Functional programs that prove theorems about spaces

Dan Licata

Wesleyan University Department of Mathematics and Computer Science

Kepler Conjecture (1611)

No way to pack equally-sized spheres in space has higher density than

Hales' proof (1998)

Reduces Kepler Conjecture to proving that a function has a lower bound on 5,000 different configurations of spheres

* This requires solving 100,000 linear programming problems

1998 submission: 300 pages of math + 50,000 LOC (revised 2006: 15,000 LOC)

Proofs can be hard to check

In 2003, after 4 years' work, 12 referees had checked lots of lemmas, but gave up on verifying the proof

Proofs can be hard to check

In 2003, after 4 years' work, 12 referees had checked lots of lemmas, but gave up on verifying the proof

"This paper has brought about a change in the journal's policy on computer proof. It will no longer attempt to check the correctness of computer code."

Computer-checked math

Computer-checked software

Computer-assisted proofs

Proof assistant

- Interactive proof editor
- Automated proofs
- Libraries

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

*>350,000 lines of
math + code

*>2 years to run

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

*>350,000 lines of math + code ~5-10x longer

*>2 years to run

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

*>350,000 lines of math + code ~5-10x longer

#>2 years to run ~2000x slower

Informal

300 pages of math + 15,000 lines of code

#15 hours to run

Computer-checked

*>350,000 lines of math + code ~5-10x longer

#>2 years to run ~2000x slower

We have some work to do!

Homotopy Type Theory

Type Theory

Type Theory

Basis of many successful proof assistants (Agda, Coq, NuPRL, Twelf)

% Functional programming language
insertsort : list<int> → list<int>
mergesort : list<int> → list<int>

*** Unifies programming and proving:** types are rich enough to do math/verification

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

∀x. mergesort(x) = insertsort(x) *type* of proofs of program equality

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

Propositions as Types

1.A theorem is represented by a type2.Proof is represented by a program of that type

Type are sets?

type theory

Traditional view:

set theory

cprogram> : <type> $x \in S$ x = y

Type are sets?

Traditional view:

type theoryset theory<program> : <type> $x \in S$ <prog1> = <prog2>x = y

In set theory, an equation is a *proposition*: it holds or it doesn't; we don't ask *why* 1+1=2

Type are sets?

Traditional view:

type theoryset theory<program> : <type> $x \in S$ <tproof> : <prog1> = <prog2>x = y

In set theory, an equation is a *proposition*: it holds or it doesn't; we don't ask *why* 1+1=2

In (intensional) type theory, an equation can have a non-trivial <proof>

type theory	set theory
<program> : <type></type></program>	$x \in S$
<proof> : <prog1> = <prog2></prog2></prog1></proof>	x = y

type theory <program> : <type> <proof> : <prog1> = <prog2> <2-proof> : <proof1> = <proof2>

set theory

 $x \in S$

X = Y

type theory <program> : <type> <proof> : <prog1> = <prog2> <2-proof> : <proof1> = <proof2>

set theory $x \in S$

X = Y

type theoryset theory<program> : <type> $x \in S$ <proof> : <prog1> = <prog2>x = y<2-proof> : <proof1> = <proof2>

Can have multiple different proofs of the same equality

Homotopy Theory

Homotopy Theory

Started as branch of topology, the study of spaces and continuous deformations

Homotopy Theory

Started as branch of topology, the study of spaces and continuous deformations

Path Operations

Given paths p and q : $[0,1] \rightarrow X$ where p(1) = q(0) define **composition** by:

$$(q \circ p)(x) = p(2x)$$
 if $0 \le x \le 1/2$
 $| q(2x - 1)$ if $1/2 \le x \le 1$

Homotopy

Deformation of one path into another

α

β

Deformation of one path into another

Deformation of one path into another

Non-homotopic paths

Non-homotopic paths

[image from wikipedia]

Non-homotopic paths

[image from wikipedia]

