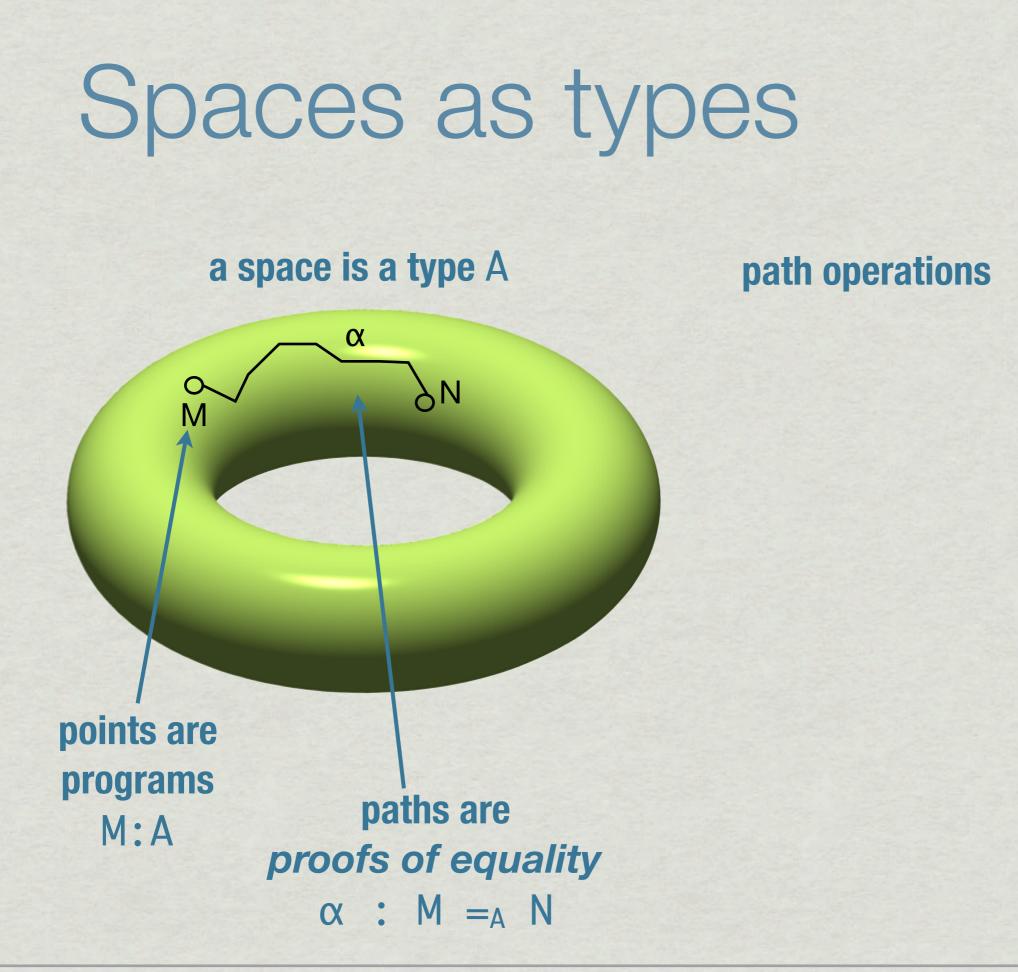
homotopy theorytype theoryspace<type>points<program> : <type>paths<proof> : <prog1> = <prog2>homotopies<2-proof> : <proof1> = <proof2>

A path is **not** a set of points; it is a primitive notion

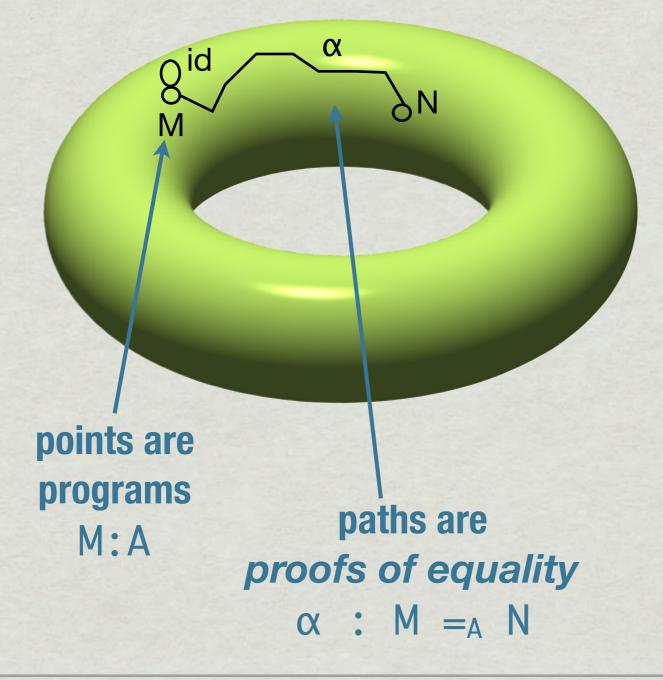






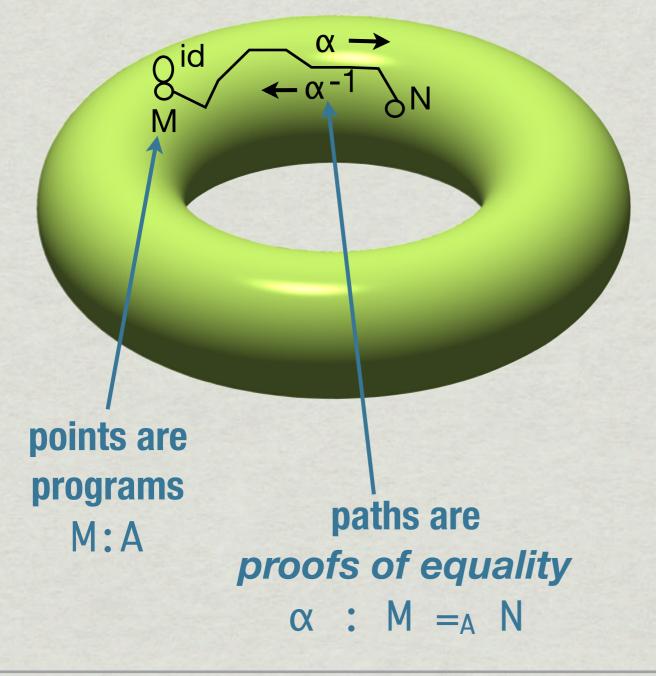


a space is a type A



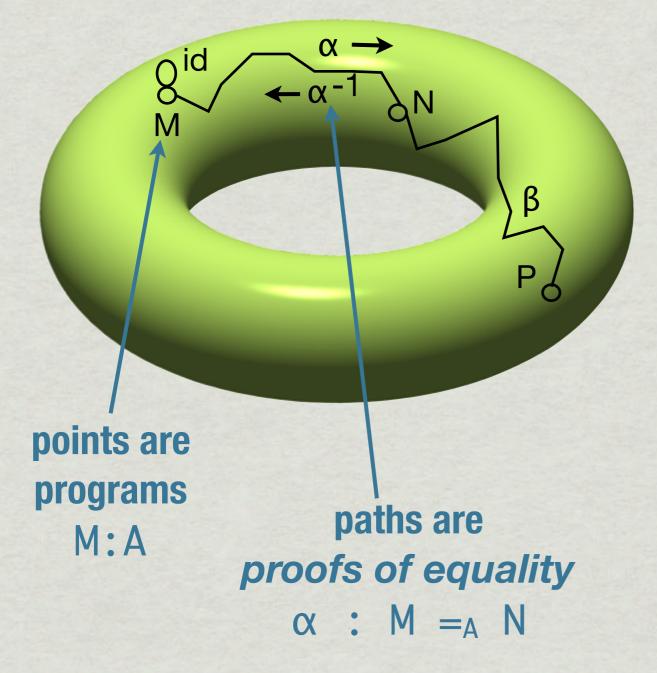
path operations id : M = M (refl)

a space is a type A



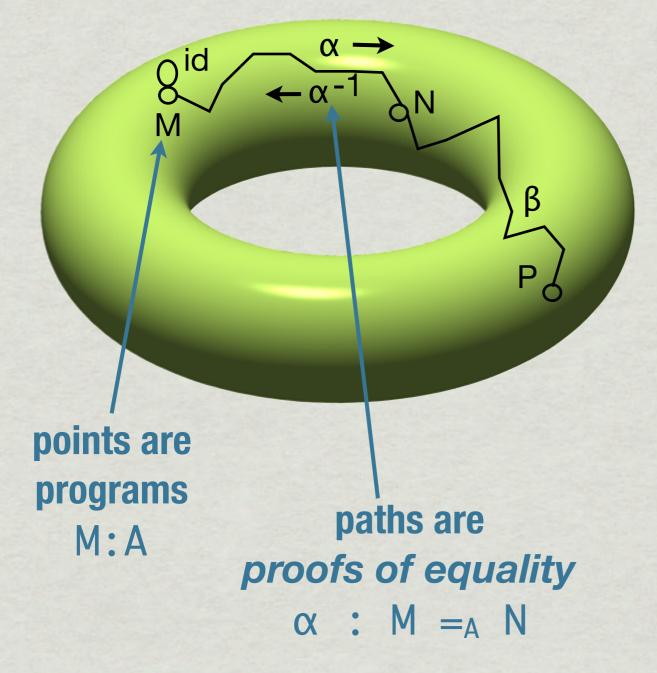
path operationsid: M = M (refl) α^{-1} : N = M (sym)

a space is a type A



path operationsid: M = M (refl) α^{-1} : N = M (sym) $\beta \circ \alpha$: M = P (trans)

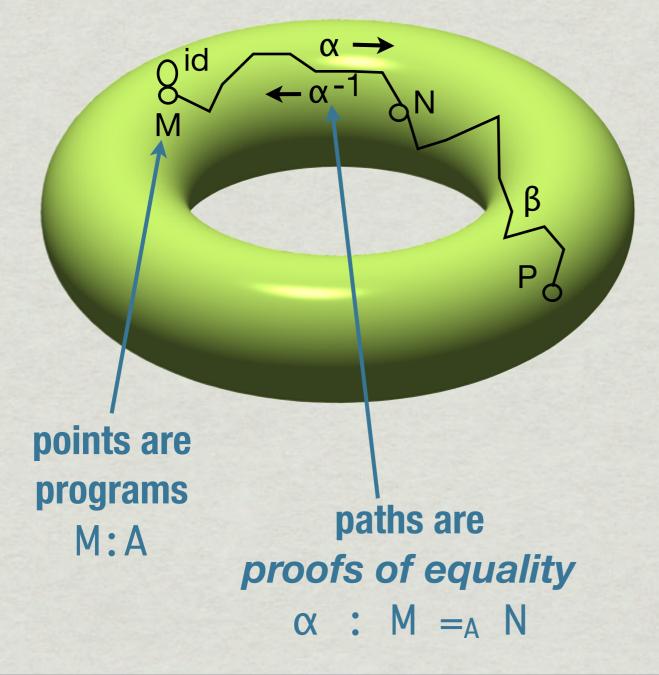
a space is a type A



path operationsid: M = M (refl) α^{-1} : N = M (sym)β ο α : M = P (trans)

Fundamental group: group of loops

a space is a type A



path operations id : M = M (refl) α^{-1} : N = M (sym) $\beta \circ \alpha$: M = P (trans)

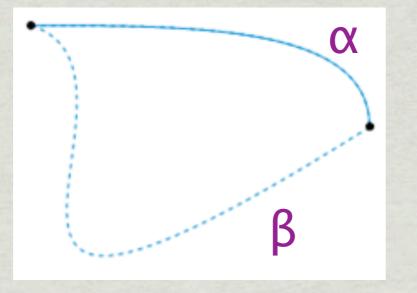
Fundamental group: group of loops modulo homotopy

Deformation of one path into another

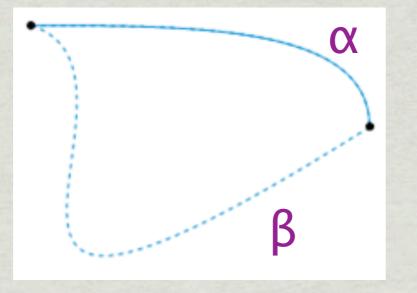
α

β

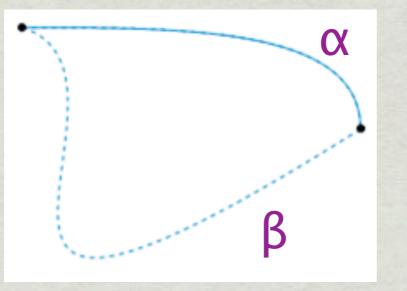
Deformation of one path into another



Deformation of one path into another

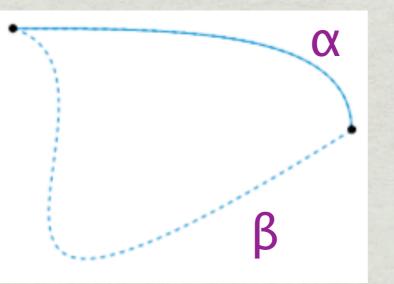


Deformation of one path into another



= 2-dimensional path between paths

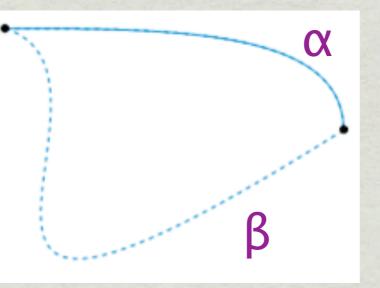
Deformation of one path into another



<2-proof> : $\alpha = \beta$

= 2-dimensional path between paths

Deformation of one path into another



<2-proof> : $\alpha = \beta$

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of their paths, homotopies, homotopies between homotopies,

We can do homotopy theory by writing functional programs

Functions on sets

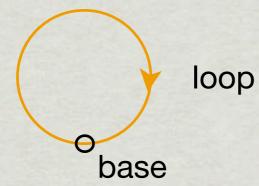
Function on a set gives the image of each element:

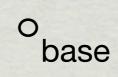
not : Bool → Bool
not(true) = false
not(false) = true

Function on a space gives the image of each point

Circle

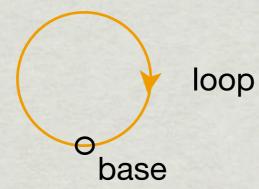
Circle





Function on a space gives the image of each point

Circle



obase

and each path!

