
What is Homotopy Type Theory?

Dan Licata
Wesleyan University

Synthetic geometry

2

Euclid’s postulates
1. To draw a straight line from any point

to any point.
2. To produce a finite straight line continuously

in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Given a line and a point not on it, there is exactly

one line through the point that does not intersect
the line

Synthetic geometry

2

Euclid’s postulates
Cartesian

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Given a line and a point not on it, there is exactly

one line through the point that does not intersect
the line

Synthetic geometry

2

Euclid’s postulates
Cartesian

models1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Given a line and a point not on it, there is exactly

one line through the point that does not intersect
the line

Synthetic geometry

2

Euclid’s postulates
Cartesian

models1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

Synthetic geometry

2

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

Synthetic geometry

2

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Two distinct lines meet at two antipodal points.

category theory homotopy theory

type theory

Homotopy type theory

3

[Awodey,Warren,Voevodsky,Streicher,Hofmann
Lumsdaine,Gambino,Garner,van den Berg]

higher

Homotopy type theory is
a synthetic theory

of spaces

4

Equality type

5

equality typex =A yp :

x : A

Equality type

5

equality typex =A yp :

x : A

Equality type

5

equality typex =A yp :

x : A

Types as spaces

6

M N

α

Types as spaces

6

M N

α

type A is a space

Types as spaces

6

M N

α

programs
M:A

are points

type A is a space

Types as spaces

6

M N

α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

Types as spaces

6

M N

α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations

Types as spaces

6

M N

αid

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)

Types as spaces

6

M N

αid
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)-1

Types as spaces

6

M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Homotopy

7

Deformation of one path into another

α

β

Homotopy

7

Deformation of one path into another

α

β

Homotopy

7

Deformation of one path into another

α

β

= 2-dimensional path between paths

Homotopy

7

Deformation of one path into another

α

β

= 2-dimensional path between paths

α =x=y βδ :

Types as spaces

8

M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

homotopies
ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α)
 =M=P (γ o β) o α

Path induction

9

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of
 C(y,p) for all y and p:a=y,
suffices to give an element of
 C(a,id)

Path induction

9

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of
 C(y,p) for all y and p:a=y,
suffices to give an element of
 C(a,id)

Type of paths
from a to somewhere

a

id

a

is inductively
generated by

y3y1

y2

p1 p3
p2

Equality type

10

x =A yp :

p1 =x=y p2? :

x : A

Equality type

10

x =A yp :

p1 =x=y p2? :

x : A

Equality type

10

x =A yp :

p1 =x=y p2? :

x : A

Proof-relevant equality

11

x =A yp :

p1 =x=y p2q :

x : A

Proof-relevant equality

11

x =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2

Proof-relevant equality

11

x =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

Proof-relevant equality

11

x =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...

Homotopy groups of spheres

12

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

category theory homotopy theory

type theory

Homotopy type theory

13

new computer-
checked proofs

new programs
and types

Univalence

14

[Voevodsky]

Univalence

14

Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

Univalence

14

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

[Voevodsky]

Univalence

14

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

[Voevodsky]

Univalence

14

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

Not by collapsing equivalence,
but by exploiting proof-relevant equality:
path induction has computational content

[Voevodsky]

Univalence

15

Transporting along an equality is a
generic program that lifts equivalences

Can do parametricity reasoning
about modules

Provides “right” equality for mathematical
structures (groups, categories, …)

Higher inductive types

16

New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

[Bauer,Lumsdaine,Shulman,Warren]

17

Subsume quotient types, which have been
problematic in intensional type theory

Direct constructive definitions of spaces
and other mathematical concepts

Some nascent programming applications

New constructive definition of real numbers

Higher inductive types

HoTT Coq

18

Indices matter [Grayson]

Universe polymorphism [Sozeau,Tabareau]

Private data types [Bertot]

HoTT Coq

18

Indices matter [Grayson]

Universe polymorphism [Sozeau,Tabareau]

Private data types [Bertot]

Can postulate univalence as axiom

Can postulate/implement individual
higher inductive types

Eventually

19

Native implementation of higher inductive types
[Barras, Shulman,Lumsdaine]

Computational implementation of
univalence and higher inductive types
[Coquand,Huber,Bezem,Barras,
 Licata,Harper,Brunerie,Shulman,
 Altenkirch,Kaposi,Polansky…]

hProps and hSets

20

Prop

21

Prop plays several roles:

Run-time erasability

Can assume uniqueness of elements:
∀ A:Prop, ∀ p q:A, p=q

Can assume classical axioms such as
excluded middle, choice, etc.

