What is Homotopy Type Theory?

Dan Licata Wesleyan University

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

Cartesian

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

Cartesian

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.

models

Cartesian

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.

models

Cartesian

Spherical

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Two distinct lines meet at two antipodal points.

models

Cartesian

Spherical

[Awodey,Warren,Voevodsky,Streicher,Hofmann Lumsdaine,Gambino,Garner,van den Berg] Homotopy type theory is a synthetic theory of spaces

Equality type

x : A

$p : x =_A y$ equality type

Equality type x : A equality type $p : x =_A y$ Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a.

Equality type x : A equality type $p : x =_A y$ Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a.

Notation "x = y"

path operations id : M = M (refl)

Types as spaces

type A is a space

path operations id : M = M (refl)

α-1	•	Ν	=	Μ	(sym)

Types as spaces

type A is a space

path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

Homotopy

Deformation of one path into another

α

β

Homotopy

Deformation of one path into another

Homotopy

Deformation of one path into another

= 2-dimensional path between paths

Homotopy

Deformation of one path into another

= 2-dimensional *path* between paths

Types as spaces

type A is a space

path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

homotopies ul : id o $\alpha =_{M=N} \alpha$ il : $\alpha^{-1} \circ \alpha =_{M=M}$ id asc : $\gamma \circ (\beta \circ \alpha)$ $=_{M=P} (\gamma \circ \beta) \circ \alpha$

Path induction paths_ind

Path induction paths_ind

Type of paths from a to somewhere $y_{1} = \begin{pmatrix} y_{2} \\ p_{2} \\ p_{1} \\ q \end{pmatrix} = \begin{pmatrix} y_{2} \\ p_{3} \\ p_{3} \end{pmatrix} = y_{3}$ is inductively generated by

8^{id}

Equality type

- x : A
- p : x =_A y
- ? : $p_1 =_{x=y} p_2$

Equality type

$$x : A$$

 $p : x =_A y$
 $? : p_1 =_{x=y} p_2$

Uniqueness of Identity Proofs (UIP)

Definition UIP_ :=
 forall (x y:U) (p1 p2:x = y), p1 = p2.

- x : A
- $p : x =_A y$

? :
$$p_1 =_{x=y} p_2$$

x : A

$$p : x =_A y$$

q :
$$p_1 =_{x=y} p_2$$

- x : A
- $p : x =_A y$
- q : $p_1 =_{x=y} p_2$
 - **q**₁ =_{p1=p2} **q**₂

- x : A
- $p : x =_A y$
- q : $p_1 =_{x=y} p_2$
- $r: q_1 =_{p_1=p_2} q_2$

- x : A
- $p : x =_A y$
- $q : p_1 =_{x=y} p_2$
- $r : q_1 =_{p1=p2} q_2$

Homotopy groups of spheres

kth homotopy group

	Π1	Π2	пз	Π4	π ₅	π ₆	Π7	Π8	п9	Π10	Π11	Π12	Π13	Π14	Π15
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z ₂	Z ₁₂	Z 2	Z 2	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	z ₂	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z 15	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	Z 2	Z 2	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z ₁₅	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z84×Z25
S ⁵	0	0	0	0	z	z 2	z ₂	Z 24	z ₂	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z ₂	Z 2	Z 24	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	Z × Z ₁₂₀

n-dimensional sphere

[image from wikipedia]

** Equivalence of types* is a generalization to spaces of bijection of sets

** Equivalence of types* is a generalization to spaces of bijection of sets

Univalence axiom: equality of types (A =Type B) is (equivalent to) equivalence of types (Equiv A B)

** Equivalence of types* is a generalization to spaces of bijection of sets

Univalence axiom: equality of types (A =_{Type} B) is (equivalent to) equivalence of types (Equiv A B)

* .: all structures/properties respect equivalence

** Equivalence of types* is a generalization to spaces of bijection of sets

* Univalence axiom: equality of types (A =_{Type} B) is (equivalent to) equivalence of types (Equiv A B)

* .: all structures/properties respect equivalence

* Not by collapsing equivalence, but by exploiting proof-relevant equality: path induction has computational content

Univalence

* Transporting along an equality is a generic program that lifts equivalences

- * Can do parametricity reasoning about modules
- * Provides "right" equality for mathematical structures (groups, categories, ...)