Homotopy type theory

Proofs of equality

reflexivity : M = M

symmetry : N = M if M = N

transitivity : M = P if M = N and N = P

congruence : f(M) = f(N) if M = N

(plus computation)

id : M = M (refl)

Spaces as types a space is a type A points are

paths are

proofs of equality

 α : M = A N

programs

M:A

path operationsid: M = M (refl) α^{-1} : N = M (sym)

Spaces as types

a space is a type A

path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

Deformation of one path into another

<2-proof> : $\alpha = \beta$

[image from wikipedia]

Spaces as types

a space is a type A

path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

homotopies id o p = p $p^{-1} o p = id$ r o (q o p) = (r o q) o p

Different paths/proofs

 $\gamma \circ \beta \circ \alpha = id$ as proofs of M = M

[Hofmann,Streicher,Awodey,Warren,Voevodsky Lumsdaine,Gambino,Garner,van den Berg]

Homotopy Type Theory

Computer-checked homotopy theory

Homotopy in HoTT

$\pi_1(S^1) = \mathbb{Z}$	Freudenthal	Van Kampen					
π _{k<n< sub="">(Sⁿ) = 0</n<>}	$\pi_n(S^n) = \mathbb{Z}$	Covering spaces					
Hopf fibration	K(G,n)	Whitehead					
π₂(S²) = ℤ	Blakers-Massey	for n-types					
$\pi_3(S^2) = \mathbb{Z}$	$\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$	Cohomology					
James		axioms					
Construction		Mayer-Vietoris					
$\pi_4(S^3) = \mathbb{Z}_?$	[Brunerie, Ca	vallo, Finster, Hou,					
	Licata, Lumsdaine, Shulman]						

Homotopy groups of spheres

kth homotopy group

	Π1	п2	пз	Π4	Π5	Π6	Π7	Π8	п9	Π10	Π11	Π12	Π13	Π14	Π15
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	Z 2	Z 2	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z84×Z25
S ⁵	0	0	0	0	z	z ₂	z ₂	Z 24	z ₂	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
s 7	0	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	0	Z 2	Z ₁₂₀	Z 2 ³
5 8	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	Z×Z120

n-dimensional sphere

[image from wikipedia]

Circle is generated by

Circle is generated by

base : Circle
loop : base = base

Circle is generated by

point base : Circle
 loop : base = base

Circle is generated by

point base : Circle
path loop : base = base

Circle is generated by

point base : Circle
path loop : base = base

Also have the path operations, homotopies:

id

Circle is generated by

point base : Circle
path loop : base = base

Also have the path operations, homotopies:

id loop⁻¹

Circle is generated by

point base : Circle
path loop : base = base

Also have the path operations, homotopies:

```
id
loop<sup>-1</sup>
loop o loop
```

Circle is generated by

point base : Circle
path loop : base = base

Also have the path operations, homotopies:

id inv : loop o loop $^{-1}$ = id loop $^{-1}$... loop o loop

id

id loop

id

loop loop⁻¹

id loop loop⁻¹ loop o loop

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹ loop o loop⁻¹ = id

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹ loop o loop⁻¹ = id

0

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹ loop o loop⁻¹ = id

0

1

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹ loop o loop⁻¹ = id

0

1

-1

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹ loop o loop⁻¹ = id

0

1

-1

2

id 0
loop 1
loop^{-1} -1
loop 0 loop 2
loop^{-1} 0 loop^{-1} -2
loop 0 loop^{-1} = id

id 0loop 1 loop⁻¹ -1 loop o loop 2 loop⁻¹ o loop⁻¹ -2 loop o loop⁻¹ = id 0

id 0 loop 1 loop⁻¹ -1 loop o loop 2 loop⁻¹ o loop⁻¹ -2 loop o loop⁻¹ = id 0

Theorem: that's it (Fundamental group of the circle is $\ensuremath{\mathbb{Z}}$)

loop

base

congruence says f(M) = f(N) if M = N

congruence says f(M) = f(N) if M = N

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

f : Circle → X
f(base) = ...
f(loop) = ... : f(base) = f(base)