Impredicativity

Prop vs hProp

22

Prop hProp

mechanism built-in sort definable predicate

erasability yes no

uniqueness assume yes

classicality assume assume

impredicativity yes assume*

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

record whose components are hProps

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

record whose components are hProps

Wx:A.B where B(x) is always an hProp

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

record whose components are hProps

Wx:A.B where B(x) is always an hProp

not bool, sums, etc.

23

Definition hProp (A:Type) : Type :=
 forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

record whose components are hProps

Wx:A.B where B(x) is always an hProp

not bool, sums, etc.

funext

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness

hProp A is an hProp

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness

hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an
hProp and any two x and y satisfying P are equal

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness

hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an
hProp and any two x and y satisfying P are equal
 (∃! x:Nat & P(x)) ! Nat

24

Definition hProp(A:Type):Type :=
 forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness

hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an
hProp and any two x and y satisfying P are equal
 not erasable(∃! x:Nat & P(x)) ! Nat

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets
Wx:A.B where B(x) is always an hSet

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets
Wx:A.B where B(x) is always an hSet
A + B where A and B are hSets

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets
Wx:A.B where B(x) is always an hSet
A + B where A and B are hSets
therefore Nat, lists/trees/… of hSets

25

Definition hSet (A : Type) : Type :=
 forall x y : A,
 forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets
Wx:A.B where B(x) is always an hSet
A + B where A and B are hSets
therefore Nat, lists/trees/… of hSets

UIP as a type class, closed under
all the types you know and love

26

Definition isTrunc(n:Level)(A:Type):Type :=
 match n with
 -1 => hProp A
 | n+1 => forall x y : A,isTrunc n (x=y)

Truncation levels

at what level does iterated
equality type become
trivial?

x =A yp :
p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...

Univalence

27

Equivalence

28

Class IsEquiv {A B : Type} (f : A -> B) :=
BuildIsEquiv {
 equiv_inv : B -> A ;
 eisretr : forall x:A, f(equiv_inv x) = x ;
 eissect : forall x:A, equiv_inv(f x) = x ;
 …;
}

Equivalence

28

Class IsEquiv {A B : Type} (f : A -> B) :=
BuildIsEquiv {
 equiv_inv : B -> A ;
 eisretr : forall x:A, f(equiv_inv x) = x ;
 eissect : forall x:A, equiv_inv(f x) = x ;
 …;
}

make IsEquiv(f) into an hProp;
trivial for hSets

Equivalence

28

Class IsEquiv {A B : Type} (f : A -> B) :=
BuildIsEquiv {
 equiv_inv : B -> A ;
 eisretr : forall x:A, f(equiv_inv x) = x ;
 eissect : forall x:A, equiv_inv(f x) = x ;
 …;
}

make IsEquiv(f) into an hProp;
trivial for hSets

Definition Equiv (A B : Type) :=
 {f : A ! B & IsEquiv(f)}

Univalence

29

A x B → C

A → B → C

list unit
nat

Type

A =Type B is (equivalent to) Equiv A B
∴ all structures/properties respect equivalence

bool

id not

Univalence

30

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

transport

31

Definition transport
 {A : Type} (C : A ! Type)
 {x y : A} (p : x = y) : C x ! C y :=
 match p with idpath => (fun u => u) end

transport

31

Definition transport
 {A : Type} (C : A ! Type)
 {x y : A} (p : x = y) : C x ! C y :=
 match p with idpath => (fun u => u) end

1.transport: any C:A!Type respects equality in
A by a function that can potentially do work

transport

31

Definition transport
 {A : Type} (C : A ! Type)
 {x y : A} (p : x = y) : C x ! C y :=
 match p with idpath => (fun u => u) end

1.transport: any C:A!Type respects equality in
A by a function that can potentially do work

2.univalence: equivalence induces equality in Type

transport

31

Definition transport
 {A : Type} (C : A ! Type)
 {x y : A} (p : x = y) : C x ! C y :=
 match p with idpath => (fun u => u) end

1.transport: any C:A!Type respects equality in
A by a function that can potentially do work

2.univalence: equivalence induces equality in Type

3.so any C : Type ! Type respects equivalence

32

Convert dates between European and US formats,
inside a data structure

Example

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

33

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

convert

33

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

convert

33

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) :=
ua(swapfn,swapfn,self-inv)

convert

33

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) :=
ua(swapfn,swapfn,self-inv)

