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Kepler Conjecture (1611)

No way to pack equally-sized spheres in space
has higher density than




Hales’ proof (1998)

% Reduces Kepler Conjecture to proving that a
function has a lower bound on 5,000 different
configurations of spheres

* This requires solving 100,000
linear programming problems

* 1998 submission:
300 pages of math

+ 50,000 LOC (revised 2006: 15,000 LOC)
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FProofs can be hard to check

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on veritying the proof

“This paper has brought about a change
In the journal's policy on computer proof.
It will no longer attempt to check

the correctness of computer code.”
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Computer-assisted proofs

Proof assistant

* Interactive proof editor O —
» Automated proofs S—

e Libraries i

Correct!
. p=

checker
\ Incorrect
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Kepler proof

Informal Computer-checked
% 300 pages of math + % >350,000 lines of

15,000 lines of code math + code ~5-10x longer
% 15 hours to run *>2 years to run ~2000x slower

We have some work to do!
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Homotopy lype [heory
“Homotopy

Type Theory

checker

\ Incorrect
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lype heory

Basis of many successful proof assistants
(Agda, Coqg, NuPRL, Twelf)

* Functional programming language
insertsort : list<int> » list<int>
mergesort : list<int> - list<int>

* Unifies programming and proving:

types are rich enough to do math/verification

11




Propositions as lypes

1.A theorem is represented by a type
2.Proof is represented by a program of that type

vX. mergesort(x) = insertsort(x)
A

type of proofs of program equality
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Propositions as lypes

1.A theorem is represented by a type
2.Proof is represented by a program of that type

proof : vx. mergesort(x) = insertsort(x)

proof X = case x of
[] => reflexivity

(X :: XS) => ...

proof by case analysis represented
by a function defined by cases

12
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Traditional view:

type theory set theory
<program> : <type> X € S
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In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2
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Type are sets”

Traditional view:

type theory set theory
<program> : <type> X €S
<proof> :<progl> = <prog2> X =Y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

In (intensional) type theory, an equation can have
a non-trivial <proof>

13
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Proof-relevance

type theory
<program> . <type>
<proof> :<progi> = <progz>
<Z2-proof> : <proofi> = <proofz>

Can have multiple different
proofs of the same equality

set theory
X € S

X =Y

14
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Homotopy [ heory

Started as branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]
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Path Operations
VWAV

Given pathspandg : [0,1] » Xwhere p(1) = gq(0)
define composition by:

(g o p)(x) = p(2x) if @

< x < 1/2
| g(Z2x - 1) if 1/2 < x <1

<




HoMmotopy

Deformation of one path into another
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unit law
N homotopic to ﬁ

0 1




Non-nomotopic paths

[image from wikipedia]




Non-nomotopic paths
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Non-nomotopic paths

[image from wikipedia]




Homotopy type theory




Proofs of equality

reflexivity : M =M
symmetry :N=M if M =N
transitivity : M=PifM=NandN =P

congruence : f(M) = f(N) if M = N

(plus computation)




Spaces as types
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a space is a type A path operations
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a
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Spaces as types

a space is a type A

points are
programs
M:A

a —>»

Id

|
paths are

proofs of equality

: M =x N

path operations

1d
O(_l
B 0 «

: M =M (refl)
: N=M (sym)
: M = P (trans)




HoMmotopy

Deformation of one path into another

—a
\

»
»
-

L=

<2-proof> : o = B

[image from wikipedia]
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Spaces as types

a space is a type A

a —>»

Id

points are

rograms |
P IV? . A paths are

proofs of equality
x : M= N

path operations

1d : M =M (refl)
xl : N=M (sym)
Boa : M=P (trans)

homotopies

idop=p

plop=1d

r o (q o p)
=(roqg op

25




Different paths/proofs

vyofoa !=id
as proofs of M = M




Homotopy lype [heory

type theory

category theory homotopy theory

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]




Homotopy lype [heory

type theory
new possibilities
new programs for computer-
and types checked proofs
category theory homotopy theory