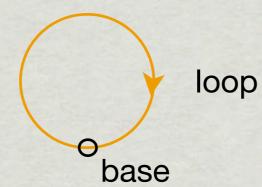
Function on a space gives the image of each point

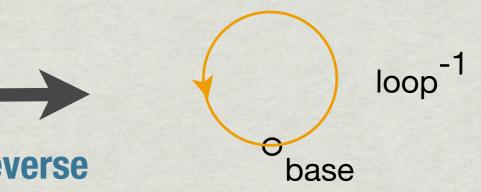
and each path!

Function on a space gives the image of each point

Circle

Circle

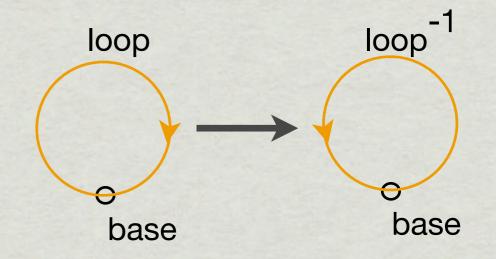




and each path!

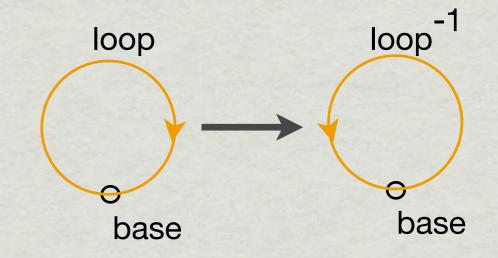
Circle Recursion

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



Circle Recursion

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



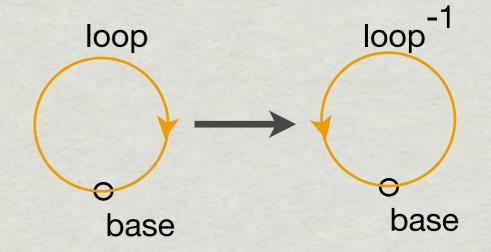
This specifies the image for all paths because

1.circle is inductively generated by loop: all paths are built from loop by identity, inverse, composition2.all functions are homomorphisms

Homomorphism

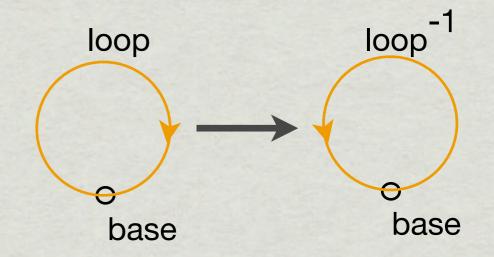
reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹

Computation steps: reverse(loop o loop)



Homomorphism

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



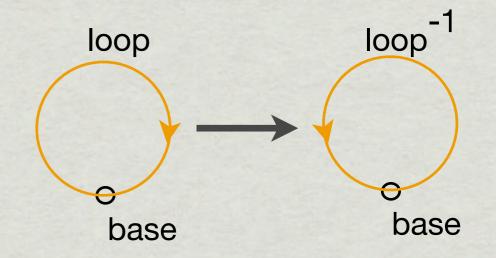
Computation steps:

reverse(loop o loop)

= (reverse loop) o (reverse loop) homomorphism

Homomorphism

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



definition

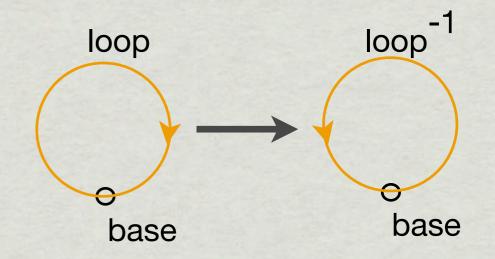
Computation steps:

reverse(loop o loop)

- = (reverse loop) o (reverse loop) homomorphism
- $= loop^{-1} o loop^{-1}$

Homomorphism

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



Computation steps:

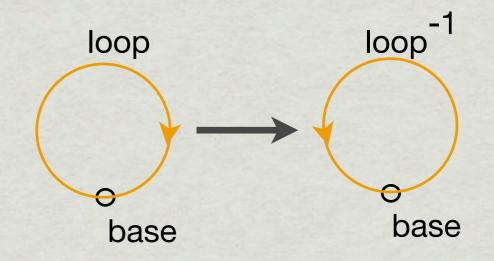
- reverse(loop o loop)
- = (reverse loop) o (reverse loop) homomorphism
- $= loop^{-1} o loop^{-1}$
- = $(loop o loop)^{-1}$

group laws

definition

Homomorphism

reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



Computation steps:

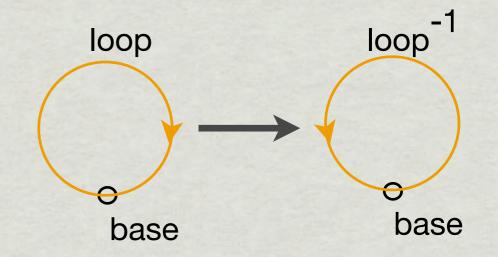
- reverse(loop o loop)
- = (reverse loop) o (reverse loop) homomorphism
- $= loop^{-1} o loop^{-1}$
- = $(loop o loop)^{-1}$

group laws

definition

Circle induction

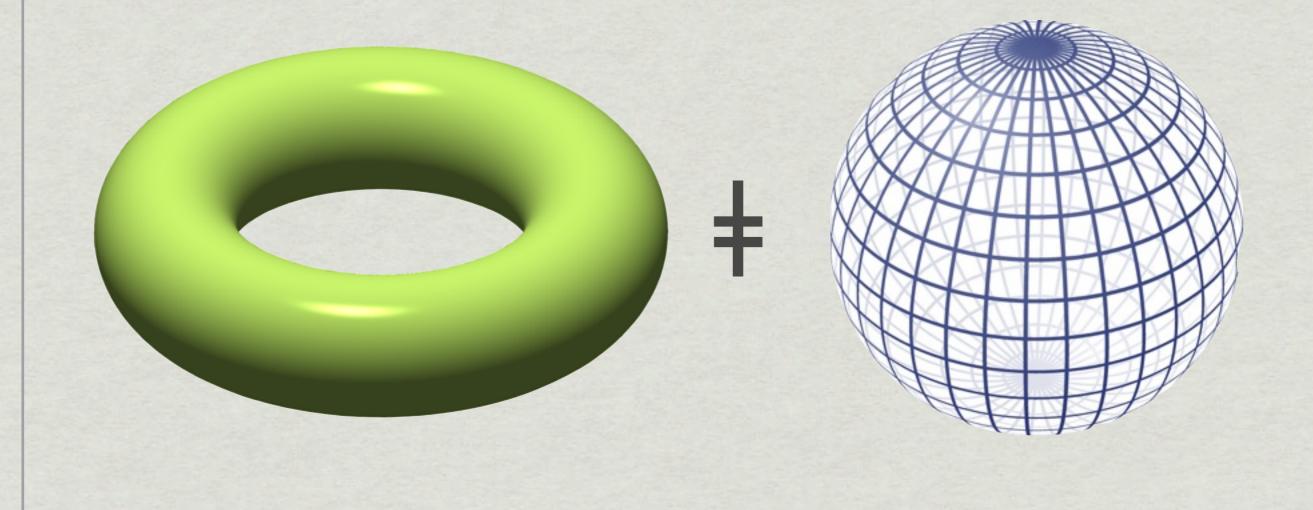
reverse : Circle → Circle
reverse(base) = base
reverse(loop) = loop⁻¹



Theorem: ∀p. reverse(p) = p⁻¹
Proof: uses circle induction:
 To prove a predicate P for all points on the circle,
 suffices to prove P(base),
 continuously in the loop

We can do interesting homotopy theory synthetically

Telling spaces apart



Telling spaces apart

=

fundamental group is non-trivial $(\mathbb{Z} \times \mathbb{Z})$

fundamental group is trivial

Homotopy Groups

Homotopy groups of a space X:
* π₁(X) is fundamental group (group of loops)
* π₂(X) is group of *homotopies* (2-dimensional loops)
* π₃(X) is group of 3-dimensional loops

Homotopy groups

n-dimensional sphere

kth homotopy group

	Π1	п2	пз	П4	п5	п6	Π7	Π8	Пg	Π10	Π11	Π12	Π13	Π14	Π15
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s 2	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z ₃	Z ₁₅	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	z ₂	Z 2	Z ₁₂	Z 2	Z ₂	Z 3	Z ₁₅	z ₂	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	z 2	z ₂	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ ×Z ₂
S ⁵	0	0	0	0	z	z ₂	z ₂	Z 24	z ₂	Z 2	z ₂	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z
S ⁶	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	Z×Z12

[image from wikipedia]

kth homotopy group

	Π1	п2	пз	Π4	п5	п6	Π7	Π8	П9	Π10	Π11	Π12	Π13	Π14	Π15
5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z ₂	Z ₃	Z ₁₅	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z ₁₅	z ₂	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	z 2	z ₂	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z ₁₅	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ ×Z ₂
S ⁵	0	0	0	0	z	z ₂	Z 2	Z 24	Z 2	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z72×Z
S ⁶	0	0	0	0	0	z	z ₂	Z 2	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	Z×Z12

n-dimensional sphere

[image from wikipedia]

kth homotopy group

	Π1	Π2	пз	Π4	Π5	п6	Π7	Π8	Пg	Π10	Π11	Π12	Π13	Π14	Π15
5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z								-	177	-			
-3															
53	0	0	z	Z 2											
50 54	0	0	z	Z ₂ Z	Z 2	Z ₂									
					Z ₂ Z	Z ₂ Z ₂	Z ₂	Z ₂₄							
S ⁴	0	0	0	z			Z ₂ Z ₂	Z ₂₄ Z ₂	Z 24	0	1				
54 55	0	0	0	z 0	z	z 2			Z ₂₄ Z ₂	0 Z 24	0	0			

[image from wikipedia]

- $1.\pi_n(S^n) = \mathbb{Z}$ (w/ G. Brunerie)
- $2.\pi_k(S^n)$ trivial for k < n
- 3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)
- 4. Eilenberg-Mac Lane spaces K(G,n)

	n 1	n 2	n3	π4	n ₅	n ₆	n 7	na	П9	n 10	n 11	¹¹ 12	п13	T14	n 18
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z										-		-	
					2										
S ³	0	0	z	Z 2											
5 ³ 5 ⁴	0	0	z	z ₂ z	Z 2	Z ₂									
S ⁴				_	Z ₂ Z	Z ₂ Z ₂	Z ₂	Z ₂₄							
54 55	0	0	0	z			Z ₂ Z ₂	Z ₂₄ Z ₂	Z ₂₄	0	1				
	0	0	0	z 0	z	Z 2			Z ₂₄ Z ₂	0 Z ₂₄	0	0			

 $1.\pi_n(S^n) = \mathbb{Z}$ (w/ G. Brunerie)

 $2.\pi_k(S^n)$ trivial for k < n

3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)