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

f(id) = id
f(loop o loop) =
f(loop⁻¹) =

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

f(id) = idf(loop o loop) = f(loop) o f(loop) f(loop⁻¹) =

congruence says f(M) = f(N) if M = Nf(p) : f(M) = f(N) if p : M = N

f(id) = idf(loop o loop) = f(loop) o f(loop) f(loop⁻¹) = f(loop)⁻¹

Circle recursion:

- f : Circle \rightarrow X determined by
- f base = base'
- f loop = loop'
 - : f(base) = f(base')

Circle recursion: f : Circle → X determined by f base = base' f loop = loop' : f(base) = f(base')

Circle induction: To prove a predicate P for all points on the circle, suffices to prove P(base), continuously in the loop

speedup : Circle → Circle
speedup base = base
speedup loop = loop o loop

speedup : Circle → Circle
speedup base = base
speedup loop = loop o loop

It follows that:

speedup : Circle → Circle
speedup base = base
speedup loop = loop o loop

It follows that:

speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)

- = $(loop o loop)^{-1} = loop^{-1} o loop^{-1}$
- speedup(loop⁻¹)
 = (speedup(loop))⁻¹
- speedup(loop o loop)
 = speedup(loop) o speedup(loop)
 = (loop o loop) o (loop o loop)

It follows that:

speedup : Circle → Circle
speedup base = base
speedup loop = loop o loop

Circle recursion

The Circle (Take 2)

Circle₂ is generated by

point west : Circle₂ east : Circle₂ path north : west = east south : west = east

Circle and Circle₂ are homotopy equivalent

Circle and Circle₂ are homotopy equivalent

- one2two : Circle → Circle2
 two2one : Circle2 → Circle
- $\forall x, one2two(two2one x) = x$
- $\forall y$, two2one(one2two x) = x

Circle and Circle₂ are homotopy equivalent

one2two : Circle → Circle2
two2one : Circle2 → Circle
∀x, one2two(two2one x) = x
∀y, two2one(one2two x) = x
means
path

one2two : Circle → Circle₂
one2two base = west
one2two loop = south⁻¹ o north

two2one : Circle₂ → Circle
two2one west = base
two2one east = base
two2one north = loop
two2one south = id

$\forall x, two2one(one2two x) = x$

$\forall x, two2one(one2two x) = x$

$\forall x, two2one(one2two x) = x$

$\forall x, one2two(two2one x) = x$

Case for west:

- one2two(two2one west)
- = one2two(base)
- = west

Case for west:

- one2two(two2one west)
- = one2two(base)
- = west

Case for west:

- one2two(two2one west)
- = one2two(base)
- = west

Case for west: use id one2two(two2one west)

- = one2two(base)
- = west

Case for east:

- one2two(two2one east)
- = one2two(base)
- = west

Case for east:

- one2two(two2one east)
- = one2two(base)
- = west

Case for east:

- one2two(two2one east)
- = one2two(base)
- = west

Case for east:

- one2two(two2one east)
- = one2two(base)
- = west

Case for east:

- one2two(two2one east)
- = one2two(base)

use south

- = west
- = east

 $\forall x, one2two(two2one x) = x$

Case for north:

 $\forall x, one2two(two2one x) = x$

 $\forall x, one2two(two2one x) = x$

south o one2two(two2one north) = north

 $\forall x, one2two(two2one x) = x$

 $\forall x, one2two(two2one x) = x$

 $\forall x, one2two(two2one x) = x$

48

 $\forall x, one2two(two2one x) = x$


```
one2two : Circle.S<sup>1</sup> -> Circle2.S<sup>1</sup>
one2two = Circle.S<sup>1</sup>-rec Circle2.w ((! Circle2.s) • Circle2.n)
two2one : Circle2.S<sup>1</sup> → Circle.S<sup>1</sup>
two2one = Circle2.S<sup>1</sup>-rec Circle.base Circle.base Circle.loop id
comp1 : (x : Circle.S<sup>1</sup>) \rightarrow two2one (one2two x) == x
comp1 = Circle.S1-elimo _ id
         (PathOver=.in-PathOver-= (vertical-degen-square
           (ap (\lambda z \rightarrow two2one (one2two z)) Circle.loop
                                                                     ≃( ap-o two2one one2two Circle.loop )
            ap two2one (ap one2two Circle.loop)
                                                                      \simeq (ap two2one) (Circle.\betaloop/rec _ _) >
            ap two2one ((! Circle2.s) • Circle2.n)
                                                                      \simeq (ap-+ two2one (! Circle2.s) (Circle2.n) )
             ap two2one (! Circle2.s) • ap two2one Circle2.n \simeq (ap (\lambda h \rightarrow h • ap two2one Circle2.n) (ap-! two2one Circle2.s) )
             ! (ap two2one Circle2.s) • ap two2one Circle2.n \simeq (ap (\lambda h \rightarrow ! (ap two2one Circle2.s) • h) (Circle2.\betan/rec Circle.base Circle.base Circle.loop id) )
             ! (ap two2one Circle2.s) • Circle.loop
                                                                      \simeq (ap (\lambda h \rightarrow ! h \cdot Circle.loop) (Circle2.\betas/rec Circle.base Circle.base Circle.loop id) )
            ! id • Circle.loop
                                                                      ~( +-unit-l Circle.loop )
            Circle.loop
                                                                      ap (\lambda z \rightarrow z) Circle.loop ())
comp2 : (x : Circle2.S<sup>1</sup>) \rightarrow one2two (two2one x) == x
comp2 = Circle2.S<sup>1</sup>-elim _
          id
          Circle2.s
           (PathOver=.in-PathOver== (disc-to-square (!
            (Circle2.s • ap (\lambda z \rightarrow one2two (two2one z)) Circle2.n \simeq (ap (\lambda x \rightarrow Circle2.s • x) (ap-o one2two two2one Circle2.n) )
              Circle2.s • ap one2two (ap two2one Circle2.n)
                                                                              \simeq (ap (\lambda \times \rightarrow Circle2.s + ap one2two x) (Circle2.\betan/rec Circle.base Circle.loop id) )
                                                                              \simeq (ap (\lambda h \rightarrow Circle2.s \cdot h) (Circle.\betaloop/rec _ _) )
              Circle2.s • ap one2two (Circle.loop)
              Circle2.s • (! Circle2.s • Circle2.n)
                                                                              ≃( *-assoc Circle2.s (! Circle2.s) Circle2.n >
              (Circle2.s • ! Circle2.s) • Circle2.n
                                                                              \simeq (ap (\lambda h \rightarrow h \cdot Circle2.n) (!-inv-r Circle2.s) )
              (id) • Circle2.n

~( •-unit-l Circle2.n )

              Circle2.n
                                                                               ≃( ! (ap-id Circle2.n) )
              ap (\lambda z \rightarrow z) Circle2.n ()))
           (PathOver=.in-PathOver-= (disc-to-square (!
             (Circle2.s • ap (\lambda z \rightarrow one2two (two2one z)) Circle2.s \simeq (ap (\lambda x \rightarrow Circle2.s • x) (ap-o one2two two2one Circle2.s) )
                                                                              \simeq (ap (\lambda \times \rightarrow Circle2.s • ap one2two x) (Circle2.\betas/rec Circle.base Circle.base Circle.loop id) )
              Circle2.s • ap one2two (ap two2one Circle2.s)
              Circle2.s
                                                                               ≃( ! (ap-id Circle2.s) )
              ap (\lambda z \rightarrow z) Circle2.s ()))
```

