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Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than
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Hales’ proof (1998)
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Reduces Kepler Conjecture to proving that a 
function has a lower bound on 5,000 different 
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
     300 pages of math 
  + 50,000 LOC (revised 2006: 15,000 LOC)
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but gave up on verifying the proof



Proofs can be hard to check

4

In 2003, after 4 years’ work, 
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”
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and proofs 
about it

Computer-checked software



Computer-assisted proofs
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Proof assistant
• Interactive proof editor
• Automated proofs
• Libraries



Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run 

>350,000 lines of
math + code

>2 years to run 

Informal Computer-checked



Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run 

>350,000 lines of
math + code

>2 years to run 

Informal Computer-checked

~5-10x longer



Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run 

>350,000 lines of
math + code

>2 years to run 

Informal Computer-checked

~5-10x longer

~2000x slower



Kepler proof
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300 pages of math +
15,000 lines of code

15 hours to run 

>350,000 lines of
math + code

>2 years to run 

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!
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Type Theory

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort  : list<int> ! list<int>

Basis of many successful proof assistants 
(Agda, Coq, NuPRL, Twelf)
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2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality
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Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of 
            [] => reflexivity
            (x :: xs) => ... 

proof by case analysis represented 
by a function defined by cases
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<program> : <type> x ∈ S

<prog1> = <prog2> x = y

Traditional view:   

  set theory
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Type are sets?

13

type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:   

In (intensional) type theory, an equation can have
a non-trivial <proof> 

  set theory

<proof> : 



Proof-relevance
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type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

  set theory

<proof> : 
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Proof-relevance

14

type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

  set theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
Can have multiple different 
proofs of the same equality



Homotopy Theory
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Started as branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]
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Started as branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]



Path Operations
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Given paths p and q : [0,1] ! X where p(1) = q(0)
define composition by:

(q o p)(x) = p(2x)     if 0 ≤ x ≤ 1/2
           | q(2x - 1) if 1/2 ≤ x ≤ 1

p q



Homotopy
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Deformation of one path into another
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β
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Homotopy
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Deformation of one path into another

[image from wikipedia]

α

β
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Non-homotopic paths
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[image from wikipedia]
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[image from wikipedia]



Non-homotopic paths
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[image from wikipedia]



Homotopy type theory
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Proofs of equality
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reflexivity : M = M

symmetry : N = M  if M = N

transitivity : M = P if M = N and N = P

congruence : f(M) = f(N) if M = N

(plus computation)
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Spaces as types
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M N

αid
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)-1



Spaces as types
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M N

α

P

β

id
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1



Homotopy
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Deformation of one path into another

[image from wikipedia]

α

β

α = β<2-proof> : 



Spaces as types
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M N

α

P

β

id
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
id o p = p
p-1 o p = id
r o (q o p) 
   = (r o q) o p 



Different paths/proofs
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M N

α

P

β

id

γ

γ o β o α   !=  id
as proofs of M = M



Homotopy Type Theory
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[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]

category theory homotopy theory

type theory



category theory homotopy theory

type theory

Homotopy Type Theory
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new possibilities
for computer-
checked proofs

new programs
and types



Computer-checked 
homotopy theory
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Homotopy in HoTT
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 

T2 = S1 × S1 

Mayer-Vietoris



Homotopy groups of spheres
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kth homotopy group

n-
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[image from wikipedia]
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base : Circle
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loop

base

Also have the path operations, homotopies:

idloop-1

point
path

loop-1
id

loop o loop



The Circle

32

Circle is generated by 

base : Circle
loop : base = base

loop

base

Also have the path operations, homotopies:

idloop-1

point
path

inv : loop o loop-1 = id
loop-1 ...
id

loop o loop
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Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

Theorem: that’s it
(Fundamental group of the circle is ℤ)

loop

base
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Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N

f(loop) o f(loop)
f(loop)-1

f(id) = 
f(loop o loop) =  
f(loop-1) =

id

f(p) : f(M) = f(N) if p : M = N
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Circle recursion:
  f : Circle ! X determined by
f base = base’ 
f loop = loop’
   : f(base) = f(base’)

loop

base

loop’
base’