4. Eilenberg-Mac Lane spaces K(G,n)

 $1.\pi_n(S^n) = \mathbb{Z} (w/G. Brunerie)$

 $2.\pi_k(S^n)$ trivial for k < n

3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)

4. Eilenberg-Mac Lane spaces K(G,n)

#11,000 lines of Agda code (most since January)

 $1.\pi_n(S^n) = \mathbb{Z} (w/G. Brunerie)$

 $2.\pi_k(S^n)$ trivial for k < n

3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)

4. Eilenberg-Mac Lane spaces K(G,n)

11,000 lines of Agda code (most since January)# Proofs are programs: you can run them

 $1.\pi_n(S^n) = \mathbb{Z} (w/G. Brunerie)$

 $2.\pi_k(S^n)$ trivial for k < n

3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)

4. Eilenberg-Mac Lane spaces K(G,n)

* 11,000 lines of Agda code (most since January)
* Proofs are programs: you can run them
* Computer-checked proofs shorter than "informalized"

 $1.\pi_n(S^n) = \mathbb{Z} (w/G. Brunerie)$

 $2.\pi_k(S^n)$ trivial for k < n

3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)

4. Eilenberg-Mac Lane spaces K(G,n)

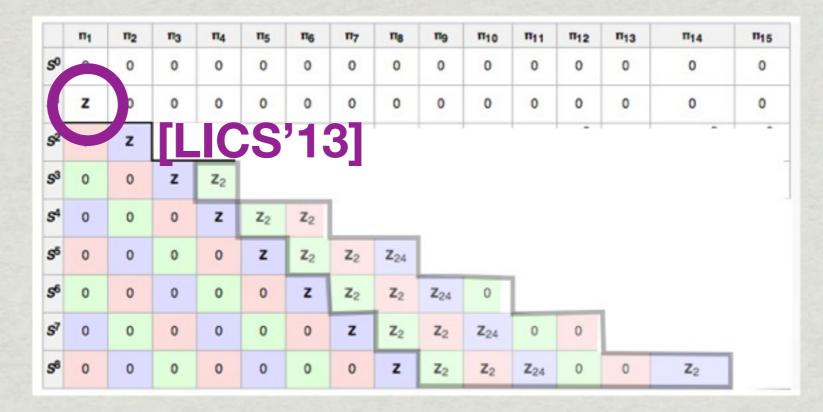
#11,000 lines of Agda code (most since January)

* Proofs are programs: you can run them

* Computer-checked proofs shorter than "informalized"

* Proofs are new: I discovered a type-theoretic method that is used in all of these proofs

- $1.\pi_n(S^n) = \mathbb{Z}$ (w/ G. Brunerie)
- $2.\pi_k(S^n)$ trivial for k < n
- 3.Freudenthal suspension theorem (w/ P. Lumsdaine; Blakers-Massey w.i.p)
- 4. Eilenberg-Mac Lane spaces K(G,n)



Fundamental group of circle [LICS'13] Two functions: 1.winding : (base = base) $\rightarrow \mathbb{Z}$ 2.loopⁿ : $\mathbb{Z} \rightarrow$ (base = base)

Three proofs: 1.∀n:ℤ. winding(loopⁿ) = n 2.∀p. loop^{winding(p)} = p 3.∀n,m. loop^{n+m} = loopⁿ o loop^m

Fundamental group of circle [LICS'13] loop Two functions: base 1.winding : (base = base) $\rightarrow \mathbb{Z}$ uses circle recursion 2.loopⁿ : $\mathbb{Z} \rightarrow$ (base = base) Three proofs: 1. \forall n: \mathbb{Z} . winding(loopⁿ) = n 2. $\forall p$. loop^{winding(p)} = p $3.\forall n, m. loop^{n+m} = loop^n o loop^m$

Fundamental group of circle [LICS'13] Two functions: 1.winding : (base = base) $\rightarrow \mathbb{Z}$ uses circle recursion 2.loopⁿ : $\mathbb{Z} \rightarrow$ (base = base)

Three proofs:
1.∀n:Z. winding(loopⁿ) = n
2.∀p. loop^{winding(p)} = p
3.∀n,m. loop^{n+m} = loopⁿ o loop^m

induction principles for circle, paths, int; and calculations using my computational interpretation

Fundamental group of the circle

175

Informal

173

7.2 SOME BASIC HOMOTOPY GROUPS

7.2.1.1 Encode/decode proof

By definition, $\Omega(S^1)$ is base —y-base. If we attempt to prove that $\Omega(S^1) = {\bf Z}$ by directly constructing an equivalence, we will get stuck, because type theory gives you little lever-age for working with loops. Instead, we generalize the theorem statement to the path ibration, and analyze the whole fibration

 $P(x:S^1) := (base =_q x)$

with one and-point free.

We show that P(x) is equal to another fibration, which gives a more explicit description of the paths-we call this other fibration "codes", because its elements are data that act as codes for paths on the circle. In this case, the codes fibration is the universal cover of the circle.

Definition 7.3.1 (Universal Cover of S³). Define cade(x : S³) : U by circle-recursion, with

code/base) := Z code (loop) :tt us(succ)

where succ is the equivalence $\mathbf{Z}\simeq\mathbf{Z}$ given by adding one, which by univalence determines a path from Z to Z in U.

To define a function by circle recursion, we need to find a point and a loop in the target. In this case, the target is I/, and the point we choose is Z, corresponding to our expectation that the fiber of the universal cover should be the integers. The loop we choose is the successor / predecessor isomorphism on Z, which corresponds to the fact that going around the loop in the base goes up one level on the helix. Univalence is necessary for this part of the proof, because we need a non-trivial equivalence on Z.

From this definition, it is simple to calculate that transporting with code takes loop to the successor function, and loss-1 to the predecessor function;

Lemma 7.2.2. transport^{code}(loop, x) = x + 1 and transport^{code}(loop⁻¹, x) = x - 1. Proof. For the first, we calculate as follows:

- $\begin{array}{l} transport^{milt}(loop, x) \\ = transport^{A \rightarrow A}((code (loop)), x) \quad associativity \end{array}$
- transport^{A-A}(ua(succ), x) reduction for circle-recursion
- reduction for up

The second follows from the first, because transport⁸p and and transport⁸p⁻¹ are always inverses, so transport^{code}loop⁻¹ = must be the inverse of the -+1.

In the remainder of the proof, we will show that P and code are equivalent.

[DIART OF MARCH 19, 2013]

```
CHAPTER 7. HOMOTOPY THEORY
174
```

7.2.1.1.1 Encoding Next, we define a function encode that maps paths to codes: Definition 7.2.3. Define encode : $\prod(x : S^1)_r \rightarrow P(x) \rightarrow code(x)$ by

encode p :::: transport^{web}(p,0)

(we leave the argument x implicit).

Encode is defined by lifting a path into the universal cover, which determines an equivalence, and then applying the resulting equivalence to 0. The interesting thing about this function is that it computes a concrete number from a loop on the circle, when this loop is represented using the abstract groupoidal framework of HoTT. To gain an intuition for how it does this, observe that by the above lemmas, transport" -+1 and transport****icop*1x is x-1. Further, transport is functorial (chapter 2), so transport methods + loop is (transport methods) = (transport methods), etc. Thus, when p is a composition like

long + long -1 + long + ...

transport^{rok}p will compute a composition of functions like

(-+1)+(--1)+(-+1)+...

Applying this composition of functions to 0 will compute the axialing number of the pathhow many times it goes around the circle, with orientation marked by whether it is posi-tive or negative, after inverses have been canceled. Thus, the computational behavior of ercode follows from the reduction rules for higher-inductive types and univalence, and the action of transport on compositions and inverses.

Note that the instance encode' III encode the has type base - base - Z, which will be one half of the equivalence between base = base and Z

7.2.1.1.2 Decoding Decoding an integer as a path is defined by recursion:

Definition 7.2.4. Define loop" | Z → base - base by

loop + loop + __ + loop (n times) for positive n loop⁻¹ · loop⁻¹ · ... · loop⁻¹ (* times) for negative n for 0

Since what we want overall is an equivalence between base - base and Z, we might expect to be able to prove that encode' and loop " give an equivalence. The problem comes in trying to prove the "decode after encode" direction, where we would need to show that isoprecov's = p for all p. We would like to apply path induction, but path induction 7.2 SOME BASIC HOMOTOPY GROUPS

does not apply to loops like a with both endpoints fixed! The way to solve this problem is to generalize the theorem to show that $loop^{scools,p} = p$ for all $x : S^1$ and p : base = x. However, this does not make sense as is, because loop" is defined only for base = base, whereas here it is applied to a base - x. Thus, we generalize loop as follows:

Definition 7.2.5. Define decade : $\prod \{x : S^{\dagger}\} \prod \{code(x) \rightarrow P(x)\}$, by circle induction on x. It suffices to give a function code(base) -> P(base), for which we use loop", and to show that loop respects the loop.

Proof. To show that loop" respects the loop, it suffices to give a path from loop" to itself that line reservices [if-closer'-P(r))[loop,loop"]. that lies over loop. Formally, this means a path from transport17 to loop". We define such a path as follows:

- transport^{(r'--rook(r')-(*(r'))}(loop.loop⁻) - transport"loop = loop" = transport" = (- + loop) o (loog⁻) o transport^{code}loog⁻ = (- + loop) o (loop⁻) o (- - 1)
- = ($n \mapsto loop^{n-1} \cdot loop$)

From line 1 to line 2, we apply the definition of transport when the outer connective of the fibration is ---, which reduces the transport to pre- and post-composition with transport at the domain and range types. From line 2 to line 3, we apply the definition of transport when the type family is have = z, which is post-composition of paths. From line 3 to line 4, we use the action of code on loss⁻¹ defined in Lemma 7.2.2. From line 4 to line 5, we simply reduce the function composition. Thus, it suffices to show that for all n. loop"-1 + loop = loop", which is an easy induction, using the groupoid laws.

7.2.1.1.3 Decoding after encoding

Lemma 7.2.6. For all for all $x : S^1$ and p : base = x, decode, (encode, (p)) = p.

Proof. By path induction, it suffices to show that decodenan(encodenan(refluen)) = refluent Proof: by part measurements the transport mark/refigure (0) $\equiv 0$, and decode_{base}(0) $\equiv loop² \equiv refigure (0)$

7.2.1.1.4 Encoding after decoding

176

Lemma 7.2.7. For all for all $x : S^1$ and c : code(x), $encode_r(decode_r(c)) = c$.

Proof. The proof is by circle induction. It suffices to show the case for base, because the case for loop is a path between paths in Z, which can be given by appealing to the fact that Z is a set.

CHAPTER 7. HOMOTOPY THEORY

by the IH

Thus, it suffices to show for all n : Z, that

encode (loce") = N

The proof is by induction, with cases for 0,1,-1,n+1, and n-1.

- . In the case for 0, the result is true by definition.
- In the case for 1, encode² (loop²) reduces to transport^{mole} (loop, 0), which by Lemma 7.2.2. i = 0 + 1 = 1.
- In the case for n + 1.
 - encode² (long⁸⁺²)
 - = encode (loop" · loop)
 - = transport^{mode}((loop^{*} loop), 0) = transport^{mode}(loop, (transport^{mode}((loop^{*}), 0))) by functoriality = (transport^{ionin}((koop^{*}),0)) + 1 by Lemma 7.2.2
- = -1
- · The cases for negatives are analogous

72115 Tying it all together

Theorem 7.2.8. There is a family of equivalences $\prod(x : S^2) \prod(P(x) \simeq code(x))$.

Proof. The maps encode and decode are mutually inverse by Lemmas 7.2.6 and 7.2.6, and this can be improved to an equivalence.

Instantiating at base gives

Corollary 7.2.9. (base = base) = Z

A simple induction shows that this equivalence takes addition to composition, so $\Omega(S^2) =$ Z as groups.

Corollary 7.2.30, m/S⁷) = Z if k = 1 and 1 otherwise.

