
Functional programs that prove
theorems about spaces

Dan Licata

Wesleyan University
Department of Mathematics and Computer Science

Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than

2

Hales’ proof (1998)

3

Reduces Kepler Conjecture to proving that a
function has a lower bound on 5,000 different
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
 300 pages of math
 + 50,000 LOC (revised 2006: 15,000 LOC)

Proofs can be hard to check

4

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

Proofs can be hard to check

4

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”

5

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Computer-checked math

Hales’
proof
of Kepler
conjecture

6

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Your code,
and proofs
about it

Computer-checked software

Computer-assisted proofs

7

Proof assistant
• Interactive proof editor
• Automated proofs
• Libraries

Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run

>350,000 lines of
math + code

>2 years to run

Informal Computer-checked

Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run

>350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run

>350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

Kepler proof

8

300 pages of math +
15,000 lines of code

15 hours to run

>350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!

Homotopy Type Theory

9

Proof
checker

Correct!

Incorrect

Your
proof

Logic &
Programming
Language

Homotopy Type Theory

9

Proof
checker

Homotopy
Type Theory

Correct!

Incorrect

Your
proof

Type Theory

10

11

Type Theory

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort : list<int> ! list<int>

Basis of many successful proof assistants
(Agda, Coq, NuPRL, Twelf)

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

proof :

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of
 [] => reflexivity
 (x :: xs) => ...

proof by case analysis represented
by a function defined by cases

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

Traditional view:

 set theory

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

 set theory

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

In (intensional) type theory, an equation can have
a non-trivial <proof>

 set theory

<proof> :

Proof-relevance

14

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :

Proof-relevance

14

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

Proof-relevance

14

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...

Proof-relevance

14

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...
Can have multiple different
proofs of the same equality

Homotopy Theory

15

Homotopy Theory

16

Started as branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Homotopy Theory

16

Started as branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Path Operations

17

Given paths p and q : [0,1] ! X where p(1) = q(0)
define composition by:

(q o p)(x) = p(2x) if 0 ≤ x ≤ 1/2
 | q(2x - 1) if 1/2 ≤ x ≤ 1

p q

Homotopy

18

Deformation of one path into another

α

β

Homotopy

18

Deformation of one path into another

[image from wikipedia]

α

β

Homotopy

18

Deformation of one path into another

[image from wikipedia]

α

β

Unit law

19

p id

p
p

0 1

id o p
p id

1/20 1

p
homotopic to

Unit law

19

p id

p
p

0 1

id o p
p id

1/20 1

p
homotopic to

Non-homotopic paths

20

[image from wikipedia]

Non-homotopic paths

20

[image from wikipedia]

Non-homotopic paths

20

[image from wikipedia]

Homotopy type theory

21

Proofs of equality

22

reflexivity : M = M

symmetry : N = M if M = N

transitivity : M = P if M = N and N = P

congruence : f(M) = f(N) if M = N

(plus computation)

Spaces as types

23

M N

α

Spaces as types

23

M N

α

a space is a type A

Spaces as types

23

M N

α

points are
programs
M:A

a space is a type A

Spaces as types

23

M N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

Spaces as types

23

M N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

Spaces as types

23

M N

αid

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)

Spaces as types

23

M N

αid
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)-1

Spaces as types

23

M N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Homotopy

24

Deformation of one path into another

[image from wikipedia]

α

β

α = β<2-proof> :

Spaces as types

25

M N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

homotopies
id o p = p
p-1 o p = id
r o (q o p)
 = (r o q) o p

Different paths/proofs

26

M N

α

P

β

id

γ

γ o β o α != id
as proofs of M = M

Homotopy Type Theory

27

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

category theory homotopy theory

type theory

category theory homotopy theory

type theory

Homotopy Type Theory

28

new possibilities
for computer-
checked proofs

new programs
and types

Computer-checked
homotopy theory

29

Homotopy in HoTT

30

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou,
 Licata, Lumsdaine, Shulman]