3.Define a type family describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

convert

33

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) :=
ua(swapfn,swapfn,self-inv)

3.Define a type family describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

4.Define
convert(db) := transportThere(swap,db)

convert

34

Computational interpretation of transport:

transportThere(swap,db)
There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

34

Computational interpretation of transport:

transportThere(swap,db)
= List.map (transportThere1 swap) db

There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

34

Computational interpretation of transport:

transportThere(swap,db)
= List.map (transportThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

34

Computational interpretation of transport:

transportThere(swap,db)

= List.map ({key,n,(d,m,y)} =>
 {key,n, (,y)}) db

= List.map (transportThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

34

Computational interpretation of transport:

transportThere(swap,db)

= List.map ({key,n,(d,m,y)} =>
 {key,n, (,y)}) db

= List.map (transportThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}

transptHere(swap,(d,m))

34

Computational interpretation of transport:

transportThere(swap,db)

= List.map ({key,n,(d,m,y)} =>
 {key,n, (,y)}) db

= List.map (transportThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

transptHere(swap,(d,m))

34

Computational interpretation of transport:

transportThere(swap,db)

= List.map ({key,n,(d,m,y)} =>
 {key,n, (,y)}) db

= List.map (transportThere1 swap) db

= List.map ({key,n,(d,m,y)} =>
 {key,n,(m,d,y)}) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

Here(X)=X

transptHere(swap,(d,m))

35

Class Monoid (m : Type) := {
 mempty : m ;
 mappend : m -> m -> m ;
 mappend_mempty_left :>
 left_neutral mappend mempty ;
 mappend_mempty_right :>
 right_neutral mappend mempty ;
 mappend_assoc :> associative mappend
}

35

Class Monoid (m : Type) := {
 mempty : m ;
 mappend : m -> m -> m ;
 mappend_mempty_left :>
 left_neutral mappend mempty ;
 mappend_mempty_right :>
 right_neutral mappend mempty ;
 mappend_assoc :> associative mappend
}

transportMonoid : write a monoid structure on B
given a Monoid A and an equivalence
between A and B

Univalence

36

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Parametricity

37

Record Dict := BuildDict {
 dict : hSet ;
 insert : dict ! (key × value) ! dict;
 … }

D1 =Dict D2 there is a between
dict(D1) and dict(D2)
that is preserved by the
operations

relation

Parametricity

37

Record Dict := BuildDict {
 dict : hSet ;
 insert : dict ! (key × value) ! dict;
 … }

D1 =Dict D2 there is a between
dict(D1) and dict(D2)
that is preserved by the
operations

Parametricity

37

Record Dict := BuildDict {
 dict : hSet ;
 insert : dict ! (key × value) ! dict;
 … }

D1 =Dict D2 there is a between
dict(D1) and dict(D2)
that is preserved by the
operations

bijection

Parametricity

38

RedBlackTree : DictAssocList : Dict

Parametricity

38

RedBlackTree : DictAssocList : Dict
reasoning

Parametricity

38

RedBlackTree : DictAssocList : Dict
reasoning fast

Parametricity

38

RedBlackTree : DictAssocList : Dict

Client(D : Dict)
reasoning fast

Parametricity

38

1.Give a bijection between
dict(RedBlackTree) and dict(AssocList)
that is preserved by the operations

RedBlackTree : DictAssocList : Dict

Client(D : Dict)
reasoning fast

Parametricity

38

1.Give a bijection between
dict(RedBlackTree) and dict(AssocList)
that is preserved by the operations

2.For any correctness spec P,
to prove P(Client(RedBlackTrees))
suffices to show P(Client(AssocList))

RedBlackTree : DictAssocList : Dict

Client(D : Dict)
reasoning fast

Univalence

39

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Equality of structures

40

Two groups are equal iff there is a
group isomorphism between them

Two categories are equal iff they are
equivalent

Two functors are equal iff they are
naturally isomorphic

…

Univalence

41

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures

Higher inductive types

42

Higher inductive types

43

1.Quotient types

2.Spaces

3.Programming applications

Quotients

44

HigherInductive MultiSet(A:hSet) : hSet :=
 [] : MultiSet A
| :: : A ! MultiSet A ! MultiSet A
| ex : forall x y : A, forall xs:MultiSet A,
 x :: y :: xs = y :: x :: xs