Proof. For k = L we sketched the proof from Corollary 7.2.9 above. For $k > L ||\Omega^{n+1}(S^1)||_0 =$ $\|\Omega^{*}(\Omega S^{\dagger})\|_{0} = \|\Omega^{*}(Z)\|_{0}$, which is 1 because Z is a set and π_{*} of a set is trivial (FDME lemmas to cite?). IDNATE OF MARCH PR 20111

Computer-checked

Cover : S¹ - Type Cover x = S1-rec Int (up succEquiv) x

transport-Cover-loop : Path (transport Cover loop) succ transport-Cover-loop = transport Cover loop +(transport-ap-assoc Cover loop) transport (A x - x) (ap Cover loop) +(ap (transport (i x - x))
 (gloop/rec Int (us succEquiv)))
transport (i x - x) (us succEquiv) +(type=0 _ > SUCC .

transport-Cover-Iloop : Puth (transport Cover (1 loop)) pred transport-Cover-Iloop = transport Cover (1 loop) =(transport-ap-assoc Cover (! loop) > transport (A x - x) (ap Cover (1 loop)) -(op (transport (k x - x)) (op-1 Cover loop)) transport (k x - x) (! (ap Cover loop)) =(ap (), y - transport (), x - x) (1 y))
(floop/rec Int (us succliquiv)) >
transport (), x = x) (1 (us succliquiv)) -(ap (transport (\lambda x - x)) (1-ua succEquiv) >
transport (\lambda x - x) (ua (lequiv succEquiv)) =(type=ß _) nred a

encode : {x : S^s} - Poth base x - Cover x encode a = transport Cover a Zero

encode' : Path base base - Int encode' = = encode (base) a

```
loopA : Int - Path base base
loop<sup>A</sup> Zero = id
loop<sup>A</sup> (Pos One) = loop
loop^ (Pos (S n)) = loop - loop^ (Pos n)
loop^ (Neg One) = ! loop
loop^ (Neg (S n)) = ! loop - loop^ (Neg n)
  cop*-preserves-pred
: (n : Int) - Peth (loop* (pred n)) (1 loop - loop* n)
cop*-preserves-pred (Pos (n) = | (1-(nv-1 loop)
cop*-preserves-pred (Pos (3 y)) +
! (-assac (1 loop) loop (loop* (Pos y)))
. ( op (0 x = x - loop* (Pos y))) (1-(nv-1 loop))
. ( op (0 x = x - loop* (Pos y)))
. ( -arnit-1 (loop* (Pos y)))
   kpr-preserves-pred Zero = Ld
kpr-preserves-pred (Neg Ore) = Ld
kpr-preserves-pred (Neg (S y)) = Ld
```

decode : (x : S¹) - Cover x - Poth base x decode (x) =

(k x' - Cover x' - Puth base x') 1000A -respects-loop

struct -- prevent Agds from normalizing app^-respects-loop : transport (L x' - Cover x' - Poth base x') loop loop^ = (L n - loop^ n) app^-respects-loop = (transport(L x' - Cover x' - Poth base x') loop loop^ -i transport-: Cover (Poth base) loop loop^) transport(L x' - Poth base x') loop e transport Cover (1 loop) - lar (J y - transport-Path-right loop (loop^ (transport Cover (1 loop) y))) > _ (D p - loop - p) b transport Cover (1 loop)
e transport Cover (1 loop)
= (> () y - ap () x' - loop - loop^* x') (ap= transport-Cover-Iloop)) >
() p - loop - p) o loop/ o pred () n = loop - (loop⁴ (pred n))) -(i = () y = move-left-1 _ loop (loop⁴ y) (loop⁴-preserves-pred y)) > () n = loop⁴ n)

encode-loop* (Pos One) = ap- transport-Cover-loop encode-loop* (Pos (5 n)) = encode (loop* (Pos (5 n))) -(td) transport Cover (loop - loop^ (Pos n)) Zero
=(ap= (transport-- Cover loop (loop^ (Pos n))) > transport Cover loop (transport Cover (loop* (Nos n)) Zero) --: ap+ transport-Cover-loop >
succ (transport Cover (loop* (Pos m)) Zero) succ (encode (loop^ (Pos n)))
~(ap succ (encode-loop^ (Pos n))) $\begin{array}{l} \mbox{encode-decode} & : \ \{x \ : \ S^1\} \ \ - \ (c \ : \ Cover \ x) \\ & - \ Poth \ (encode \ (decode\{x\} \ c)) \ c \\ \mbox{encode-decode} \ \ \{x\} \ = \ S^1 \ \ - \ induction \end{array}$ (\ (x : \$1) - (c : Cover x)

encode-loop* : (n : Int) - Puth (encode (loop* n)) n encode-loop* Zero = id

- Poth (encode(x) (decode(x) c)) c) encode-loop* (i= (i x' - fst (use-level (use-level (use-level MSet-Int _ _) _ _)))) x

decode-encode {x} e = path-induction (L (x' : S¹) (e' : Path base x') - Path (decode (encode a')) a')

id e

G.[51]-Equiv-Int : Equiv (Poth base base) Int G[S1]-Equiv-Int = improve (heaviv encode decode decode-encode encode-loop*)

Ω[5³]-is-Int : (Poth base base) = Int Ω[5³]-is-Int = us Ω[5⁴]-Equiv-Int

m[S¹]-is-Int : x One S¹ base = Int m[S¹]-is-Int = UnTrunc.path _ _ HSet-Int · op (Trunc (tl 0)) Ω[S¹]-is-Int

45

Outline

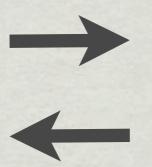
1.Computer-checked homotopy theory

2.Computer-checked software

Example

Convert dates between European and US formats, inside a data structure

 $[\{key=4,n="John", d=(30,5,1956)\}, \\ \{key=8,n="Hugo",d=(29,12,1978)\}, \\ \{key=15,n="James",d=(1,7,1968)\}, \\ \{key=16,n="Sayid",d=(2,10,1967)\}, \\ \{key=23,n="Jack",d=(3,12,1969)\}, \\ \{key=42,n="Sun",d=(20,3,1980)\}]$



[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

Spec: Conversion is a *bijection:* converting back and forth doesn't change the data

Type theory

```
conv1: (Nat x String x ((Nat x Nat) x Nat))
       → (Nat x String x ((Nat x Nat) x Nat))
conv1 (key , name , ((x , y) , year)) =
       (key , name , ((y , x) , year))
convert : DB -> DB
convert = map \ conv1
map-fusion : \forall {A B C} (g : B \rightarrow C)
                (f : A \rightarrow B) (l : List A)
              \rightarrow map (q o f) l \approx map q (map f l)
map-fusion g f [] = id
map-fusion g f (x :: xs) =
  ap (\_::\_ (g (f x))) (map-fusion g f xs)
map-idfunc : \forall \{A\} (l : List A) \rightarrow map (\backslash x \rightarrow x) l \approx l
map-idfunc \Box = id
map-idfunc (x :: xs) = ap (\_::\_x) (map-idfunc xs)
convert-inv : convert o convert = (\lambda \times - \times \times)
convert-inv = map conv1 o map conv1
                   \approx ( ! (\lambda = (map-fusion conv1 conv1)) )
                  map (conv1 o conv1)
                   =( id )
                 map ( x \rightarrow x)
                   =\langle \lambda = map-idfunc \rangle
                  (\lambda \mathbf{X} \rightarrow \mathbf{X})
convert-bijection : Bijection DB DB
convert-bijection =
  (convert,
    is-bijection convert
                    (\lambda \times -> (ap \approx convert-inv))
                    (\lambda \times -> (ap= convert-inv)))
```

Homotopy Type Theory

```
(convert, cast-is-bijection There swap)
```


[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

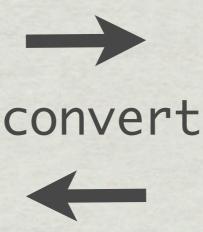
[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swap(x,y) = (y,x)

 $[\{key=4,n="John",d=(5,30,1956)\}, \\ \{key=8,n="Hugo",d=(12,29,1978)\}, \\ \{key=15,n="James",d=(7,1,1968)\}, \\ \{key=16,n="Sayid",d=(10,2,1967)\}, \\ \{key=23,n="Jack",d=(12,3,1969)\}, \\ \{key=42,n="Sun",d=(3,20,1980)\}]$

1.Define a function swap(x,y) = (y,x)

2. Prove that swap is a bijection (it's self-inverse)

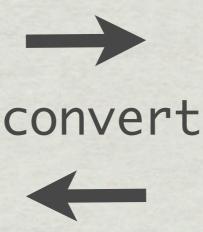


[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swap(x,y) = (y,x)

2. Prove that swap is a bijection (it's self-inverse)

3.Define a parametrized type describing where to swap: There(X)=List{key:int, n:string, d:X×int}



 $[\{key=4,n="John",d=(5,30,1956)\}, \\ \{key=8,n="Hugo",d=(12,29,1978)\}, \\ \{key=15,n="James",d=(7,1,1968)\}, \\ \{key=16,n="Sayid",d=(10,2,1967)\}, \\ \{key=23,n="Jack",d=(12,3,1969)\}, \\ \{key=42,n="Sun",d=(3,20,1980)\}]$

1.Define a function swap(x,y) = (y,x)

2. Prove that swap is a bijection (it's self-inverse)

3.Define a parametrized type describing where to swap: There(X)=List{key:int, n:string, d:Xxint}

4.Define

convert(db) = castThere(swap,db)

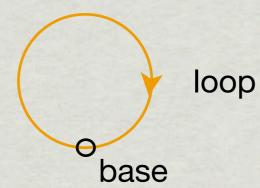
Types write code and proofs for you

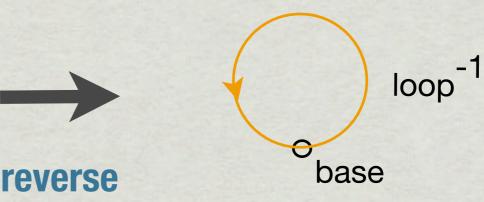
Functions on spaces

Function on a space gives the image of each point

Circle

Circle



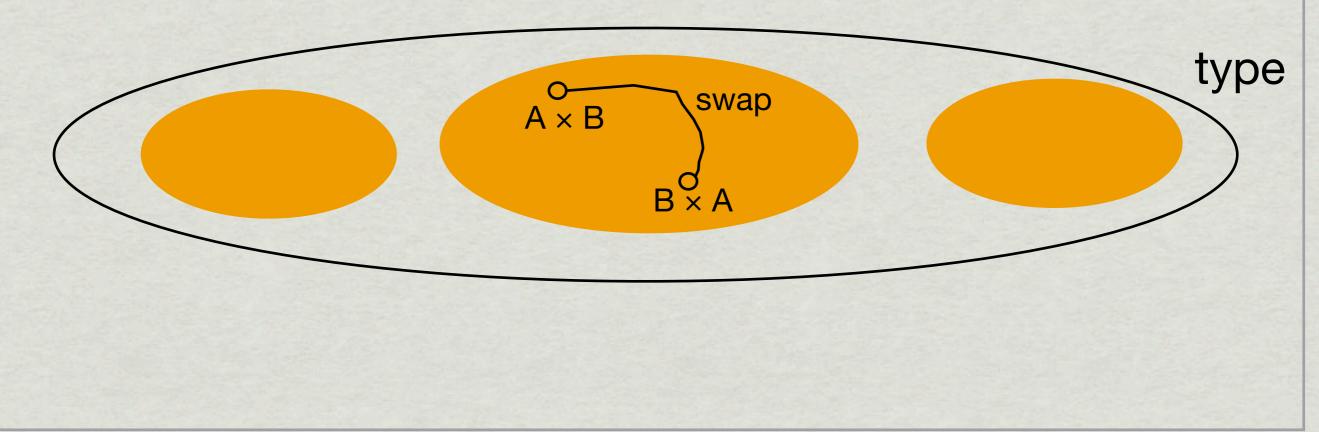


and each path!