Computer-checked
nhomotopy theory




Homotopy In Hol |

mi(S') =Z
Tk<n(S") = 0
Hopf fibration
n2(S?) =7
ma(S?) =7

James
Construction

ma(S3) = Z»

Freudenthal Van Kampen

ma(S") = Z Covering spaces

K(G;,n) Whitehead

Blakers-Massey for n-types

T>=8'x S* Cohomology
axioms

Mayer-Vietoris

[Brunerie, Cavallo, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Homotopy groups of spnheres

k" homotopy group
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The Circle
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loop

point base : Circle
path.  loop : base = base

base

Also have the path operations, homotopies:
1d
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The Circle

Circle is generated by

Ioop_1 loop

point base : (Circle
path  loop : base = base

base

Also have the path operations, homotopies:
1d inv : loop o loop™t = 1id
loopt

loop o loop

32
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1d
loop
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Counting paths

1d
loop
loop-t

<::;;::> loop

base
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Counting paths
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loop
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Counting paths

'i. CI Q loop
loop

base
loop-t
loop o loop
loopt o loop-t
loop o loop™?t = id




Counting paths

1d

loop

loop-t

loop o loop
loopt o loop-t

1d

Lloop o loop-?

0

<::;;::> loop

base




Counting paths

1d

loop

loop-t

loop o loop
loopt o loop-t

1d

Lloop o loop-?

0
1

<::;;::> loop

base




Counting paths

1d 0
loop 1
Loopt -1

loop o loop
loopt o loop-t
1d

Lloop o loop-?

<::;;::> loop

base




Counting paths

1d 0
Loop 1
Loop-t -1
Loop o loop 2

loop™t o loop
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Counting paths

1d 0
Loop 1
Loop-t -1
Lloop o loop 2
loop™t o loop™ -2

Loop o loop id

<::;;::> loop
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Counting paths

1d 0
loop 1
Loop-t -1
Lloop o loop 2
loop™t o loop -2

Lloop o loop? id 0

(:::;;::; loop

base




Counting paths

id 0
loop 1
Loop-t -1
Lloop o loop 2
loop™t o loop -2

loop o loop!t = id 0

Theorem: that’s it
(Fundamental group of the circle is Z)

(:::;;::; loop

base
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~unctions act on paths

£(N) if M = N o
f(N) if p: M =N

base
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f : Circle » X
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~unctions act on paths

£(N) if M = N o
f(N) if p: M =N

base

congruence says f(M)
f(p) : f(M)

f : Circle » X
f(base) = ..
f(loop) = .. : f(base) = f(base)

f(id) = 1d
f(loop o loop) = f(loop) o f(loop)
f(loop™) =




~unctions act on paths

£(N) if M = N o
f(N) if p: M =N

base

congruence says f(M)
f(p) : f(M)

f : Circle » X
f(base) = ..
f(loop) = .. : f(base) = f(base)

f(id) = 1d
f(loop o loop) = f(loop) o f(loop)
f(loop™) = f(loop)-?




Circle recursion

Circle recursion: Q loop
f : Circle » X determined by

base

f base = base’ i
f loop = loop’ base:
. f(base) = f(base’) '




Circle recursion

Circle recursion:
f : Circle » X determined by

f base = base’
f loop = loop’
. f(base) = f(base’)

<::;;::> loop

base

|

base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

35




Circle recursion

speedup : Circle -» Circle
loop
speedup base = base

speedup loop = loop o loop base
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Circle recursion

speedup : Circle -» Circle

speedup base
speedup loop

It follows that:

base
loop o loop

speedup(loop o loop)

speedup(loop) o speedup(loop)
(Loop o loop) o (loop o loop)

<::;;::> loop

base




Circle recursion

speedup : Circle -» Circle

loop
speedup base = base
speedup loop = loop o loop base

It follows that:

speedup(loop o loop)
= speedup(loop) o speedup(loop)
= (loop o loop) o (loop o loop)

speedup(loopt)

= (speedup(loop))
= (loop o loop)! = loopt o loop?