Homotopy in HoTT

$\pi_1(S^1) = \mathbb{Z}$	Freudenthal	Van Kampen
π _{k<n< sub="">(Sⁿ) = 0</n<>}	$\pi_n(S^n) = \mathbb{Z}$	Covering spaces
Hopf fibration	K(G,n)	Whitehead
π₂(S²) = ℤ	Blakers-Massey	for n-types
$\pi_3(S^2) = \mathbb{Z}$	$\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$	Cohomology
James		axioms
Construction		Mayer-Vietoris
$\pi_4(S^3) = \mathbb{Z}_?$	[Brunerie, Cavallo, Finster, Hou,	
	Licata, Lums	daine, Shulman]

Homotopy in HoTT

 $\pi_1(S^1) = \mathbb{Z}$ Van Kampen **Freudenthal** $\pi_{k < n}(S^n) = 0$ **Covering spaces** $\pi_n(\mathbf{S}^n) = \mathbb{Z}$ K(G,n)**Hopf fibration** Whitehead for n-types **Blakers-Massey** $\pi_2(S^2) = \mathbb{Z}$ $\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$ $\pi_3(S^2) = \mathbb{Z}$ Cohomology axioms James Construction **Mayer-Vietoris** $\pi_4(S^3) = \mathbb{Z}_?$ [Brunerie, Cavallo, Finster, Hou, Licata, Lumsdaine, Shulman]

Torus = Circle × Circle

Torus = Circle × Circle

 $\frac{\alpha : x =_A x' \quad \beta : y =_B y'}{(\alpha, \beta) : (x, y) =_{A \times B} (x', y')}$

 $(\alpha_2,\beta_2) \circ (\alpha_1,\beta_1) = (\alpha_2 \circ \alpha_1,\beta_2 \circ \beta_1)$

$$\alpha : x =_A x' \quad \beta : y =_B y'$$
$$(\alpha, \beta) : (x, y) =_{A \times B} (x', y')$$

 $(\alpha_2,\beta_2) \circ (\alpha_1,\beta_1) = (\alpha_2 \circ \alpha_1,\beta_2 \circ \beta_1)$

t2c : Torus → Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = ... : (loop,id)o(id,loop)
= (id,loop)o(loop,id)

$$\alpha$$
 : x =_A x' β : y =_B y' (loop,loop)
(α,β) : (x,y) =_{A×B} (x',y')