T2 = S1 × S1

Mayer-Vietoris

Homotopy groups of spheres

31

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

The Circle

32

Circle is generated by
loop

base

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base
point

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base
point
path

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base

Also have the path operations, homotopies:

id
point
path

id

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base

Also have the path operations, homotopies:

idloop-1

point
path

loop-1
id

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base

Also have the path operations, homotopies:

idloop-1

point
path

loop-1
id

loop o loop

The Circle

32

Circle is generated by

base : Circle
loop : base = base

loop

base

Also have the path operations, homotopies:

idloop-1

point
path

inv : loop o loop-1 = id
loop-1 ...
id

loop o loop

Counting paths

33

loop

base

Counting paths

33

id loop

base

Counting paths

33

id
loop

loop

base

Counting paths

33

id
loop
loop-1

loop

base

Counting paths

33

id
loop
loop-1
loop o loop

loop

base

Counting paths

33

id
loop
loop-1
loop o loop
loop-1 o loop-1

loop

base

Counting paths

33

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0 loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base

Counting paths

33

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

Theorem: that’s it
(Fundamental group of the circle is ℤ)

loop

base

Functions act on paths

34

congruence says f(M) = f(N) if M = N

Functions act on paths

34

loop

base

congruence says f(M) = f(N) if M = N

Functions act on paths

34

loop

base

congruence says f(M) = f(N) if M = N
f(p) : f(M) = f(N) if p : M = N

Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N
f(p) : f(M) = f(N) if p : M = N

Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N

f(id) =
f(loop o loop) =
f(loop-1) =

f(p) : f(M) = f(N) if p : M = N

Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N

f(id) =
f(loop o loop) =
f(loop-1) =

id

f(p) : f(M) = f(N) if p : M = N

Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N

f(loop) o f(loop)
f(id) =
f(loop o loop) =
f(loop-1) =

id

f(p) : f(M) = f(N) if p : M = N

Functions act on paths

34

f : Circle ! X
f(base) = …
f(loop) = … : f(base) = f(base)

loop

base

congruence says f(M) = f(N) if M = N

f(loop) o f(loop)
f(loop)-1

f(id) =
f(loop o loop) =
f(loop-1) =

id

f(p) : f(M) = f(N) if p : M = N

Circle recursion

35

Circle recursion:
 f : Circle ! X determined by
f base = base’
f loop = loop’
 : f(base) = f(base’)

loop

base

loop’
base’

Circle recursion

35

Circle recursion:
 f : Circle ! X determined by
f base = base’
f loop = loop’
 : f(base) = f(base’)

Circle induction: To prove a predicate P for all points
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’

Circle recursion

36

speedup : Circle ! Circle
speedup base = base
speedup loop = loop o loop

loop

base

Circle recursion

36

speedup : Circle ! Circle
speedup base = base
speedup loop = loop o loop

loop

base

It follows that:

Circle recursion

36

speedup : Circle ! Circle
speedup base = base
speedup loop = loop o loop

loop

base

It follows that:
 speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)

Circle recursion

36

speedup : Circle ! Circle
speedup base = base
speedup loop = loop o loop

loop

base

It follows that:
 speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)

 speedup(loop-1)
= (speedup(loop))-1
= (loop o loop)-1 = loop-1 o loop-1

The Circle (Take 2)

37

Circle2 is generated by

west : Circle2
east : Circle2
north : west = east
south : west = east

eastwest
point

path

north

south

Theorem

38

Circle and Circle2 are homotopy equivalent

eastwest

north

south

loop

base

Theorem

38

Circle and Circle2 are homotopy equivalent

one2two : Circle ! Circle2
two2one : Circle2 ! Circle

∀x, one2two(two2one x) = x

∀y, two2one(one2two x) = x

eastwest

north

south

loop

base

Theorem

38

Circle and Circle2 are homotopy equivalent

one2two : Circle ! Circle2
two2one : Circle2 ! Circle

∀x, one2two(two2one x) = x

∀y, two2one(one2two x) = x

eastwest

north

south

really
means
path

loop

base

39

eastwest

north

south

loop

base

39

one2two : Circle ! Circle2
one2two base = west
one2two loop = south-1 o north

eastwest

north

south

loop

base

40

eastwest

north

south

loop

base

40

two2one : Circle2 ! Circle
two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base