Higher inductive types

[Bauer,Lumsdaine,Shulman,Warren]

New way of forming types:

Inductive type specified by generators not only for points (elements), but also for paths

Higher inductive types

- Subsume quotient types, which have been problematic in intensional type theory
- * Direct constructive definitions of spaces and other mathematical concepts
- Some nascent programming applications
- * New constructive definition of real numbers

HoTT Coq

#Indices matter [Grayson]

Universe polymorphism [Sozeau, Tabareau]

* Private data types [Bertot]

HoTT Coq

#Indices matter [Grayson]

Universe polymorphism [Sozeau, Tabareau]

* Private data types [Bertot]

* Can postulate univalence as axiom

* Can postulate/implement individual higher inductive types

Eventually

* Native implementation of higher inductive types [Barras, Shulman,Lumsdaine]

* Computational implementation of univalence and higher inductive types [Coquand,Huber,Bezem,Barras, Licata,Harper,Brunerie,Shulman, Altenkirch,Kaposi,Polansky...]

hProps and hSets

Prop

Prop plays several roles:

Run-time erasability

* Can assume uniqueness of elements: ∀ A:Prop, ∀ p q:A, p=q

* Can assume classical axioms such as excluded middle, choice, etc.

Impredicativity

	Prop	hProp
mechanism	built-in sort	definable predicate
erasability	yes	no
uniqueness	assume	yes
classicality	assume	assume
impredicativity	yes	assume*

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

#forall x:A,B(x) if B(x) is always an hProp

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

#forall x:A,B(x) if B(x) is always an hProp

* record whose components are hProps

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

#forall x:A,B(x) if B(x) is always an hProp

* record whose components are hProps

Wx:A.B where B(x) is always an hProp

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

#forall x:A,B(x) if B(x) is always an hProp

* record whose components are hProps

Wx:A.B where B(x) is always an hProp

* not bool, sums, etc.

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

#forall x:A,B(x) if B(x) is always an hProp funext

* record whose components are hProps

Wx:A.B where B(x) is always an hProp

* not bool, sums, etc.

*||A||₋₁ : make an hProp from any type A, e.g.
||A + B||₋₁ is irrelevant 'or'
||{ x : A & B }||₋₁ is 'exists' with irrelevant witness

* ||A||₋₁ : make an hProp from any type A, e.g.
||A + B||₋₁ is irrelevant 'or'
||{ x : A & B }||₋₁ is 'exists' with irrelevant witness

*hProp A is an hProp

*||A||₋₁ : make an hProp from any type A, e.g.
||A + B||₋₁ is irrelevant 'or'
||{ x : A & B }||₋₁ is 'exists' with irrelevant witness

*hProp A is an hProp

* unique existence: {x:A & P(x)}, where P(x) is an hProp and any two x and y satisfying P are equal

* ||A||₋₁ : make an hProp from any type A, e.g.
||A + B||₋₁ is irrelevant 'or'
||{ x : A & B }||₋₁ is 'exists' with irrelevant witness

*hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an hProp and any two x and y satisfying P are equal (∃! x:Nat & P(x)) → Nat

* ||A||₋₁ : make an hProp from any type A, e.g.
||A + B||₋₁ is irrelevant 'or'
||{ x : A & B }||₋₁ is 'exists' with irrelevant witness

*hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an hProp and any two x and y satisfying P are equal (∃! x:Nat & P(x)) → Nat not erasable

Definition hSet (A : Type) : Type := forall x y : A, forall p q : x = y, p = q

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

#forall x:A,B(x) if A and B are hSets

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

forall x:A,B(x) if A and B are hSets
record whose components are hSets

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

* forall x:A,B(x) if A and B are hSets
* record whose components are hSets
*Wx:A.B where B(x) is always an hSet

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

* forall x:A,B(x) if A and B are hSets
* record whose components are hSets
Wx:A.B where B(x) is always an hSet
*A + B where A and B are hSets

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

* forall x:A,B(x) if A and B are hSets
* record whose components are hSets
Wx:A.B where B(x) is always an hSet
*A + B where A and B are hSets
* therefore Nat, lists/trees/... of hSets

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

* forall x:A,B(x) if A and B are hSets
* record whose components are hSets
Wx:A.B where B(x) is always an hSet
*A + B where A and B are hSets
* therefore Nat, lists/trees/... of hSets

UIP as a type class, closed under all the types you know and love

Truncation levels

Definition isTrunc(n:Level)(A:Type):Type :=
 match n with

-1 => hProp A
| n+1 => forall x y : A,isTrunc n (x=y)

$$p : x =_A y$$

$$q : p_1 =_{x=y} p_2$$

$$r : q_1 =_{p1=p2} q_2$$

at what level does iterated equality type become trivial?