 $(\alpha_2,\beta_2) \circ (\alpha_1,\beta_1) = (\alpha_2 \circ \alpha_1,\beta_2 \circ \beta_1)$

```
t2c : T -> S<sup>1</sup> x S<sup>1</sup>
t_{2c} = T - rec (S<sup>1</sup>.base, S<sup>1</sup>.base) (pairx\approx id S<sup>1</sup>.loop) (pairx\approx S<sup>1</sup>.loop id) (pair-square vrefl-square hrefl-square)
abstract
  c2t-square-and-cube : \Sigma \setminus s \rightarrow Cube s (square-symmetry T.f)
                                                 hrefl-square (horiz-degen-square (S<sup>1</sup>.ßloop/rec T.a T.p))
                                                 (horiz-degen-square (S<sup>1</sup>.βloop/rec T.a T.p)) hrefl-square
  c2t-square-and-cube = (fill-cube-left (square-symmetry T.f)
                                                   hrefl-sauare
                                                   (horiz-degen-square (S<sup>1</sup>.βloop/rec T.a T.p)) (horiz-degen-square (S<sup>1</sup>.βloop/rec T.a T.p)) hrefl-square)
c2t-square : Square T.q (ap (\lambda z \rightarrow S^1-rec T.a T.p z) S^1.loop) (ap (\lambda z \rightarrow S^1-rec T.a T.p z) S^1.loop) T.q
c2t-square = fst c2t-square-and-cube
c2t-loop-homotopy = (S^1-elimo (x -> (S^1-rec T.a T.p) x = (S^1-rec T.a T.p) x) T.q (PathOver=.in-PathOver= c2t-square))
c2t' : S^1 \rightarrow S^1 \rightarrow T
c2t' x y = S<sup>1</sup>-rec (S<sup>1</sup>-rec T.a T.p) (\lambda \simeq c2t-loop-homotopy) x y
c2t : S^1 \times S^1 \rightarrow T
c2t(x, y) = c2t' x y
```

```
cube5 : \Sigma \setminus square1'' \rightarrow \Sigma \setminus square2'' \rightarrow
      (ube (bifunctor-square1 c2t' 51,loop 51,loop) (square-symmetry T.f) square2'' square1'' square1'' square2''
cube5 = _ + _ + C
        SquareOver=ND.out-SquareOver== (apdo-by-equals _ _ S1.loop () reduce-c2t')) +-cube-h
        degen-cube-h (ap PathOver=.out-PathOver== (S1.sloop/elimo _ T.g (PathOver=.in-PathOver== c2t-square))) +-cube-h
        degen-cube-h (IsEquiv.B (snd PathOver=.out-PathOver=-eqv) _)
          --cube-h (snd c2t-square-and-cube))
t2c2t : (x : T) \rightarrow c2t (t2c x) = x
t2c2t = T-elim (\land x \rightarrow c2t (t2c x) == x)
               (PathOver=.in-PathOver-= (square-symmetry square1))
                (PathOver=.in-PathOver-= (square-symmetry square2))
                (SquareOver=ND, in-SquareOver-=
                  (whisker-cube (| (IsEquiv.ß (snd PathOver=.out-PathOver-=-eqv) (square-symmetry square1)))
                                (! (IsEquiv.s (snd PathOver=.out-PathOver==-eqv) (square-symmetry square1)))
                                (! (IsEquiv.p (snd PathOver=.out-PathOver-=-eqv) (square-symmetry square2)))
                                id id
                                (! (IsEquiv.p (snd PathOver=.out-PathOver==eqv) (square-symmetry square2)))
                                (cube-symmetry-left-to-top goal1))) where
      square1 = _
      square2 = _
      goal1 : Cube (ap-square (\lambda z \rightarrow c2t (t2c z)) T.f)
                    (op-square (), z \rightarrow z) T.f)
                    square1 square2 square2 square1
      goal1 = (ap-square-o c2t t2c T.f) +-cube-h
              ap-cube c2t
                (T.Bf/rec (S1.base , S1.base) (pairxx id S1.loop)
                                                                                                                                       square1 = _
                  (pairxm S1.loop id) (pair-square vrefl-square hrefl-square)) +-cube-h
              bifunctor-cube1 c2t' S1.loop S1.loop +-cube-h
              cube-square-symmetry-left (snd (snd cube5)) +-cube-h
              degen-cube-h (square-symmetry-symmetry T.f) +-cube-h
              ap-square-id! T.f
```

```
c2t2c : (x y : 5<sup>1</sup>) = t2c (c2t' x y) == (x , y)
c2t2c = S<sup>1</sup>-elimo _ (S<sup>1</sup>-elimo _ id (PothOver=.in-PothOver= square1))
        (coe (! PothOver=.NDdomain) (\ x -> PothOver=.in-PothOver=-
             (S1-ellino
                (k, x_k) =  Square (S<sup>1</sup>-elimo (k, x_\ell) = t2c (c2t' S<sup>1</sup>,base x_\ell) = (S<sup>1</sup>,base , x_\ell) id (PathOver-, in-PathOver-= square) x_k
                                   (op () z - t2c (c2t' z xi)) $1,100p)
                                   (ap (l, z \rightarrow z, x_l) S^1, loop)
                                   (S^1-elimo (k x_1 \rightarrow t2c (c2t' S^1,base x_1) \rightarrow (S^1,base , x_1)) id (PathOver-, in-PathOver-+ square1) x_1))
                square2
(coe (1 (PathOver-square/+ 51.loop square2 square2))
                   (transport (), x1 -= (),be square2 square2
                                                x_1 (PothOver=.out-PothOver== (apdo (\lambda x_2 = ap (\lambda z = t2c (c2t^* z x_2)) S<sup>1</sup>.loop) S<sup>1</sup>.loop))
                                                 (PathOver=.out-PathOver== (apdo (), xz = ap (), z = z , xz) $1.loop) $1.loop)) x1)
                     ap PathOver=.out-PathOver== (5*.ploop/elimo _ id (PathOver=.(n-PathOver= square1))))
cubel))
              N))) 🛶
  square1' = _
  square2' = _____
            (PothOver+.out-PathOver-+
              (apdo (\ x1 → ap (\ z → t2c (c2t' z x1)) 51, loop) 51, loop))
                   were out-Pat
              (apdo (\lambda x_1 \rightarrow ap (\lambda z \rightarrow z, x_1) S^1.loop)) S^1.loop))
  square1' square2' square2' square1'
cube4 = 1-cube-h (bifunctor-cube1' (k x y → t2c (c2t' x y)) S1.loop S1.loop) =cube-h
            op-square-o t2c c2t (pair-square hrefl-square vrefl-square) --cube-h
            op-cube t2c (bifunctor-cube1' c2t' $1,loop $1,loop +-cube-h (and (and cube5))) +-cube-h
             degen-cube-h (ap-square-symmetry t2c T.f) +-cube-h
            cube-square-symmetry-left (T.#f/rec ($1.base , 51.base) (pairxx 1d 🔂 loog) (pairxx 51.loop 1d) (pair-square vrefl-square hrefl-square)) +-cube-h
             degen-cube-h (pair-vrefl-hrefl-symmetry 5%.loop 5%.loop) +-cube-h
             (op-square-id! (pair-square href)-square vref1-square)) --cube-h
            (bifunctor-cube1' ___ $1,loop $1,loop)
  (PathOver-.out-PathOver-= (apdo (\lambda x_1 \rightarrow ap (\lambda z \rightarrow t2c (c2t^* z x_1)) S<sup>1</sup>.loop) S<sup>1</sup>.loop))
                  (PothOver-.out-PothOver-= (apdo (\lambda x_1 = ap (\lambda z \rightarrow z , x_2) S<sup>1</sup>.loop)) S<sup>1</sup>.loop))
  square1
cube3 = (cube-symmetry-left-to-top cube4)
```