Quotients

44

HigherInductive MultiSet(A:hSet) : hSet :=
 [] : MultiSet A
| :: : A ! MultiSet A ! MultiSet A
| ex : forall x y : A, forall xs:MultiSet A,
 x :: y :: xs = y :: x :: xs

path constructor

Quotients

45

1::2::[]

2::1::[]

1::2::3::[]
1::3::2::[]

MultiSet Nat

Functions act on paths

46

Definition ap
 {A B : Type} (f : A ! B)
 {x y : A} (p : x = y) : f x = f y :=
 match p with idpath => idpath end

all functions take equals to equals

Functions act on paths

47

For any f : MultiSet Nat ! X

ap f (ex 1 2 (3::[])) :
 f [1,2,3] = f [2,1,3]

ap (fun y => f(1::y)) (ex 2 3 []) :
 f [1,2,3] = f [1,3,2]

Quotients

48

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=
match xs with
 [] => ys
 | x :: xs => x :: append xs ys
 | ex x y xs => ex x y (append xs ys)

Quotients

48

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=
match xs with
 [] => ys
 | x :: xs => x :: append xs ys
 | ex x y xs => ex x y (append xs ys)

case for path constructor

Quotients

48

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=
match xs with
 [] => ys
 | x :: xs => x :: append xs ys
 | ex x y xs => ex x y (append xs ys)

case for path constructor

Need to show:
x :: y :: append xs ys =
y :: x :: append xs ys

Quotients

49

MS_rec {A B : Type}
 (n : A)
 (c : A ! MultiSet A ! B ! B)
 (e : forall x y, xs, b : B,
 c x (y :: xs) (c y xs b)
 = c y (x :: xs) (c x xs b))
 : MultiSet A ! B
apppend xs ys :=
 MS-rec ys (fun x _ xs’ => x :: xs’)
 (fun x y _ xs’ =>
 ex x y xs’)

Quotients

49

MS_rec {A B : Type}
 (n : A)
 (c : A ! MultiSet A ! B ! B)
 (e : forall x y, xs, b : B,
 c x (y :: xs) (c y xs b)
 = c y (x :: xs) (c x xs b))
 : MultiSet A ! B
apppend xs ys :=
 MS-rec ys (fun x _ xs’ => x :: xs’)
 (fun x y _ xs’ =>
 ex x y xs’) Need to show:

x :: y :: xs’ = y :: x :: xs’

Quotients

50

Free congruence given by some point
generators ([],::) and path generators (ex).

Can use this to define general quotient type
A / R where R : A → A → hProp is an
equivalence relation

No more setoids!

Higher inductive types

51

1.Quotient types

2.Spaces

3.Programming applications

The circle

52

Circle S1 is a higher inductive type
generated by loop

base

The circle

52

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

The circle

52

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point

The circle

52

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point
path

The circle

52

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...

The circle

53

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

loop

base

loop’
base’

The circle

53

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

Circle induction: To prove a predicate P for all points
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id
loop

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

loop

base

Fundamental group of circle

54

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base

55

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

Homotopy groups of spheres

56

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

Homotopy groups of spheres
kth homotopy group

Homotopy in HoTT

57

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou,
 Licata, Lumsdaine, Shulman]

T2 = S1 × S1

Higher inductive types

58

1.Quotient types

2.Spaces

3.Programming applications

Patches

59

a
b
c

diff
2c2
< b

> d

a
d
c

=

Patch

Version control
Collaborative editing

60

a
b
c

id a
b
c

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

60

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths

A patch theory

61

f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

A patch theory

61

Repository is a char vector of length n

f i b r a t i o n

Basic patch is a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

doc[n]

points describe
repository contents

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
paths between paths are
equations between patches

A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are
equations between patches

Higher inductive types

63

1.Quotient types

2.Spaces

3.Programming applications

64

Conclusion

category theory homotopy theory

type theory

Homotopy Type Theory

65

new programs
and types

new computer-
checked proofs

Reading list

66

1.The HoTT Book, homotopytypetheory.org

2.HoTT in Coq:
github.com/hott/hott
github.com/UniMath/UniMath

3.Homotopy theory in Agda:
 Fundamental group of the circle [LICS’13]
 πn(Sn) = ℤ [CPP’13]
 Eilenberg-MacLane spaces [3:30pm today LICS]
 github.com/dlicata335/
 github.com/hott/hott-agda

4.Homotopical Patch Theory [ICFP’14]