Univalence

Equivalence

```
Class IsEquiv {A B : Type} (f : A -> B) :=
BuildIsEquiv {
  equiv_inv : B \rightarrow A ;
  eisretr : forall x:A, f(equiv_inv x) = x ;
  eissect : forall x:A, equiv_inv(f x) = x ;
  •••• 9
```
Equivalence

```
Class IsEquiv {A B : Type} (f : A -> B) :=
BuildIsEquiv {
  equiv_inv : B -> A ;
  eisretr : forall x:A, f(equiv_inv x) = x ;
  eissect : forall x:A, equiv_inv(f x) = x ;
  .
```

make IsEquiv(f) into an hProp;
trivial for hSets

Equivalence

A =Type B is (equivalent to) Equiv A B

... all structures/properties respect equivalence

Univalence

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Definition transport

{A : Type} (C : A
$$\rightarrow$$
 Type)
{x y : A} (p : x = y) : C x \rightarrow C y :=
match p with idpath => (fun u => u) end

Definition transport

{A : Type} (C : A \rightarrow Type) {x y : A} (p : x = y) : C x \rightarrow C y := match p with idpath => (fun u => u) end

1.transport: any C:A→Type respects equality in A by a function that can potentially do work

Definition transport

{A : Type} (C : A \rightarrow Type) {x y : A} (p : x = y) : C x \rightarrow C y := match p with idpath => (fun u => u) end

1.transport: any C:A→Type respects equality in A by a function that can potentially do work

2. univalence: equivalence induces equality in Type

Definition transport

- {A : Type} (C : A \rightarrow Type) {x y : A} (p : x = y) : C x \rightarrow C y := match p with idpath => (fun u => u) end
- 1.transport: any C:A→Type respects equality in A by a function that can potentially do work

2. univalence: equivalence induces equality in Type

3.so any C : Type → Type respects equivalence

Example

Convert dates between European and US formats, inside a data structure

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swapfn(x,y) := (y,x)

[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) :=
ua(swapfn,swapfn,self-inv)

[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) := ua(swapfn,swapfn,self-inv)

3.Define a type family describing where to swap: There(X)=List{key:int, n:string, d:X×int}

[{key=4,n="John",d=(5,30,1956)}, {key=8,n="Hugo",d=(12,29,1978)}, {key=15,n="James",d=(7,1,1968)}, {key=16,n="Sayid",d=(10,2,1967)}, {key=23,n="Jack",d=(12,3,1969)}, {key=42,n="Sun",d=(3,20,1980)}]

1.Define a function swapfn(x,y) := (y,x)

- 2.Define swap : (A × B) = (B × A) := ua(swapfn,swapfn,self-inv)
- 3.Define a type family describing where to swap: There(X)=List{key:int, n:string, d:X×int}

4.Define

convert(db) := transportThere(swap,db)

There(X)=List{key:int, n:string, d:Xxint}
 transportThere(swap,db)

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

There(X)=List{key:int, n:string, d:Xxint}

- transportThere(swap,db)
- = List.map (transport_{There1} swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

There1(X)={key:int, n:string, d:Xxint}

- transportThere(swap,db)
- = List.map (transport_{There1} swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

There1(X)={key:int, n:string, d:Xxint}

transportThere(swap,db)

- = List.map (transport_{There1} swap) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

There1(X)={key:int, n:string, d:Xxint}

transportThere(swap,db)

- = List.map (transportThere1 swap) db
- = List.map ({key,n,(d,m,y)} =>
 {key,n, (transpt_{Here}(swap,(d,m)),y)}) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

Here(X)=X

- transportThere(swap,db)
- = List.map (transportThere1 swap) db
- = List.map ({key,n,(d,m,y)} =>
 {key,n, (transpt_{Here}(swap,(d,m)),y)}) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

Here(X)=X

transportThere(swap,db)

- = List.map (transportThere1 swap) db
- = List.map ({key,n,(d,m,y)} =>
 {key,n, (transpt_{Here}(swap,(d,m)),y)}) db

[{key=4,n="John", d=(30,5,1956)}, {key=8,n="Hugo",d=(29,12,1978)}, {key=15,n="James",d=(1,7,1968)}, {key=16,n="Sayid",d=(2,10,1967)}, {key=23,n="Jack",d=(3,12,1969)}, {key=42,n="Sun",d=(20,3,1980)}]

Class Monoid (m : Type) := {

```
mempty : m ;
mappend : m -> m -> m ;
mappend_mempty_left :>
   left_neutral mappend mempty ;
mappend_mempty_right :>
   right_neutral mappend mempty ;
mappend_assoc :> associative mappend
```

Class Monoid (m : Type) := {

```
mempty : m ;
mappend : m -> m -> m ;
mappend_mempty_left :>
   left_neutral mappend mempty ;
mappend_mempty_right :>
   right_neutral mappend mempty ;
mappend_assoc :> associative mappend
```

transport_{Monoid} : write a monoid structure on B given a Monoid A and an equivalence between A and B