Circle recursion

35

Circle recursion:
  f : Circle ! X determined by
f base = base’ 
f loop = loop’
   : f(base) = f(base’)

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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speedup : Circle ! Circle
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loop
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It follows that:
  speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)



Circle recursion

36

speedup : Circle ! Circle
speedup base = base
speedup loop = loop o loop

loop

base

It follows that:
  speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)

  speedup(loop-1)
= (speedup(loop))-1
= (loop o loop)-1 = loop-1 o loop-1



The Circle (Take 2)
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Circle2 is generated by 

west  : Circle2
east  : Circle2
north : west = east
south : west = east

eastwest
point

path

north

south



Theorem

38

Circle and Circle2 are homotopy equivalent

eastwest

north

south

loop

base



Theorem
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Circle and Circle2 are homotopy equivalent

one2two  : Circle ! Circle2
two2one  : Circle2 ! Circle

∀x, one2two(two2one x) = x

∀y, two2one(one2two x) = x

eastwest

north

south

loop

base



Theorem

38

Circle and Circle2 are homotopy equivalent

one2two  : Circle ! Circle2
two2one  : Circle2 ! Circle

∀x, one2two(two2one x) = x

∀y, two2one(one2two x) = x

eastwest

north

south

really 
means 
path

loop

base
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eastwest

north

south

loop

base
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one2two  : Circle ! Circle2
one2two base = west
one2two loop = south-1 o north

eastwest

north

south

loop

base
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two2one  : Circle2 ! Circle
two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

Case for loop:
  two2one(one2two loop)
= two2one(south-1 o north)
= two2one(south-1) o two2one(north)
= two2one(south)-1 o two2one(north)
= id-1 o loop
= id o loop
= loop

loop

base
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop
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Case for north: 
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for north: 
   south o one2two(two2one north) = north 

south : one2two(two2one east) = east

= south o one2two(loop)
= south o south-1 o north
= north
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for south: 
   

south : one2two(two2one east) = east

id

one2two(two2one south)

south

south
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for south: 
   south o one2two(two2one south) = south

id : one2two(two2one west) = west
south : one2two(two2one east) = east
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two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for south: 
   south o one2two(two2one south) = south

= south o one2two(id)
= south o id
= south

id : one2two(two2one west) = west
south : one2two(two2one east) = east
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Homotopy in HoTT
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)
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Whitehead
for n-types
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T2 = S1 × S1 

Mayer-Vietoris
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Torus
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p pf

a

a a

a
q

q

a   : Torus
p,q : a = a
f   : q o p = p o q



Torus   =   Circle × Circle
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×



Torus   =   Circle × Circle

52

×

t2c : Torus ! Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = … : (loop,id)o(id,loop)
          = (id,loop)o(loop,id) 
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α : x =A x’   β : y =B y’     
(α,β) : (x,y) =A×B (x’,y’)

(α2,β2) o (α1,β1) = (α2oα1,β2oβ1)
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t2c : Torus ! Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = … : (loop,id)o(id,loop)
          = (id,loop)o(loop,id) 

α : x =A x’   β : y =B y’     
(α,β) : (x,y) =A×B (x’,y’)

(α2,β2) o (α1,β1) = (α2oα1,β2oβ1)

both equal 
(loop,loop)
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Homotopy in HoTT
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types
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 axioms
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Mayer-Vietoris
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Conclusion



Papers and code
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1.The HoTT Book, homotopytypetheory.org

2.Homotopy theory in Agda:
    Fundamental group of the circle [LICS’13]
    πn(Sn) = ℤ [CPP’13]
    Eilenberg-MacLane spaces [LICS’14]
    github.com/dlicata335/
  github.com/hott/hott-agda

3.Computation:
  2D Type Theory [POPL’12]
  Homotopical Patch Theory [ICFP’14]
  Directed Type Theory [MFPS’11]



category theory homotopy theory

type theory

Homotopy Type Theory
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new computer-
checked proofs

new programs
and types