1.There(X)=List{key:int, n:string, d:Xxint}
is a function on the space of types, so it must also
give an image for each path between types

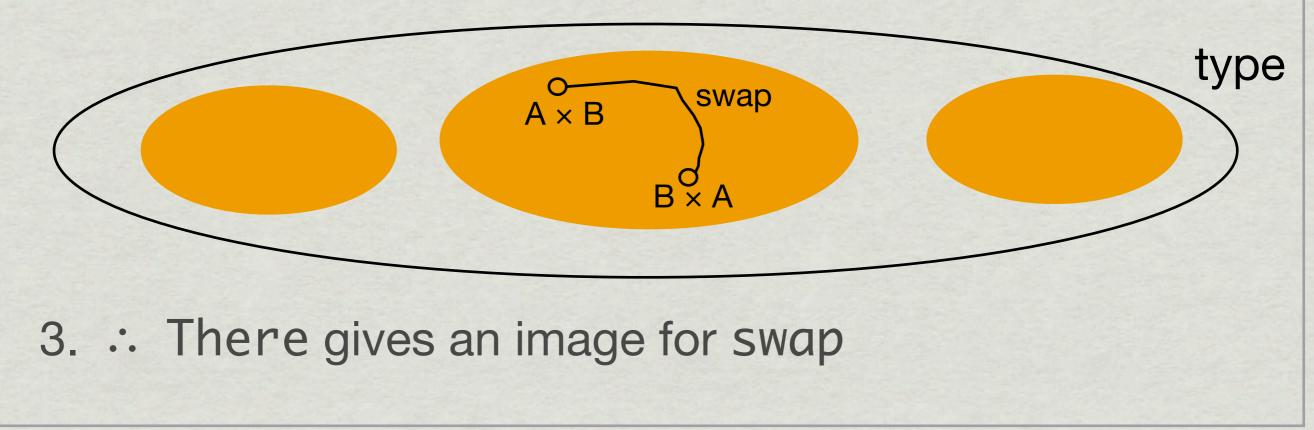
1.There(X)=List{key:int, n:string, d:Xxint}
is a function on the space of types, so it must also
give an image for each path between types

2. We define the paths between types to be bijections



1.There(X)=List{key:int, n:string, d:Xxint}
is a function on the space of types, so it must also
give an image for each path between types

2. We define the paths between types to be bijections



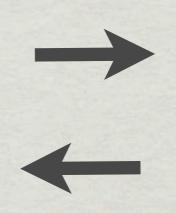
Cast

castThere(swap)

applies There to swap: a *type-directed program* that builds bigger bijections from smaller ones

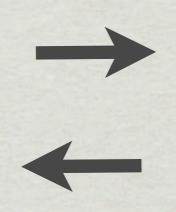
Computational interpretation of cast:
There(X)=List{key:int, n:string, d:Xxint}
castThere(swap,db)

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



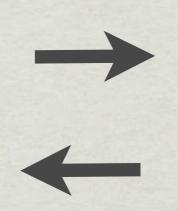
Computational interpretation of cast: There(X)=List{key:int, n:string, d:Xxint} castThere(swap,db) = map (castThere1 swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



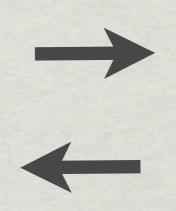
Computational interpretation of cast: There1(X)={key:int, n:string, d:X×int} castThere(swap,db) = map (castThere1 swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



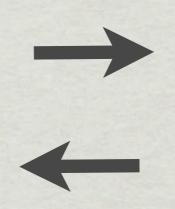
Computational interpretation of cast: There1(X)={key:int, n:string, d:Xxint} castThere(swap,db) = map (castThere1 swap) db = map ({key,n,(d,m,y)} => {key,n,(,y)} db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



Computational interpretation of cast: There1(X)={key:int, n:string, d:Xxint} castThere(swap,db) = map (castThere1 swap) db = map ({key,n,(d,m,y)} => {key,n,(castHere(swap,(d,m)),y)}) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



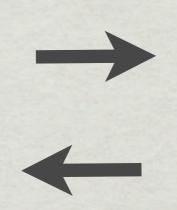
Computational interpretation of cast:

Here(X)=X

castThere(swap,db)

- = map (castThere1 swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



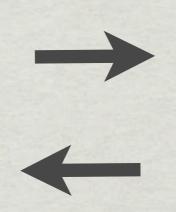
Computational interpretation of cast:

Here(X)=X

castThere(swap,db)

= map (castThere1 swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]



Type theory

conv1: (Nat × String × ((Nat × Nat) × Nat)) \rightarrow (Nat x String x ((Nat x Nat) x Nat)) conv1 (key, name, ((x, y), year)) = (key , name , ((y , x) , year)) convert : DB -> DB convert = map conv1map-fusion : \forall {A B C} (g : B \rightarrow C) $(f : A \rightarrow B) (l : List A)$ \rightarrow map (g o f) l \approx map g (map f l) map-fusion g f [] = idmap-fusion g f (x :: xs) =ap $(_::_ (g (f x)))$ (map-fusion g f xs) map-idfunc : $\forall \{A\} (l : List A) \rightarrow map (\backslash x \rightarrow x) l = l$ map-idfunc $\Box = id$ map-idfunc $(x :: xs) = ap (_::_x) (map-idfunc xs)$ convert-inv : convert o convert = $(\lambda \times - \times \times)$ convert-inv = map conv1 o map conv1 =(! (λ = (map-fusion conv1 conv1))) map (conv1 o conv1) =(id) map $(\langle x -> x \rangle)$ $=\langle \lambda = map-idfunc \rangle$ $(\lambda \mathbf{X} \rightarrow \mathbf{X})$ convert-bijection : Bijection DB DB convert-bijection = (convert, is-bijection convert $(\lambda \times -> (ap= convert-inv))$ $(\lambda \times -> (ap= convert-inv)))$

Homotopy Type Theory

```
swapf : (Nat \times Nat) \rightarrow (Nat \times Nat)
swapf (x, y) = (y, x)
```

```
swap : Bijection (Nat × Nat) (Nat × Nat)
swap = (swapf ,
is-bijection swapf (\lambda \_ \rightarrow id) (\lambda \_ \rightarrow id))
```

```
There : Type -> Type
There A = List (Nat × String × A × Nat)
```

```
convert : DB \rightarrow DB
convert = cast There swap
```

```
convert-bijection : Bijection DB DB
convert-bijection =
  (convert , cast-is-bijection There swap)
```

Writes proofs for you!