The Circle (Take 2)

Circle; is generated by

point west : Circle;
east : Circle;

path  north : west = east
south : west = east

north

WeStQ east

south




north

Theorem @ Q

south

Circle and Circle; are homotopy equivalent
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north

Theorem O Q

south

Circle and Circle; are homotopy equivalent

oneZ2two : (Circle » Circle;
twoZ2one : (Circle; » Circle

vX, oneZtwo(twoZone x) = X

vy, twoZone(onelZtwo x) = X

38




north

Theorem O Q

south

Circle and Circle; are homotopy equivalent

one2two : Circle » Circle;
twoZone : (Circlez » Circle
vX, oneZtwo(twoZone x) = X

T really
vy, twoZone(onelZtwo x) = X means

path

38




base

loop

west

north

south

east

39




loop north

base west east

south

oneZ2two : (Circle » Circle;
oneZtwo base = west
oneZtwo loop = south™! o north

39




base

loop

west

north

south

east

40




loop north

base west east

south

twoZone : Circlez » Circle
twoZone west = base
twoZone east = base
twoZone north = loop
twoZone south = 1d

40




twoZlone
twoZone
twoZone
twoZone

oneZtwo
oneZtwo

west = base loop north
east = base

north = loop base west
south =

|
—.
Q.

south
base = west

loop = south! o north

vx, twoZone(oneZtwo x) = X

east

41




twoZlone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west = base loop north
east = base

north = loop base west

south = 1d

south
base = west

loop = south! o north

vXx, twoZone(oneZtwo x) = X

Case for base: twoZone(oneZtwo base)

= twoZone(west)
= base

east

41




twoZlone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west = base loop north
east = base

north = loop base west

south = 1d

south
base = west

loop = south! o north

vXx, twoZone(oneZtwo x) = X

Case for base: twoZone(oneZtwo base)

= twoZone(west)
= base

east

41




twoZlone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west = base loop north

east = base
north = loop base @ 0 O east
south = 1d

south
base = west

loop = south! o north

vXx, twoZone(oneZtwo x) = X

Case for base: twoZone(oneZtwo base)

= twoZone(west)
= base

41




twoZone
twoZone
twolone
twoZlone

oneZtwo
oneZtwo

west = base loop north
east = base

north = loop base west
south =

I
e
Q.

south
base = west

loop = south™! o north

vXx, twoZone(onelZtwo x) = X

east

42




base loop north
base

Loop base west east
1d

twoZone west
twoZone east
twoZone north
twoZone south

south
west

south ! o north

oneZtwo base
oneZtwo loop

vXx, twoZone(onelZtwo x) = X

Case for loop:

twoZone(oneZtwo loop)
twoZone(south-! o north)
twoZone(south1) o twoZ2one(north)
= twoZone(south) ! o twoZone(north)
1dt o loop

1d o loop

loop

42




twoZone
twoZone
twoZone
twoZone

oneZtwo
oneZtwo

west

east =

north

south =

base
loop

= base loop north

= loop base west

|
—.
Q.

south
= west

= south ! o north

vX, oneZtwo(twoZone x) = X

east

43




two2one west = base loop north
twoZone east base

twolone north = loop base west
twoZone south = 1d

south
west

south ! o north

oneZtwo base
oneZtwo loop

vX, oneZtwo(twoZone x) = X

Case for west:
oneZtwo(twoZone west)
oneZtwo(base)

west

east

43




two2one west = base loop north
twoZone east base

twolone north = loop base west
twoZone south = 1d

south
west

south ! o north

oneZtwo base
oneZtwo loop

vX, oneZtwo(twoZone x) = X

Case for west:
oneZtwo(twoZone west)
oneZtwo(base)

west

east
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two2one west = base loop north
twoZone east base
twoZone north = loop
twoZone south = 1d

west
south ! o north

oneZtwo base
oneZtwo loop

vX, oneZtwo(twoZone x) = X

Case for west:
oneZtwo(twoZone west)
oneZtwo(base)

west

43




twoZone west =
twoZone east
twoZone north
twoZone south

oneZtwo base
oneZtwo loop

base

base
loop
1d

west
south ! o north

loop

north

vX, oneZtwo(twoZone x) = X

Case for west:
oneZtwo(twoZone west)
oneZtwo(base)

west

use 1d

43




twoZone
twoZone
twoZone
twoZone

oneZtwo
oneZtwo

west

east =

north

south =

base
loop

= base loop north

= loop base west

|
—.
Q.