41

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

41

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

Case for base: two2one(one2two base)
 = two2one(west)
 = base

41

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

Case for base: two2one(one2two base)
 = two2one(west)
 = base

41

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

loop

base

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

Case for base: two2one(one2two base)
 = two2one(west)
 = base

42

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

42

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, two2one(one2two x) = x

one2two base = west
one2two loop = south-1 o north

Case for loop:
 two2one(one2two loop)
= two2one(south-1 o north)
= two2one(south-1) o two2one(north)
= two2one(south)-1 o two2one(north)
= id-1 o loop
= id o loop
= loop

loop

base

43

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

43

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

Case for west:
 one2two(two2one west)
= one2two(base)
= west

loop

base

43

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

Case for west:
 one2two(two2one west)
= one2two(base)
= west

loop

base

43

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

Case for west:
 one2two(two2one west)
= one2two(base)
= west

loop

base

43

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

Case for west:
 one2two(two2one west)
= one2two(base)
= west

loop

base

use id

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for east:
 one2two(two2one east)
= one2two(base)
= west
= east

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for east:
 one2two(two2one east)
= one2two(base)
= west
= east

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for east:
 one2two(two2one east)
= one2two(base)
= west
= east

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for east:
 one2two(two2one east)
= one2two(base)
= west
= east

44

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for east:
 one2two(two2one east)
= one2two(base)
= west
= east

use south

45

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for north:

south : one2two(two2one east) = east

45

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for north:

south : one2two(two2one east) = east

id

one2two(two2one north)

north

south

46

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for north:
 south o one2two(two2one north) = north

south : one2two(two2one east) = east

46

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for north:
 south o one2two(two2one north) = north

south : one2two(two2one east) = east

= south o one2two(loop)
= south o south-1 o north
= north

47

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

id : one2two(two2one west) = west

loop

base

Case for south:

south : one2two(two2one east) = east

id

one2two(two2one south)

south

south

48

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for south:
 south o one2two(two2one south) = south

id : one2two(two2one west) = west
south : one2two(two2one east) = east

48

two2one west = base
two2one east = base
two2one north = loop
two2one south = id

eastwest

north

south

∀x, one2two(two2one x) = x

one2two base = west
one2two loop = south-1 o north

loop

base

Case for south:
 south o one2two(two2one south) = south

= south o one2two(id)
= south o id
= south

id : one2two(two2one west) = west
south : one2two(two2one east) = east

49

Homotopy in HoTT

50

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou,
 Licata, Lumsdaine, Shulman]

T2 = S1 × S1

Mayer-Vietoris

Homotopy in HoTT

50

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou,
 Licata, Lumsdaine, Shulman]

T2 = S1 × S1

Mayer-Vietoris

Torus

51

Torus

51

f

Torus

51

f

a

a a

a

Torus

51

p pf

a

a a

a

Torus

51

p pf

a

a a

a
q

q

Torus

51

p pf

a

a a

a
q

q

a : Torus
p,q : a = a
f : q o p = p o q

Torus = Circle × Circle

52

×

Torus = Circle × Circle

52

×

t2c : Torus ! Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = … : (loop,id)o(id,loop)
 = (id,loop)o(loop,id)

53

α : x =A x’ β : y =B y’
(α,β) : (x,y) =A×B (x’,y’)

(α2,β2) o (α1,β1) = (α2oα1,β2oβ1)

53

t2c : Torus ! Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = … : (loop,id)o(id,loop)
 = (id,loop)o(loop,id)

α : x =A x’ β : y =B y’
(α,β) : (x,y) =A×B (x’,y’)

(α2,β2) o (α1,β1) = (α2oα1,β2oβ1)

53

t2c : Torus ! Circle × Circle
t2c a = (base,base)
t2c p = (loop,id)
t2c q = (id,loop)
t2c f = … : (loop,id)o(id,loop)
 = (id,loop)o(loop,id)

α : x =A x’ β : y =B y’
(α,β) : (x,y) =A×B (x’,y’)

(α2,β2) o (α1,β1) = (α2oα1,β2oβ1)

both equal
(loop,loop)

54

Homotopy in HoTT

55

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou,
 Licata, Lumsdaine, Shulman]

T2 = S1 × S1

Mayer-Vietoris

56

Conclusion

Papers and code

57

1.The HoTT Book, homotopytypetheory.org

2.Homotopy theory in Agda:
 Fundamental group of the circle [LICS’13]
 πn(Sn) = ℤ [CPP’13]
 Eilenberg-MacLane spaces [LICS’14]
 github.com/dlicata335/
 github.com/hott/hott-agda

3.Computation:
 2D Type Theory [POPL’12]
 Homotopical Patch Theory [ICFP’14]
 Directed Type Theory [MFPS’11]

category theory homotopy theory

type theory

Homotopy Type Theory

58

new computer-
checked proofs

new programs
and types