Univalence

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Record Dict := BuildDict {

```
dict : hSet ;
insert : dict → (key × value) → dict;
... }
```

 $D1 =_{Dict} D2$

there is a relation between dict(D1) and dict(D2) that is preserved by the operations

Record Dict := BuildDict {

```
dict : hSet ;
insert : dict → (key × value) → dict;
... }
```

 $D1 =_{Dict} D2$

there is abetweendict(D1) and dict(D2)that is preserved by theoperations

Record Dict := BuildDict {

```
dict : hSet ;
insert : dict → (key × value) → dict;
... }
```

 $D1 =_{Dict} D2$

there is a bijection between dict(D1) and dict(D2) that is preserved by the operations

AssocList : Dict RedBlackTree : Dict

AssocList : Dict RedBlackTree : Dict reasoning

AssocList : Dict reasoning

RedBlackTree : Dict fast

AssocList : Dict RedBlackTree : Dict reasoning fast

Client(D : Dict)

AssocList : Dict RedBlackTree : Dict reasoning fast

Client(D : Dict)

1.Give a bijection between dict(RedBlackTree) and dict(AssocList) that is preserved by the operations

AssocList : Dict RedBlackTree : Dict reasoning fast

Client(D : Dict)

1.Give a bijection between dict(RedBlackTree) and dict(AssocList) that is preserved by the operations

2.For any correctness spec P,
 to prove P(Client(RedBlackTrees))
 suffices to show P(Client(AssocList))

Univalence

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Equality of structures

Two groups are equal iff there is a group isomorphism between them

* Two categories are equal iff they are equivalent

* Two functors are equal iff they are naturally isomorphic

Univalence

1.Transport

2.Parametricity reasoning about modules

3. Equality of structures
Higher inductive types

Higher inductive types

1.Quotient types

2.Spaces

3. Programming applications

HigherInductive MultiSet(A:hSet) : hSet :=

- [] : MultiSet A
- $| :: : A \rightarrow MultiSet A \rightarrow MultiSet A$

HigherInductive MultiSet(A:hSet) : hSet := [] : MultiSet A $::: A \rightarrow MultiSet A \rightarrow MultiSet A$ l ex : forall x y : A, forall xs:MultiSet A, x :: y :: xs = y :: x :: xspath constructor

Functions act on paths

Definition ap
{A B : Type} (f : A
$$\rightarrow$$
 B)
{x y : A} (p : x = y) : f x = f y :=
match p with idpath => idpath end

all functions take equals to equals

Functions act on paths

For any f : MultiSet Nat \rightarrow X

ap f (ex 1 2 (3::[])) :
 f [1,2,3] = f [2,1,3]

ap (fun y => f(1::y)) (ex 2 3 []) :
 f [1,2,3] = f [1,3,2]

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=

match xs with

[] => ys
| x :: xs => x :: append xs ys
| ex x y xs => ex x y (append xs ys)

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=

match xs with

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=

match xs with

Quotients MS_rec {A B : Type} (n : A) $(c : A \rightarrow MultiSet A \rightarrow B \rightarrow B)$ (e : forall x y, xs, b : B, c x (y :: xs) (c y xs b) = c y (x :: xs) (c x xs b)) : MultiSet $A \rightarrow B$ apppend xs ys := MS-rec ys (fun x _ xs' => x :: xs') (fun x y _ xs' => ex x y xs')

Quotients MS_rec {A B : Type} (n : A) $(c : A \rightarrow MultiSet A \rightarrow B \rightarrow B)$ (e : forall x y, xs, b : B, c x (y :: xs) (c y xs b) = c y (x :: xs) (c x xs b)): MultiSet $A \rightarrow B$ apppend xs ys := MS-rec ys (fun x _ xs' => x :: xs') (fun x y _ xs' => ex x y xs') **Need to show:** x ::: y ::: xs' = y ::: x ::: xs'

Free congruence given by some point generators ([],::) and path generators (ex).

* Can use this to define general quotient type A / R where R : A → A → hProp is an equivalence relation

* No more setoids!