south
= west

= south ! o north

vXx, oneZtwo(twoZone x) = X

east

44




two2one west = base loop north
twoZone east base

twolone north = loop base west
twoZone south = 1d

south
west

south ! o north

oneZtwo base
oneZtwo loop

vXx, oneZtwo(twoZone x) = X

Case for east:
oneZtwo(twoZone east)
oneZtwo(base)

= west

east

east

44




two2one west = base loop north
twoZone east base

twolone north = loop base west
twoZone south = 1d

south
west

south ! o north

oneZtwo base
oneZtwo loop

vXx, oneZtwo(twoZone x) = X

Case for east:
oneZtwo(twoZone east)
oneZtwo(base)

= west

east

east

44




twoZone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west =
east
north
south

base
loop

base

base
loop
1d

west
south ! o north

loop

north

vXx, oneZtwo(twoZone x) = X

Case for east:
oneZtwo(twoZone east)

= west

east

oneZtwo(base)

44




twoZone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west = base loop
east = base

north = loop

south = 1d

base = west

loop = south! o north

vXx, oneZtwo(twoZone Xx)

Case for east:
oneZtwo(twoZone east)

oneZtwo(base)

= west

east

north

44




twoZone
twoZone
twolone
twolone

oneZtwo
oneZtwo

west = base loop nonh
east base
north = loop
south = 1d

west
south ! o north

base
loop

vXx, oneZtwo(twoZone Xx)

Case for east:
oneZtwo(twoZone east)

oneZtwo(base) use south

= west

east

44




vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west
twoZone south = 1d
onelZtwo base = west
oneZ2two loop = south ! o north
1d : oneZtwo(twoZone west) = west
south : oneZtwo(twoZone east) = east

Case for north:

north

east

south
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vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west
twoZone south = 1d
onelZtwo base = west
oneZ2two loop = south ! o north
1d : oneZtwo(twoZone west) = west
south : oneZtwo(twoZone east) = east

Case for north:

oneZtwo(twoZone north)

1d south

north

north

east

south
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vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west

twoZ2one south = 1d

west
south ! o north

oneZtwo base
oneZtwo loop

west
east

1d : oneZtwo(twoZone west)
south : oneZtwo(twoZone east)

Case for north:
south o oneZtwo(twoZone north)

north

east
south
= north

46




vX, oneZtwo(twoZone x) = X

two2one west = base loop north
twoZone east = base
twoZone north = loop base west east
twoZone south = 1d
south
onelZtwo base = west
oneZ2two loop = south ! o north
1d : oneZtwo(twoZone west) = west
south : oneZtwo(twoZone east) = east
Case for north:
south o oneZtwo(twoZone north) = north

= south o oneZtwo(loop)
= south o south! o north
= north

46




vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west
twoZone south = 1d
onelZtwo base = west
oneZ2two loop = south ! o north
1d : oneZtwo(twoZone west) = west
south : oneZtwo(twoZone east) = east

Case for south:

oneZtwo(twoZone south)

1d south

south

north

east

south

47




vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west

twoZ2one south = 1d

west
south ! o north

oneZtwo base
oneZtwo loop

west
east

1d : oneZtwo(twoZone west)
south : oneZtwo(twoZone east)

Case for south:
south o oneZtwo(twoZone south)

north

east
south
= south

48




vX, oneZtwo(twoZone x) = X

two2one west = base loop
twoZone east = base
twoZone north = loop base west
twoZone south = 1d
onelZtwo base = west
oneZ2two loop = south ! o north
1d : oneZtwo(twoZone west) = west
south : oneZtwo(twoZone east) = east