$\Gamma \supseteq \Delta = \Gamma_2 \vdash \theta_2$	$\frac{1}{\Gamma_1 + \theta_1 + \Gamma_2} = \frac{\Gamma + \theta + \Delta}{\Gamma_0 + \theta_2}$	$\Gamma_0 \vDash \delta : \theta_1 \simeq_{\Gamma} \theta_2$	$\theta_0[\theta \theta']] = \\ \theta_0[i\mathbf{d}_{\Gamma}] = \\ i\mathbf{d}_{\Gamma}[\theta] = 1$	$= \theta_0[\theta][\theta']$ $= \theta_0$ $= \theta$	I-rubit assochmit
$\Gamma \vdash id_{\Delta}^{\Gamma} : \Delta$	$\Gamma_1 \vdash \theta_2[\theta_1] : \Gamma_3$ $\Gamma_2 \vdash \theta[d]$	$]: \theta[\theta_1] \simeq_{\Delta} \theta[\theta_2]$	$\theta[\delta]\delta']]$ = $\theta[refl_{\theta'}]$ =	$= \begin{array}{c} \delta[\delta][\delta'] \\ = & refl_{\theta}[\delta'] \\ = & \delta[\theta'[\delta]] \end{array}$	l-resp assoc 1-resp preserves n 1-resp for 1-subst
Identity, Inverses, and Co	omposition for $\Gamma \vdash \delta : \theta \simeq_{\Delta} \theta'$				
	Γ + δ ₁ : θ ₁ :	≃ _Δ θ ₂ Γ⊢δ	:8 ≃ ∆ 8'		
TH ref : 0 20 0	$\begin{array}{l} \Gamma \vdash \delta : \theta_1 \simeq_\Delta \theta_2 \\ \vdash \delta^{-1} : \theta_2 \simeq_\Delta \theta_1 \end{array} \begin{array}{c} \Gamma \vdash \delta_1 : \theta_1 : \\ \Gamma \vdash \delta_2 : \theta_2 : \\ \hline \Gamma \vdash \delta_2 \circ \delta_1 : \theta_1 \end{array}$	$\simeq_{\Delta} \theta_3 = \Gamma_0 \vdash \delta$ $1 \simeq_{\Delta} \theta_3 = \overline{\Gamma_0 \vdash \delta[\delta_0]}$	$[\theta][\theta_0] \simeq_{\Delta} \theta'[0]$ $[\theta][\theta_0] \simeq_{\Delta} \theta'[0]$	# <u>6]</u>	
	$\delta_3 \circ (\delta_2 \circ \delta_1)$ trans associants δ refl inverse	80[8[8']]	$= \frac{\delta_0[\delta][\delta']}{\delta_0}$	2-res	p assocramit change ate
Composition for $\Gamma \vdash A$	type				
	e Δctx Δ⊢Ctype Γ⊢δ:θ:	~. h. F = M - C	99-1		
$\Gamma \vdash A[\theta]$ type	Γ⊢ map _{Δ.C} δ J	$M: C[\theta_{\pm}]$	<u>[02]</u>		
map	$A[d_{\Gamma}] \equiv A$ $\max_{\Delta,C} \operatorname{refl}_{\theta} M \equiv M$ $\Delta,C (\delta_2 \circ \delta_1) M \equiv \max_{\Delta,C} \delta_1$ $\sup_{\Delta,C} (\delta_1 \circ \delta_2) M \equiv \max_{\Delta,C} \delta_1$	$(\max_{\Delta \in C} \delta_1 M)$ $[refl_{\Delta_1}] M[\theta_0]$		nctoriality	
$(map_C (\delta : \theta_1 \simeq \theta_2))$	$\begin{array}{rcl} \max_{\Delta,C} \operatorname{refl}_{\theta} M &\equiv & M \\ \max_{\Delta,C} (\delta_2 \circ \delta_1) M &\equiv & \max_{\Delta,C} \delta_1 \\ \sup_{\Delta_D} \sigma & M \theta_0 \rangle &\equiv & \max_{\Delta,C} \delta_1 \\ M \delta' : \theta_1' \simeq \theta_2' \rangle &\equiv & \min \left(x. \max_{\Delta',C} \theta_1 \right) \\ \varphi_{\Delta,C} \theta_1 \Delta'_1 \delta M &\equiv & \max_{\Delta',C} r \\ \hline r : A \end{array}$	$\simeq_{\Delta} \theta_2 \qquad \begin{bmatrix} \operatorname{refl}_{\theta_2} & M[\theta_0] \\ \varphi_C & (\delta[\operatorname{refl}_{\theta'_2}]) x \end{pmatrix} (M]$ $\simeq_{\Delta} \theta_2 \qquad \begin{bmatrix} M \\ M \end{bmatrix}$	$\begin{bmatrix} I - subst fi \\ I - scop for \\ def map \end{bmatrix}$ $\begin{bmatrix} I & 0 \\ 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix}$	ir map r map ofor A[0] M[0][0'] 1-1 M M[0][0'] 1-1 refi _{M[0]} 1-1	sabut arsochenit nesp assochenit resp preserves refi resp for 1-sabst
$\max_{\substack{(m \in \mathcal{D}_{\mathcal{C}}) \\ (m \in \mathcal{D}_{\mathcal{C}})}} \max_{\substack{(m \in \mathcal{D}_{\mathcal{C}}) \\ (m \in \mathcalD}_{\mathcal{C}) \\ (m \in \mathcalD}_{\mathcal{C}) \\ (m \in \mathcalD}_{\mathcalC}) \\ (m \in \mathcalD}) \\ (m \in \mathcalD}_{\mathcalC}) \\ (m \in \mathcalD}_{\mathcalC}) \\ (m \in \mathcalD}) \\ (m \in \mathcalD}) \\ (m \in \mathcalD}) \\ (m \in \mathcalD}) $	$\begin{array}{rcl} \max_{\Delta,C} \operatorname{refl}_{\theta} M &\equiv& M\\ \sum_{\Delta,C} (\delta_{2} \circ \delta_{1}) M &\equiv& \max_{\Delta,C} \delta_{1}\\ \max_{\Delta,C} \delta M \{\theta_{0}\} &=& \max_{\Delta,C} \delta \\ M \{\delta': \theta'_{1} \simeq \theta'_{2}\} &\equiv& \max_{\Delta',C} \delta \\ \Phi_{\Delta,C} \delta_{1} \Delta' \delta M &\equiv& \max_{\Delta',C} \delta \\ \hline t: A \end{array}$	$\simeq_{\Delta} \theta_2 \qquad \begin{bmatrix} \operatorname{refl}_{\theta_2} & M[\theta_0] \\ \varphi_C & (\delta[\operatorname{refl}_{\theta'_2}]) x \end{pmatrix} (M]$ $\simeq_{\Delta} \theta_2 \qquad \begin{bmatrix} M \\ M \end{bmatrix}$	$\begin{bmatrix} I - subst fi \\ I - scop for \\ def map \end{bmatrix}$ $\begin{bmatrix} I & 0 \\ 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix}$ $\begin{bmatrix} I \\ 0 \end{bmatrix}$	ir map r map ofor A[0] M[0][0'] 1-1 M M[0][0'] 1-1 refi _{M[0]} 1-1	resp assochmit resp preserves refi
$\begin{array}{c} & \underset{(map_{C})}{ma} \\ (map_{C} \ (\delta : \theta_{I} \simeq \theta_{I}) \\ ma \end{array}$ $\begin{array}{c} \hline \\ \hline $	$\begin{array}{rcl} \max_{\Delta,C} \operatorname{refl}_{\theta} M &\equiv & M \\ \max_{\Delta,C} (\delta_2 + \delta_1) M &\equiv & \max_{\Delta,C} \delta_1 \\ \max_{\Delta,C} \delta & M \theta_0 \rangle &\equiv & \max_{\Delta,C} \delta_1 \\ M \delta': \theta_1' \simeq \theta_2' \rangle &\equiv & \min_{\Delta',C} \sigma \\ \varphi_{\Delta,C} \delta_1 \Delta' & \delta & M &\equiv & \max_{\Delta',C} \sigma \\ \hline \\ \frac{\delta}{\Gamma \vdash M[\delta]} & \Delta \vdash M : A & \Gamma \vdash \delta : \theta_1 \\ \hline \Gamma \vdash M[\delta] : (\max_{\Delta,A} \delta (M[\theta_1])) \\ \hline \\ \end{array}$	$\begin{array}{c} \operatorname{reff}_{\theta_0} & M[\theta_0] \\ \operatorname{sp}_G \left(\delta[\operatorname{reff}_{\theta'_2}] \right) x \right) \left(M \right] \\ \operatorname{self}_{\theta}[\delta] & M \end{array}$ $\begin{array}{c} \simeq_{\Delta} \theta_2 \\ \widehat{\rho} \simeq_{A[\theta_2]} & M[\theta_2] \\ M \\ $	$\begin{array}{c} I \text{-subst} fi\\ I \text{-nexp for}\\ def \text{ map} \\ f[\theta[\theta']] &\equiv 1\\ f[d_T] &\equiv 1\\ f[\delta_T] &\equiv 1\\ f[\delta_T] &\equiv 1\\ f[\delta_T] &\equiv 1\\ f[\theta][\delta] &\equiv 1 \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\{m \in \mathcal{D}_{\mathcal{C}} \ (\delta : \theta_{\ell} \simeq \theta_{\ell}) \\ ma} \\ (map_{\mathcal{C}} \ (\delta : \theta_{\ell} \simeq \theta_{\ell}) \\ ma \\ \hline \\ \hline \end{array}$ $\begin{array}{c} Composition for \ \Gamma \vdash M \\ \hline \\ \Gamma \vdash \theta : \Delta \Delta \vdash M : A \\ \hline \\ \Gamma \vdash M[\theta] : A[\theta] \\ \hline \\ \hline \end{array}$ $\begin{array}{c} \hline \\ \hline $	$\begin{split} & \underset{\Delta,C}{\operatorname{refl}} e^{A}M & \equiv M \\ & \underset{\Delta,C}{\operatorname{fo}} (\delta_2 \circ \delta_1)M & \equiv \operatorname{map}_{\Delta,C} \delta_1 \\ & \underset{\Delta,C}{\operatorname{pp}} \delta_{\Delta,C} \delta M \delta_0 \rangle & = \operatorname{map}_{\Delta,C} \delta_1 \\ & \underset{\Delta}{\operatorname{pp}} \delta_1 (\delta_1^* \circ \delta_2^*) & = \operatorname{map} (x, \operatorname{map}) \\ & \underset{\Delta}{\operatorname{pp}} \delta_2 (\delta_1^* \circ \delta_1^*) \delta M & \equiv \operatorname{map} \Delta_{A',C} \delta \\ & \underbrace{\Delta \vdash M : A \Gamma \vdash \delta : \theta_1} \\ & \underbrace{\Delta \vdash M : A \Gamma \vdash \delta : \theta_1} \\ & \underbrace{\Gamma \vdash M [\delta] : (\operatorname{map}_{\Delta,A} \delta (M[\theta_1]))} \\ & \underset{\Gamma \vdash \alpha : M_1 \simeq_A M_2}{\operatorname{pp}} \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} \\ & \underbrace{\Gamma \vdash \alpha : M_1 \simeq_A M_2} \\ & \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} : M_2 \simeq_A M_1 \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} \\ & \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} \\ \\ \\ & \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} \\ \\ \\ & \underbrace{\Gamma \vdash \alpha}_{\Gamma \vdash \alpha} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \operatorname{refl}_{\theta_0} & M[\theta_0] \\ \operatorname{sp}_C \left(\delta[\operatorname{refl}_{\theta_2^+}] \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_1 \operatorname{refl}_{\theta_2^+} \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_2 \operatorname{refl}_{\theta_2^-} \right) M[\theta_2] \\ \begin{array}{c} M \\ M $	$\begin{array}{l} I - subst fil\\ [\theta']) & I - scop for\\ def map\\ \\ f[\theta[\theta'']] &= 1\\ [id_T] &= 1\\ f[id_T] &= 1\\ f[reft_{\beta}] &= 1\\ f[reft_{\beta}] &= 1\\ \\ T[\theta][\delta] &= 1\\ \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\{m \in \mathcal{D}_{\mathcal{C}} \in \mathcal{O}_{\mathcal{C}} : \theta_{\ell} \cong \theta_{\ell} \}, \\ ma} \\ \hline (map_{\mathcal{C}} (\delta : \theta_{\ell} \cong \theta_{\ell}), \\ ma} \\ \hline \\ $	$\begin{array}{rcl} \max_{\Delta,C} (e f e M) &\equiv & M \\ & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \operatorname{reff}_{\theta_0} & M[\theta_0] \\ \operatorname{sp}_G \left(\delta[\operatorname{reff}_{\theta'_2}] \right) x \right) \left(M \right] \\ \operatorname{self}_{\theta}[\delta] & M \end{array}$ $\begin{array}{c} \simeq_{\Delta} \theta_2 \\ \widehat{\rho} \simeq_{A[\theta_2]} & M[\theta_2] \\ M \\ $	$\begin{array}{l} I - subst fil\\ [\theta']) & I - scop for\\ def map\\ \\ f[\theta[\theta'']] &= 1\\ [id_T] &= 1\\ f[id_T] &= 1\\ f[reft_{\beta}] &= 1\\ f[reft_{\beta}] &= 1\\ \\ T[\theta][\delta] &= 1\\ \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\{m \in \mathcal{D}_{C} \in \mathcal{O}_{L} : \mathcal{O}_{L} \cong \mathcal{O}_{R}\}} \\ (m \in \mathcal{O}_{C} \otimes \mathcal{O}_{L} \cong \mathcal{O}_{L}) \\ m \in \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \\ \hline \Gamma \vdash \mathcal{O} \in \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \otimes \mathcal{O}_{L} \\ \hline \Gamma \vdash \operatorname{refl}_{M}^{A} : M \cong_{A} M \\ (\alpha_{0} \otimes \alpha_{1}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{1} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{1} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{1} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \cong \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) \otimes \alpha_{2} & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}) & \otimes \\ (\alpha \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2} \otimes \alpha_{2}$	$\begin{array}{rcl} \max_{\Delta,C} (e \theta \in M) &\equiv & M \\ & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} \operatorname{refl}_{\theta_0} & M[\theta_0] \\ \operatorname{sp}_C \left(\delta[\operatorname{refl}_{\theta_2^+}] \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_1 \operatorname{refl}_{\theta_2^+} \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_2 \operatorname{refl}_{\theta_2^+} \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_2 \operatorname{refl}_{\theta_2^+} \right) M[\theta_2] \\ M \\ $	$\begin{array}{l} I - subst fil\\ [\theta']) & I - scop for\\ def map\\ \\ f[\theta[\theta'']] &= 1\\ [id_T] &= 1\\ f[id_T] &= 1\\ f[reft_{\beta}] &= 1\\ f[reft_{\beta}] &= 1\\ \\ T[\theta][\delta] &= 1\\ \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\substack{(m \neq p_C) (\delta : \theta_I \simeq \theta_R) \\ (m \neq q_C) (\delta : \theta_I \simeq \theta_R) \\ ma} \end{array}$ $\begin{array}{c} Composition for \Gamma \vdash M \\ \hline \Gamma \vdash \theta : \Delta \Delta \vdash M : I \\ \Gamma \vdash M[\theta] : A[\theta] \end{array}$ $\begin{array}{c} \hline \Gamma \vdash refl_M^A : M \simeq_A M \\ \hline \alpha_3 \circ \alpha_2) \circ \alpha_1 \\ (\alpha \circ refl) \\ (\alpha \circ \alpha^{-1}) \\ (\alpha \circ \alpha^{-1}) \\ \alpha_1 \in \theta_1 \end{array}$	$\begin{array}{rcl} \max_{\Delta,C} \operatorname{refl}_{\theta} M &\equiv & M \\ \Delta,C & (\delta_{2} \circ \delta_{1}) & M &\equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} & (\delta_{2} \circ \delta_{1}) & = & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} & (\delta_{2} \circ \delta_{2}) &= & \max_{\Phi,C} \delta_{1} \\ \oplus & \Delta & (\delta_{1} \circ \delta_{2}) &= & \max_{\Phi,C} \delta_{1} \\ \oplus & \Delta & (\delta_{1} \circ \delta_{2}) &= & \max_{\Phi,C} \delta_{1} \\ \frac{\Delta}{\Gamma \vdash M[\delta]} & \Delta & \vdash & M : A \Gamma \vdash \delta : \theta_{1} \\ \frac{\Delta}{\Gamma \vdash M[\delta]} & (\max_{\Phi,\Delta,A} \delta \{M[\theta_{1}]\}) \\ \end{array}$ $\begin{array}{rcl} & & \frac{\Delta \vdash M : A \Gamma \vdash \delta : \theta_{1} \\ \hline \Gamma \vdash M[\delta] : (\max_{\Phi,\Delta,A} \delta \{M[\theta_{1}]\}) \\ \end{array}$ $\begin{array}{rcl} & & \frac{\Gamma \vdash \alpha : M_{1} \simeq_{A} M_{2}}{\Gamma \vdash \alpha_{1}} & \frac{\Gamma \vdash \alpha_{1}}{\Gamma \vdash \alpha_{2}} \\ \hline \\ & = & \alpha \\ \equiv & \alpha \end{array}$	$\begin{array}{c} \operatorname{reff}_{k_{0}} \mid M[\theta_{0}] \\ \mathfrak{g}_{C}\left(\delta[\operatorname{reff}_{k_{2}^{-}}]\right) x\right)\left(M\right] \\ \mathfrak{slf}_{\theta}[\delta] M \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} I \text{-subst} fi\\ \delta''[) & I \text{-resp for}\\ def \text{ map}\\ f[\theta[\theta'']] &= I\\ f[d_T]] &= I\\ f[\delta[\delta'']] &= I\\ f[\theta[\delta]] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r_0 \vdash \alpha[\delta_0] : \{s\}\\ t \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\{m \in \mathcal{D}_{\mathcal{C}}(\delta:\theta_{1} \simeq \theta_{2})\}} \\ (m \\ (m \\ m \\ m \\ m \\ \hline (m \\ m \\ m \\ \hline (m \\ m \\ m \\ \hline (m \\ m \\ m \\ m \\ \hline (m \\ m \\ m \\ m \\ m \\ \hline (m \\ m $	$\begin{array}{rcl} \max_{\Delta,C} (e_{0} \circ \delta_{1}) & M & \equiv & M \\ \max_{\Delta,C} (\delta_{2} \circ \delta_{1}) & M & \equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} (\delta_{2} \circ \delta_{1}) & M & \equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{2} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{1}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) \\ \hline \Phi_{\Delta,C} ($	$\begin{array}{c} \operatorname{reff}_{\theta_0} & [M[\theta_0]]\\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{\theta_2^+}] \right) x \right) \left(M \right]\\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{\theta_2^+}] \right) x \right) \left(M \right]\\ \operatorname{sp}_C \left(\delta_2 \right) M \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \simeq_{A[\theta_2]} M_2 \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \simeq_{A[\theta_2]} M_2 \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} I \text{-subst} fi\\ \delta''[) & I \text{-resp for}\\ def \text{ map}\\ f[\theta[\theta'']] &= I\\ f[d_T]] &= I\\ f[\delta[\delta'']] &= I\\ f[\theta[\delta]] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r_0 \vdash \alpha[\delta_0] : \{s\}\\ t \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta']] I \to M[\theta[\theta']] I \to M[\theta']$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{\{m \in \mathcal{D}_{\mathcal{C}}(\delta:\theta_{1} \simeq \theta_{2})\}} \\ (m \\ (m \\ m \\ m \\ m \\ \hline (m \\ m \\ m \\ \hline (m \\ m \\ m \\ \hline (m \\ m \\ m \\ m \\ \hline (m \\ m \\ m \\ m \\ m \\ \hline (m \\ m $	$\begin{array}{rcl} \max_{\Delta,C} \operatorname{refl}_{\theta} M &\equiv & M \\ \Delta,C & (\delta_{2} \circ \delta_{1}) M &\equiv & \max_{\Delta,C} \delta_{1} \\ \sup_{\Delta,C} & (\delta_{2} \circ \delta_{1}) \langle \delta_{0} \rangle &\equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \delta_{1} \\ \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C} \sigma_{1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} & \delta_{1} \rangle &\equiv & \max_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi_{\Delta,C \mid 0 \leq 1} \\ \hline \varphi$	$\begin{array}{c} \operatorname{reff}_{k_{0}} & M[\theta_{0}] \\ \mathfrak{g}_{C} & (\delta[\operatorname{reff}_{k_{2}^{-}}]) x) & (M] \\ \mathfrak{slf}_{\theta}[\delta] & M \\ \\ \\ \hline \\ \\ \underline{\alpha_{1}} : M_{1} \simeq_{A} \theta_{2} \\ \underline{\alpha_{2}} : M_{2} \simeq_{A} M_{3} \\ \underline{\alpha_{2}} : M_{2} \simeq_{A} M_{3} \\ \mathfrak{so} \alpha_{1} : M_{1} \simeq_{A} M_{3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} I \text{-subst} fi\\ \delta''[) & I \text{-resp for}\\ def \text{ map}\\ f[\theta[\theta'']] &= I\\ f[d_T]] &= I\\ f[\delta[\delta'']] &= I\\ f[\theta[\delta]] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r_0 \vdash \alpha[\delta_0] : \{s\}\\ t \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta'] I \rightarrow M \\ M[d][\theta'] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ D \in A_0 + \theta_0$	resp association resp preserves reft resp for 1-subst $\exp \theta_0^r$ $resp \theta_0^r$ resp N
$\begin{array}{c} \max_{(m \neq p_C) \\ (m \neq q_C) \\ (m \neq q$	$\begin{array}{rcl} \max_{\Delta,C} (e_{0} \circ \delta_{1}) & M & \equiv & M \\ \max_{\Delta,C} (\delta_{2} \circ \delta_{1}) & M & \equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} (\delta_{2} \circ \delta_{1}) & M & \equiv & \max_{\Delta,C} \delta_{1} \\ \max_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{2} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{D}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & \delta_{1} & = & \max_{D} (x,\max_{D} \delta_{1}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) & (\max_{D} (\lambda_{D} \circ \delta_{1})) \\ \hline \Phi_{\Delta,C} (\delta_{1} \circ \delta_{1}) \\ \hline \Phi_{\Delta,C} ($	$\begin{array}{c} \operatorname{reff}_{q_0} & [M[\theta_0]] \\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{q'_2}] \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{q'_2}] \right) x \right) \left(M \right] \\ \operatorname{sp}_C \left(\delta_2 \right) M \\ \end{array}$ $\begin{array}{c} \simeq_{\Delta} \theta_2 \\ M \\ $	$\begin{array}{c} I \text{-subst} fi\\ \delta''[) & I \text{-resp for}\\ def \text{ map}\\ f[\theta[\theta'']] &= I\\ f[d_T]] &= I\\ f[\delta[\delta'']] &= I\\ f[\theta[\delta]] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r[\theta][\delta] &= I\\ \hline r_0 \vdash \alpha[\delta_0] : \{s\}\\ t \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta'] I \rightarrow M \\ M[d][\theta'] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ D \in A_0 + \theta_0$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$
$\begin{array}{c} \max_{(m \neq p_C) \\ (m \neq q_C) \\ (m \neq q$	$\begin{array}{rcl} \max_{\Delta,C} (e f_0 \circ \Delta_1) & M & = & M \\ \max_{\Delta,C} (\delta_2 \circ \delta_1) & M & = & \max_{\Delta,C} \delta_1 \\ \max_{\Delta,C} (\delta_2 \circ \delta_1) & M & = & \max_{\Delta,C} \delta_1 \\ \max_{\Delta,C[\theta_1,\Delta']} \delta & M & = & \max_{\Delta,C} \delta_1 \\ \oplus _{\Delta,C[\theta_1,\Delta']} \delta & M & = & \max_{\Delta',C} r \\ \hline \frac{\Phi}{\Gamma \vdash M[\delta]} & (\max_{\Delta,A} \delta \cap F \vdash \delta : \theta_1 \\ \hline \frac{\Phi}{\Gamma \vdash M[\delta]} & (\max_{\Delta,A} \delta \cap F \vdash \delta : \theta_1 \\ \hline \frac{\Gamma \vdash \alpha : M_1 \simeq_A M_2}{\Gamma \vdash \alpha : M \simeq_A N} \\ \hline \\ & \frac{\Gamma \vdash \alpha : M_1 \simeq_A M_2}{\Gamma \vdash \alpha : M \simeq_A M_1} & \frac{\Gamma \vdash \alpha_2}{\Gamma \vdash \alpha_2} \\ = & \alpha_3 \circ (\alpha_2 \circ \alpha_3) \\ = & \alpha \\ = & \alpha \\ = & refl \\ = & \alpha_1[\delta_1][\delta'] \\ = & \alpha \\ = & \alpha_1[\delta_2] \circ resp (x, \max_{\Delta,A} \delta_1 x) (\alpha_2) \\ = & M[\delta] \end{array}$	$\begin{array}{c} \operatorname{reff}_{q_0} & [M[\theta_0]]\\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{q_0'}] \right) x \right) \left(M \right]\\ \operatorname{sp}_C \left(\delta[\operatorname{reff}_{q_0'}] \right) x \right) \left(M \right]\\ \operatorname{sp}_C \left(\delta_2 \right) M \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \cong_{A[\theta_2]} M_2 \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \cong_{A[\theta_2]} M_2 \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} I \text{-subst} fi\\ [\theta']) & I \text{-resp for}\\ def \text{ map}\\ \\ f[\theta] \sigma']] &= I\\ f[\delta\sigma']] &= I\\ [\delta[\delta^{-1}]] &= I\\ [\delta[\delta^{-1}]] &= I\\ \\ [\sigma e h_{\beta}] &= I\\ \hline \\ \Gamma_0 \vdash \alpha[b_0] : \{s\}\\ a \end{array}$	Is map $r \operatorname{map}$ $for A[\theta]$ $M[\theta[[\theta'] I \rightarrow M \\ M[d][\theta'] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ M[\theta[\theta] I \rightarrow M \\ D \in A_0 + \theta_0$	resp assochmit resp preserves reft resp for 1-subst $\arg \theta_0^c$ $\epsilon = N$