Homotopy in HoTT

$\pi_1(S^1) = \mathbb{Z}$	Freudenthal	Van Kampen
π _{k<n< sub="">(Sⁿ) = 0</n<>}	$\pi_n(S^n) = \mathbb{Z}$	Covering spaces
Hopf fibration	K(G,n)	Whitehead
π₂(S²) = ℤ	Blakers-Massey	for n-types
$\pi_3(S^2) = \mathbb{Z}$	$\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$	Cohomology
James		axioms
Construction		Mayer-Vietoris
$\pi_4(S^3) = \mathbb{Z}_?$	[Brunerie, Cavallo, Finster, Hou,	
	Licata, Lumsdaine, Shulman]	

Conclusion

Papers and code

1. The HoTT Book, homotopytypetheory.org

Homotopy

THE UNIVALENT FOUNDATIONS PROGRAM INSTITUTE FOR ADVANCED STUDY

2.Homotopy theory in Agda: Fundamental group of the circle [LICS'13] $\pi_n(S^n) = \mathbb{Z}$ [CPP'13] Eilenberg-MacLane spaces [LICS'14] github.com/dlicata335/ github.com/hott/hott-agda

3.Computation:

2D Type Theory [POPL'12] Homotopical Patch Theory [ICFP'14] Directed Type Theory [MFPS'11]