Case for south:
south o oneZtwo(twoZone south)

south o oneZtwo(1id)
south o 1d

south

north

east

south

south

48




one2two : Circle.S* -> Circle2.S?
one2two = Circle.S*-rec Circle2.w ((! Circle2.s) « Circle2.n)

two2one : Circle2.S* - (Circle.S?
twoZone = Circle2.S*-rec Circle.base Circle.base Circle.loop id

compl : (x : Circle.S$*) — twoZone (oneZtwo x) == X
compl = Circle.S2-elimo _ id
(PathOver=.in-PathOver-= (vertical-degen-square
(ap (. z - two2one (one2two z)) Circle.loop ~( ap-0 twolone one2two Circle.loop )
ap two2Zone (ap one2two Circle.loop) =( ap (ap twoZone) (Circle.ploop/rec _ _) )
ap two2one ((! Circle2.s) « Circle2.n) =~( ap-+ two2one (! Circle2.s) (Circle2.n) )
ap two2one (! Circle2.s) « ap two2one Circle2.n ~( ap (A h — h « ap two2one Circle2.n) (ap-! two2one Circle2.s) )
! (ap two2one Circle2.s) « ap two2one Circle2.n =~( ap (A h - ! (ap two2Zone Circle2.s) « h) (Circle2.pn/rec Circle.base Circle.base Circle.loop id) )
! (ap two2one Circle2.s) « Circle.loop =(ap (O h - ! he« Circle.loop) (Circle2.ps/rec Circle.base Circle.base Circle.loop id) )
I id « Circle.loop ~( s=unit-1 Circle.loop )
Circle.loop =~( ! (ap-id Circle.loop) )
ap (L z =+ z) Circle.loop 0)))

compZ : (x : Circle2.S*) — oneZtwo (twoZone X) == X
comp2 = Circle2.S*-elim _
1d
Circle2.s
(PathOver=,in-PathQver-= (disc-to-square (!
(Circle2.s « ap (A z - one2two (twoZone z)) Circle2z.n =( ap (A x = Circle2.s « x) (ap-o0 one2two twoZone Circle2.n) )
Circle2.s « ap one2two (ap two2one Circle2.n) =( ap (A x = Circle2.s « ap one2two x) (Circle2.pn/rec Circle.base Circle.base Circle.loop id) )
Circle2.s « ap one2two (Circle.loop) ~(ap (A h = Circle2.s « h) (Circle.ploop/rec _ _) )
Circle2.s « (! Circle2.s « Circle2.n) =( +~assoc Circle2.s (! Circle2.s) Circle2.n )
(Circle2.s « ! Circle2.s) « Circle2.n ~(ap (A h = h e« Circle2z.n) (!-inv-r Circle2.s) )
(id) « Circle2.n =( o=unit-1 Circle2.n )
Circle2.n =( ! (ap-id Circle2.n) )
ap (b z - 2) Circle2.n 1))
(PathOver=, in-PathQver-= (disc-to-square (!
(Circle2.s « ap (O z - one2two (two2one z)) Circle2.s =~( ap (A x = Circle2.s « x) (ap-0 one2two twoZone (Circle2.s) )
Circle2.s « ap one2two (ap two2Zone Circle2.s) =( ap (A x = Circle2.s « ap one2two x) (Circle2.ps/rec Circle.base Circle.base Circle.loop id) )
Circle2.s ~( ! (ap-id Circle2.s) )
ap (O z - z) Circle2.s 0))))
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Homotopy In HO T |

m(S) =2 Freudenthal Van Kampen
Tk<n(S") =0 ma(S") =7 Covering spaces
Hopf fibration K(G,n) Whitehead
me(S?3) =7 BIakes-Massey for n-types
T13(S°) = T Cohomology
James axioms
Construction Mayer-Vietoris
4(S3) = Z-

[Brunerie, Cavallo, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Torus




Torus




Torus




Torus




Torus




a : Torus

f tqop=pog
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Torus = Circle x Circle

Y OO




Torus = Circle x Circle

t2c : Torus » Circle x Circle

t2c a = (base,base)

t2c p = (loop,1d)

t2c g = (1d, loop)

t2c f = .. : (loop,1d)o(1d, loop)