$\frac{\Gamma \vdash \text{set type}}{\Gamma \vdash \alpha} \frac{\frac{\Gamma}{\Gamma \vdash \beta}}{\frac{\Gamma \vdash \alpha}{\Gamma \vdash \beta}}$ $\frac{\Gamma \vdash \alpha : M \simeq_{EI(S)} N}{\Gamma \vdash M \equiv N}$	БФ(<i>S</i>) V Г	⊢ α : Λ		1,	(EI(S)) = -1, = 0 - 1 $refl_M$ = -, 2-resp for b	or set	$\equiv El$ $\equiv M$ t gri is c	$b(S[\theta_0])$	0-nabrit 0-resp
$\Gamma \vdash bool:set$ (refl _{bool}	is ca	nonical)	$\Gamma \vdash not:boc$	l ≃ _{at} boo	$\frac{\Gamma \vdash M}{\Gamma \vdash \ln M : I}$	_		M : El(bool) - out M : 2	
$\begin{array}{c} \operatorname{cut}\left(\operatorname{in}M\right)\\ \operatorname{in}\left(\operatorname{cut}M\right)\\ \operatorname{map}_{\Delta,E1(S)}\delta \operatorname{true}\\ \operatorname{map}_{\Delta,E1(S)}\delta \operatorname{false}\end{array}$	-		if $S[\delta] \equiv \text{not}$ if $S[\delta] \equiv \text{not}$	I-β I-η 0-resp 0-resp	$\begin{array}{c} \operatorname{bool}[\theta] \\ (\operatorname{in} M)[\theta] \\ (\operatorname{out} M)[\theta] \\ \operatorname{bool}[\delta] \\ \operatorname{not}^{-1} \\ \operatorname{not}[\delta] \end{array}$		out M[0]	1-subst 1-subst 1-subst 1-resp sym 2-resp	

Empty context:

Term variables:

tx T + A type	$x A \in \Gamma$	r⊢0:2	$\Gamma \vdash M : A \theta$	$\Gamma \vdash \delta : \theta \simeq \Delta$ $\Gamma \vdash \alpha : (mag$	0.1	$\delta M \simeq_{A[\delta']} N$	
1°, z:A etx			$M/x: \Delta, x: A$		M/	$x \simeq \Delta_{\Delta,x;A} (\theta', N/x)$	
$\begin{array}{l} \operatorname{id}_{\Gamma}^{\Gamma,x:A}[\theta,M/x] \\ x[\theta,M/x] \\ \theta:(\Gamma,x:A) \\ \operatorname{id}_{\Gamma}^{T,x:A}[\delta,\alpha/x] \\ x[\delta,\alpha/x] \\ \delta:\theta\simeq_{(\Gamma,x:A)} \theta \end{array}$	= M $= id_1$ $= \delta$ $= \alpha$	$[\theta], x[\theta]/x$ $[\delta], x[\delta]/x$	$\begin{array}{c} I{\boldsymbol{\cdot}}\beta\\ I{\boldsymbol{\cdot}}\beta\\ I{\boldsymbol{\cdot}}\eta\\ 2{\boldsymbol{\cdot}}\beta\\ 2{\boldsymbol{\cdot}}\beta\\ 2{\boldsymbol{\cdot}}\eta \end{array} (\delta_{2*}{\boldsymbol{\cdot}})$	$egin{aligned} & \mathrm{id}_{[1,2],A} \ (eta,M/z)[eta_{0}] \ (eta,M/z)[eta_{0}] \ \mathrm{refl}_{\theta,M/z} \ (eta,a/z)^{-1} \ (eta,a/z)^{-1} \ \mathrm{a}_{2}/x) \circ (eta_{1},a_{1}/z) \ (eta,a/x)[eta_{0}] \end{aligned}$	1111111111	$\begin{array}{l} (\delta^{-1},(\operatorname{resp}{(x.\operatorname{map}_{\Delta,A}\delta^{-1}x)\alpha^{-1}})/x) \\ (\delta_2\circ\delta_1),(\alpha_2\circ\operatorname{resp}{(x.\operatorname{map}_{\Delta,A}\delta_2x)\alpha_1})/x \end{array}$	1-6d 1-subst 1-nesp ngl sym trans 2-nesp