Higher inductive types

1.Quotient types

2.Spaces

3. Programming applications

Circle S¹ is a **higher inductive type** generated by

Circle S¹ is a **higher inductive type** generated by

base : S¹
loop : base = base

Circle S¹ is a **higher inductive type** generated by

point base : S¹
loop : base = base

Circle S¹ is a **higher inductive type** generated by

point base : S¹
path loop : base = base

Circle S¹ is a **higher inductive type** generated by

point base : S¹
path loop : base = base

Free type: equipped with structure

id inv : loop o loop⁻¹ = id loop⁻¹ ... loop o loop

Circle recursion: function $S^1 \rightarrow X$ determined by

base' : X
loop' : base' = base'

Circle recursion: function $S^1 \rightarrow X$ determined by

Circle induction: To prove a predicate P for all points on the circle, suffices to prove P(base), continuously in the loop

How many different loops are there on the circle, up to homotopy?

How many different loops are there on the circle, up to homotopy?

id

How many different loops are there on the circle, up to homotopy?

id loop

How many different loops are there on the circle, up to homotopy?

id loop loop⁻¹

How many different loops are there on the circle, up to homotopy?

id loop loop⁻¹ loop o loop

How many different loops are there on the circle, up to homotopy?

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

How many different loops are there on the circle, up to homotopy?

id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

How many different loops are there on the circle, up to homotopy?

How many different loops are there on the circle, up to homotopy?

0

How many different loops are there on the circle, up to homotopy?

Ω

How many different loops are there on the circle, up to homotopy?

How many different loops are there on the circle, up to homotopy?

id 0
loop 1
loop^{-1} -1
loop 0 loop 2
loop^{-1} 0 loop^{-1} = id

How many different loops are there on the circle, up to homotopy?

How many different loops are there on the circle, up to homotopy?

id 0
loop 1
loop^{-1} -1
loop 0 loop 2
loop^{-1} 0 loop^{-1} -2
loop 0 loop^{-1} = id 0

Homotopy groups of spheres

kth homotopy group

	Π1	П2	пз	Π4	Π5	Π6	Π7	Π8	п9	Π10	Π11	Π12	Π13	Π14	Π15
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z ₂	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z ₂	Z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	Z 2	Z 2	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z ₁₅	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z84×Z25
S ⁵	0	0	0	0	z	z ₂	z ₂	Z 24	Z 2	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	0	z ₂	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	Z×Z120

n-dimensional sphere

[image from wikipedia]
Homotopy groups of spheres

kth homotopy group

(D)		Π1	Π2	пз	Π4	π ₅	п ₆	Π7	п 8	П9	Π10	Π11	Π12	π ₁₃	Π ₁₄	π ₁₅
n-dimensional sphere	S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	S1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	S ²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	$Z_{84} \times Z_2^2$	Z 2 ²
	S ³	0	0	z	Z 2	z 2	Z ₁₂	z 2	z 2	Z 3	Z ₁₅	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
	S ⁴	0	0	0	z	Z 2	Z 2				1					
	S ⁵	0	0	0	0	z	Z 2	Z 2	Z 24							
	S ⁶	0	0	0	0	0	z	Z ₂	z ₂	Z 24	0					
	S ⁷	0	0	0	0	0	0	z	Z 2	z ₂	Z 24	0	0			
	S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	

[image from wikipedia]

Homotopy in HoTT

$\pi_1(S^1) = \mathbb{Z}$	Freudenthal	Van Kampen			
π _{k<n< sub="">(Sⁿ) = 0</n<>}	π_n(Sⁿ) = ℤ	Covering spaces			
Hopf fibration	K(G,n)	Whitehead			
π₂(S²) = ℤ	Blakers-Massey	for n-types			
$\pi_3(S^2) = \mathbb{Z}$	$\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$	Cohomology			
James		axioms			
Construction					

 $\pi_4(S^3) = \mathbb{Z}_?$

[Brunerie, Cavallo, Finster, Hou, Licata, Lumsdaine, Shulman]

Higher inductive types

1.Quotient types

2.Spaces

3.Programming applications

* Version control* Collaborative editing

Patches are paths

A patch theory

Repository is a char vector of length n

* Basic patch is $a \leftrightarrow b$ @ i where i < n

$$a \leftrightarrow b @ 2$$

$$f \quad i \quad b \quad \leftarrow \quad f \quad i \quad a$$

$$a \leftrightarrow b @ 2$$

Higher inductive types

1.Quotient types

2.Spaces

3. Programming applications

Conclusion

Reading list

1. The HoTT Book, homotopytypetheory.org

2.HoTT in Coq: github.com/hott/hott github.com/UniMath/UniMath

3.Homotopy theory in Agda: Fundamental group of the circle [LICS'13] $\pi_n(S^n) = \mathbb{Z}$ [CPP'13] **Eilenberg-MacLane spaces [3:30pm today LICS]** github.com/dlicata335/ github.com/hott/hott-agda

4. Homotopical Patch Theory [ICFP'14]