= (1d, loop)o(loop,1d)




X . X=2%x B:y=Yy’

Co,B) @ (Xy) =axs (X7,y7)

(oz2,B2) o (o1,B1) = (xz200i1,B20B1)




tZc :
tZ2c a
tZ2c p
tZ2c g
t2c f

X : X =p X’

Torus » Circle x Circle

(base,base)

(loop,1d)

(1d, Loop)

.. + (loop,1d)o(1d, loop)
= (1d,loop)o(loop,1d)

B:y =Yy’

Co,B) @ (XY) =axe (X7)y7)

(oz2,B2) o (o1,B1) = (xz200i1,B20B1)
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t2c : Torus » Circle x Circle

t2c a = (base,base)

t2c p = (loop,1d)

t2c g = (1d, loop)

t2c f = .. : (loop,1d)o(1d, loop)
= (1d,loop)o(loop,1d)

X @ X=AX PB:ry=py’

Co,B) @ (XY) =axe (X7)y7)

(oz2,B2) o (o1,B1) = (xz200i1,B20B1)

both equal
(loop,loop)
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t2c : T -> S x 2
t2¢ = T-rec (S*.base , S*.base) (pairx~ id S*.loop) (pairxx~ S*.loop id) (pair-square vrefl-square hrefl-square)

abstract
c2t-square-and-cube : £ \ s -> Cube s (square-symmetry T.f)
hrefl-square (horiz-degen-square (S*.ploop/rec T.a T.p))
(horiz-degen-square (S5*.ploop/rec T.a T.p)) hrefl-square
c2t-square-and-cube = (fill-cube-left (square-symmetry T.f)
hrefl-square
(horiz-degen-square (S*.ploop/rec T.a T.p)) (horiz-degen-square (S*.floop/rec T.a T.p)) hrefl-square)

c2t-square : Square T.q (ap (A z = S*-rec T.a T.p z) S*.loop) (ap (A z - S*-rec T.a T.p z) S*.loop) T.q
c2t-square = fst c2t-square-and-cube

c2t-loop-homotopy = (S*-elimo (\ x -> (S*-rec T.a T.p) x == (S*-rec T.a T.p) x) T.q (PathOver=.in-PathOver-= c2t-square))

1 ST ST T
c2t' x y = St-rec (S*-rec T.a T.p) (A= c2t-loop-homotopy) x y

c2t : S xS AT
2t (X, y)=c2t' xy

abeS : I\ squorel’” — I\ square'' - ke & ¢ $3) v W2 (IR X Y) == .
M (xy Ky) e, P

Cube (bifunctor-squarel c2t' 5*.lcop 5*.loop) (square-sysmetry T.f) square2'' squarel’’ squorel'" squore2'' Rt2¢ = Sheline . (Sh-elino _ 14 (PothOvers. (n-PathOver = saurel))

cabeS - . ( (con (1 PethOverD-MDdonetis) [\ x -> POthOvers. {n-PothOwer -«

- . Stelim
SquareDver«-ND . cut-Squarelver-« (apdo-by-equals _ _ S*.lo0p (A= reduce-c2t')) «-cube-h Oh Xy = Seuare (S'-a11m0 (b e = t3¢ (C20" $%.0058 a) == (5° Dose £)) 10 (PonhOvers, (A-PathOver-= sauerel) )