Figure 2. Contexts

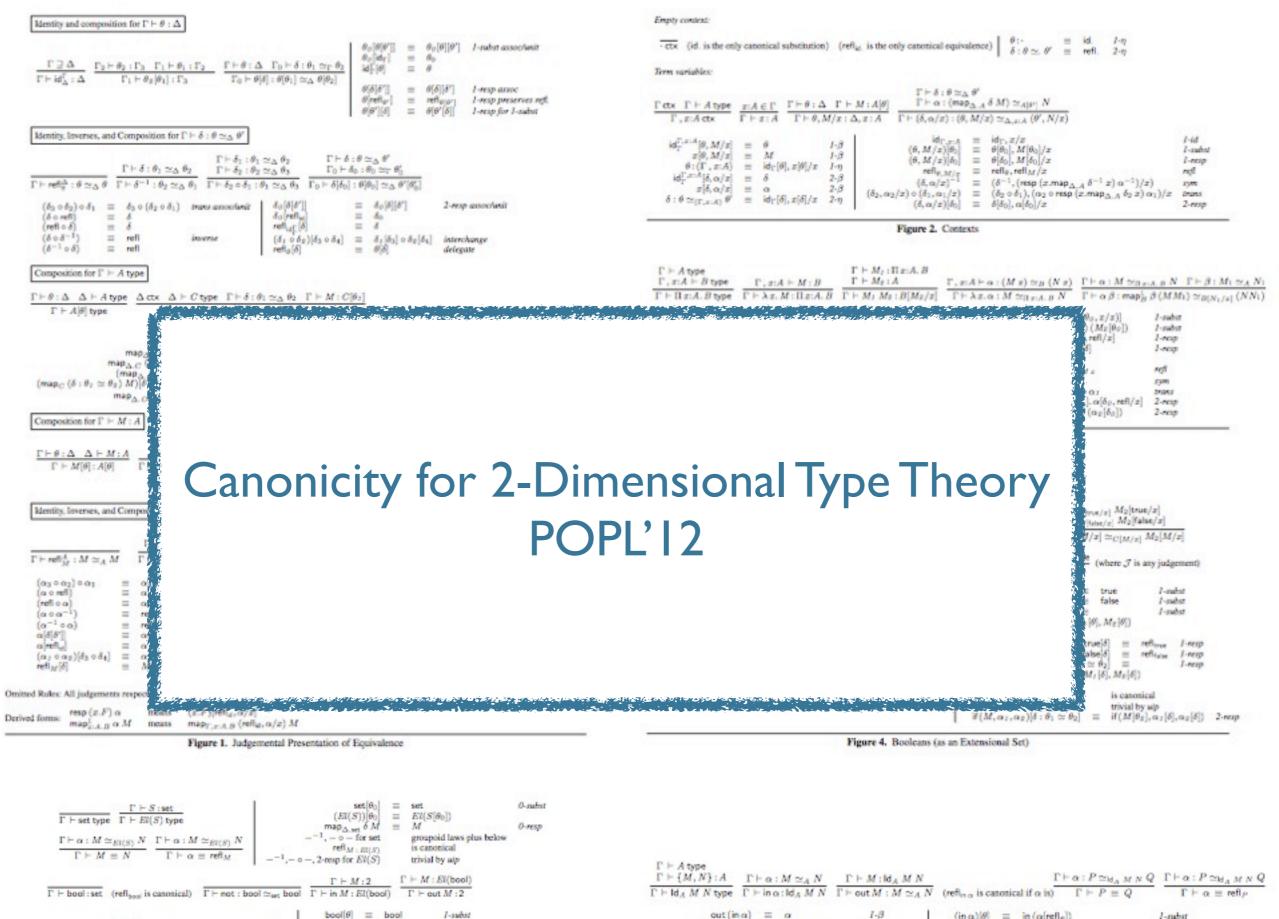
$\Gamma \vdash A$ type $\Gamma, x: A \vdash B$ type	Γ, σ	$A \vdash M : B$	$\Gamma \vdash M_{\ell} : \Pi x : A, i$ $\Gamma \vdash M_{\ell} : A$) ≃ <i>p</i>	$(N x) \Gamma \vdash \alpha : M \simeq_{\Omega}$	$(A, p, N \Gamma \vdash \beta : M_1 \simeq_A N)$
$\Gamma \vdash \Pi x: A. B$ type Γ	$\vdash \lambda z$	M: II z: A. B 1	$h \vdash M_1 M_2 : B[M_2]$	$[x] \Gamma \vdash \lambda x. \alpha : M \simeq$	0 mA	$\beta N = \Gamma \vdash \alpha \beta : map$	$\beta (MM_1) \simeq_{B[N_1/s]} (NN_1)$
				(A.z. M)[%]	=	λx , $M[(\theta_0, x/x)]$	1-subst
$(\lambda x. M) N$	-	M[N/x]	1-3	$(M_2 M_2)[\theta_0]$	=	$(M_1[\theta_0])(M_2[\theta_0])$	1-subst
$M : \Pi x : A \cdot B$	=	Az.Mz	1-0	$(\lambda x. M)[d]$	=	$\lambda x, M[\delta, refl/x]$	1-map
(Az.az)az	=	$\alpha_1[refl, \alpha_2/x]$	2-3	(M N)[8]	-	M[8] N[8]	1-resp
$\alpha: M \cong_{\Pi = A, B} N$	=	$\lambda x. \alpha (refl_x)$	2-10				
				reflar	-	A.z. refl M =	rof
(II z: A. B)[6 ₀]	-	II $x: A[\theta_0]$. $B[\theta_0]$	x/x 0-saba	$(\lambda x.\alpha)^{-1}$	-	$\lambda z, \alpha^{-1}$	STAR .
mapA II at A B & M	-		0-resp	(Az.az) = (Az.az)		Az. 02 0 01	DEGRUE
Ar. man	15.00	$f(x) (M (map_{\Delta}))$		$(\lambda z A a)[\delta_0]$	=	$\lambda z: A[\theta'_{\alpha}] \cdot \alpha[\delta_{\theta}, refl/z]$	2-resp
A	(fait of	and any first for any d.	A	$(\alpha_1 \alpha_2)[\delta_0]$	=	$(\alpha_1[\delta_0])(\alpha_2[\delta_0])$	2-resp

Figure 3. II-Types

	$\begin{array}{l} \Gamma \vdash M: 2\\ \Gamma, x: 2 \vdash G \text{ by}\\ \Gamma \vdash M_{2}: G \text{ by}\\ \Gamma \vdash M_{2}: G \text{ for } \end{array}$	ue/x]	$\begin{array}{l} \Gamma \vDash M: 2 \\ \Gamma, x: 2 \vDash C \ \text{type} \\ \Gamma, x: 2 \vDash M_1, M_2: C \\ \Gamma \vDash x_1: M_1[\operatorname{true} / x] \cong_{C[\operatorname{true} / x]} M_2[\operatorname{true} / x] \\ \Gamma \vDash \alpha_2: M_1[\operatorname{false} / x] \cong_{C[\operatorname{false} / x]} M_2[\operatorname{false} / x] \end{array}$
Γ⊢2 type Γ⊢ true:2	$\Gamma \vdash false: 2$ $\Gamma \vdash if_{x,C}(M, M_2, M_2)$	(2): C[M/x]	$\Gamma \vdash il_{x,C}(M, \alpha_1, \alpha_2) : M_1[M/x] \simeq_{C[M/x]} M_2[M/x]$
(refl _{tion} and refl _{false} are ca	$\frac{\Gamma \vdash \alpha : M \simeq_2 N}{\Gamma \vdash M \equiv N} \text{ reflection}$	$\frac{\Gamma \vdash \alpha : M \simeq}{\Gamma \vdash \alpha \equiv re}$	$\frac{2}{2} \frac{N}{M} = \frac{\Gamma \vdash \alpha : \text{true} \simeq_2 \text{ false}}{\Gamma \vdash J} \text{ (where } \mathcal{J} \text{ is any judgement)}$
$\begin{array}{l} & \text{if}(true, M_1, M_2) \\ & \text{if}(false, M_1, M_2) \\ & M[(N: ER(2))/x] \\ & \text{if}_{x,C}(true, \alpha_1, \alpha_2) \\ & \text{if}_{x,C}(false, \alpha_1, \alpha_2) \\ & \alpha[(ref_{M \times 2})/x] \end{array}$	\equiv M_2 \equiv if $(N, M[true/x], M[false/x])$	1-β 1-β 1-η 12-β 12-β 12-β 12-η	$\begin{array}{cccc} \operatorname{true}[\theta] &\equiv \operatorname{true} & I\text{-subst}\\ false[\theta] &\equiv false & I\text{-mbst}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
2[0] map _{0.2} 8 M	\equiv 2 \equiv M	0-subst 0-resp	$\begin{array}{rcl} \operatorname{refl} & \text{is canonical} \\ -^{-1}, - \circ - & \operatorname{trivial} \operatorname{by alp} \\ \forall (M, \alpha_1, \alpha_2) [\delta : \theta_1 \simeq \theta_2] & \equiv & \operatorname{if} (M[\theta_2], \alpha_1[\delta], \alpha_2[\delta]) & 2 \cdot n \end{array}$

Figure 4. Booleans (as an Extensional Set)

$ \begin{array}{ll} \Gamma \vdash A \text{ type} \\ \Gamma \vdash \{M,N\} \colon A & \Gamma \vdash \alpha \colon M \simeq_A N \end{array} $	$\Gamma \vdash M : Id_A M N$		$\Gamma \vdash \alpha : P \simeq_{M_A} M \rtimes Q$	$\Gamma \models \alpha : P \simeq_{H_A} M \land Q$
$\Gamma \vdash \operatorname{Id}_A M N$ type $\overline{\Gamma} \vdash \operatorname{in} \alpha : \operatorname{Id}_A M N$	$\Gamma \vdash \operatorname{out} M : M \simeq_A N$	(reflect is canonical if α	is) $\Gamma \vdash P \equiv Q$	$\Gamma \vdash \alpha \equiv \operatorname{refl}_P$
$\operatorname{cut}(\operatorname{in} \alpha) \equiv \alpha$ $\operatorname{in}(\operatorname{cut} M) \equiv M$ $(\operatorname{Id}_A M N)[\theta] \equiv \operatorname{Id}_A[\theta] M[\theta]$	1-β 1-η 9] N[θ] 0-subst	$(in \alpha)[\delta] \equiv in (\alpha$	[refl _g]) [δ]) sonical	1-nabat 1-nesp
$\begin{array}{l} \operatorname{map}_{\Delta,\operatorname{id}_A M N} \delta P & \equiv \\ & \operatorname{in} \left(N[\delta] \circ \left(\operatorname{resp} \left(x.\operatorname{map}_A \delta x \right) \right. \right) \end{array}$	$(\operatorname{out} P) \circ M[\delta]^{-1}$		by extensionality until M reduces (neutral)	2-map



bool[8] = bool $out(in M) \equiv M$ 1-0 (in M)[0] = in M[0] in $(out M) \equiv M$ 1-17 (out M)[0] out M[0] $map_{\Delta,Ei(S)} \delta true \equiv false if S[\delta] \equiv not 0-resp$ bool[8] = reflacat $map_{\Delta,Ell(S)} \delta$ false \equiv true if $S[\delta] \equiv not$ 0-resp not-1 = not not[\delta] = not

(in a) [8] in (a[refle]) 1-subst in (out M) $\equiv M$ 1-17 $in(\alpha[\delta])$ (in a) 8 = 1-1630 $(\operatorname{Id}_A M N)[\theta] \equiv \operatorname{Id}_{A[\theta]} M[\theta] N[\theta] 0$ -subst refl is canonical map_{∆.MA} M N δ P ≡ --1,-0-0-resp trivial by extensionality $\operatorname{in}(N[\delta] \circ (\operatorname{resp}(x.\operatorname{map}_A \delta x) \operatorname{(out} P)) \circ M[\delta]^{-1})$ (out M)[8] stuck until M reduces (neutral) 2-way

=

I-subst

I-subst

1-resp

3748

2-resp

More applications

* For modular code, can reason about a fast implementation using a reference implementation: cast a proof about the reference implementation to the fast implementation

* Can program domain-specific program verification logics, using cast to implement the structural properties [thesis + MFPS'11] Conclusion

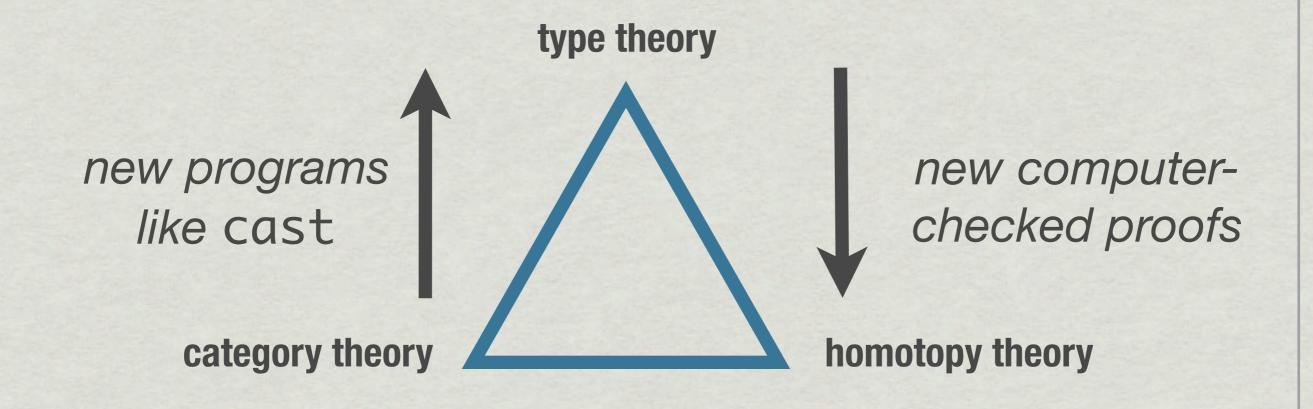
Types are ∞-groupoids

type theory

<program> : <type> <proof> : <prog1> = <prog2> <2-proof> : <proof1> = <proof2> <3-proof> : <2-proof1> = <2-proof2>

Proofs, 2-proofs, 3-proofs, ... all influence how a program runs

Homotopy Type Theory



Papers and code

1.Fundamental group of the circle [LICS'13] Formal homotopy: github.com/dlicata335/

2.Computational interpretation of 2D type theory [POPL'12]

3.Domain-specific program verification logics [thesis+MFPS'11]

4.The HoTT Book (coming soon!): doing math informally in Homotopy Type Theory

5.Blog: homotopytypetheory.org

Research Agenda

- * Develop a computational interpretation for infinite-dimensional types (in progress)
- # Implement a new proof assistant based on it
- * Computer-checked math, especially in category theory and homotopy theory
- * Computer-checked software

Parallelism and Verification

```
signature SEQUENCE =
sig
type 'a seq
val length : 'a seq -> int
val nth : int -> 'a seq -> 'a
val tabulate : (int -> 'a) -> int -> 'a seq
val map : ('a -> 'b) -> 'a seq -> 'b seq
val reduce : (('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a
end
```

Goal: fast parallel implementation, proved correct relative to list implementation, in a proof assistant!

Research Agenda

Make it easier to use proof assistants to develop math and software

* PL: languages for expressing mathematics
* SE: managing large codebases
* Compilers + distributed computing: speed
* Machine learning: automated proof search
* HCI: usable by "working mathematicians"
* Graphics: visualization

I am developing a computational theory of ∞-groupoids and applying it to computer-checked math and software