degen-cube-h (op PothOver=.out-PaothOver-« (5. .ploop/elimo . T.q (PothOvers.in-PathOver-« c2t-square))) «-cube-h (op O 7 = t2¢ (c2t" 7 W) $*,1009)
degen-cube-h ( ( PathOvers. cut-PathOver-«-eqv) ) (@ O 2 =3, m) 5. low) e
«=Cube~h ( CZ!'SQUOFC'OM-CUDC)) — ($'-alimo (h x» — tdc (ct' $'.bone xa) o (3 Do » (PethOvers. La-PathOver-«= sguerel) )
(coe (1 (PathOver-sgquore/= 5% loop squarel squorel))
t2¢2¢ @ (X 1 T) = ¢c2¢t (f2¢ x) »= Xx (tremssort (0 ny = Cube sowerel sauarel
£2¢2t = T-alim (\ X => €2t (£2¢ X) w= X) e e L iy 0 e
- i o ( 'JIIFIM’- M'Pv.'(\vrr-rw:; squarel » ) ’ N
(PothOverw. in-PothOver-« (squore-symmetry squorel)) 20 PathOvers, out-Pethver-« (5S¢ Moo el lmo (PothOvers. in-PathOver = squorel))))
(PathOver=, in-PathOver-= (square-sysmetry squarel)) cubel))
(SquoreOver«<ND. in-Squarelver-« , "0) whare
(whvisker-cube (1 ¢ (srd PothOvers,out-PathOver-=-eqv) (square-sysmetry squarel))) et o
(! C ( PathOverw. out-PathOver-=-eqv) (square-symmetry squarel))) et : Cube
!¢ ( PothOvers. out-PathOver-«-eqv) (squore-symmetry square))) (PertOvars.out-FothOver-«
) ) (PoAhOvers aut -PgthOver -=

Copdio (A x4 =2 O 2 = t2¢ (c2t” 2 m)) S . locp) 5'.%cp))
¢ (¢ PathOver=.out-PathOver-«-eqv) (square-symmetry square2))) Copdo (A xs = @ 0 7 = 7, x) 5%.009) 5*,100p))
(cube-symmetry-left-to-top gooll))) where sourel’ squarel’ squorel' squrel’
squorel = _ Irovbe-h (M Anctor-oubel’ O y « t2c (a2t' x y)) ' Noee 55 . Leop) ciubeh
SM'QZ - W sere—o ¢ 2t (puir-sgure Wefl -sauare wall -s0ure) +~Oube-n
- . € 2c (lfnctor-cubel’ ¢t 5% Loog 5. 1009 w-cube-h ( ( OB5))) wcube-h
: Cube . r T.f - W O
goall ube (op-square () z - <2t (t2c 2)) ) cube-h (89-5quare-symmetry t2c T.1) «-cube-h
(GD'SQUGPE (". I l) Y.() cube-sguere-symmetry-left (T.pf/rec (3'.bone ' base) (palres 5 1oop) (poirme 5. locp ) Cpetr-sqguare vrefl-aguore hrefl-sguare)) «-cube-h
squorel squore? squore? squorel degen-cube-b (palrovrefl-hrefl-aymetry 5. 1oop $'.100p) «-cube-h

goall = (op-square-o c2t t2c T.f) «-cube-h (p-squire-1dt (peir-aqurs hrefl-square wrefl-aquire)) —cbe-b
GO'(WQ 2t (i functor-cubel’ . 1009 5. %00p)

(T.pf/rec (5% .base , 5*.bose) (polrmex 1d S*,100p) squarel «
el =
(paire= S*.loop 1d) (pair-square vrefl-sguare hrefl-sguare)) «-cube-h el ¢ Cube sauirel squorel squorel
bifunctor-cubel ¢2t' S'.100p S5'.100p +-Cube-h (PettOvers, out - PothOver = (opde (A 1 - G o A2 (edr" & ) St o) $4.Nees))
(PeniOvers. & PothOver-= ( 3 TR Kt . ) 55 Leoe) SU Ne))
cube-square-symmetry-left ( ( cubeS)) «~cube-h :“,,-. S wev ! ) o N
degen-cube-h (squore-sy'ntry-sywletry 7.‘) cube-h o) = (cube-symmatry-left-10-10p cubed)

cp-squore-id! T.f
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Conclusion




Homotopy

Papers and code Type Theary

1.The HoTT Book, homotopytypetheory.org

2.Homotopy theory in Agda:
Fundamental group of the circle [LICS’13]
n(S") = Z [CPP’13]
Eilenberg-MacLane spaces [LICS’14]

github.com/dlicata335/
github.com/hott/hott-agda

3.Computation:
2D Type Theory [POPL’12]
Homotopical Patch Theory [ICFP’14]
Directed Type Theory [MFPS’11]
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