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Synthetic geometry

2

Euclid’s postulates
1. To draw a straight line from any point

to any point.
2. To produce a finite straight line continuously

in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Given a line and a point not on it, there is exactly 

one line through the point that does not intersect 
the line
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Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.



Synthetic geometry
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Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Two distinct lines meet at two antipodal points.



category theory homotopy theory

type theory

Homotopy type theory
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[Awodey,Warren,Voevodsky,Streicher,Hofmann 
Lumsdaine,Gambino,Garner,van den Berg]

higher



Homotopy type theory is 
a synthetic theory

of spaces

4
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x : A
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αid
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)-1
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1
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Deformation of one path into another

α

β

= 2-dimensional path between paths

α =x=y βδ : 



Types as spaces
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α) 
      =M=P (γ o β) o α 



Path induction
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Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)



Path induction
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Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2
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p1 =x=y p2q :
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q1 =p1=p2 q2
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Proof-relevant equality
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x =A yp : 

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...



Homotopy groups of spheres
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[image from wikipedia]



category theory homotopy theory

type theory

Homotopy type theory
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new computer-
checked proofs

new programs
and types
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Univalence

14

Equivalence of types is a generalization to 
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to) 
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

Not by collapsing equivalence,
but by exploiting proof-relevant equality:
path induction has computational content

[Voevodsky]



Univalence
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Transporting along an equality is a
generic program that lifts equivalences

Can do parametricity reasoning
about modules

Provides “right” equality for mathematical 
structures (groups, categories, …)



Higher inductive types
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New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

[Bauer,Lumsdaine,Shulman,Warren]
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Subsume quotient types, which have been 
problematic in intensional type theory

Direct constructive definitions of spaces 
and other mathematical concepts

Some nascent programming applications

New constructive definition of real numbers

Higher inductive types



HoTT Coq
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Indices matter [Grayson] 

Universe polymorphism [Sozeau,Tabareau]

Private data types [Bertot]



HoTT Coq
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Indices matter [Grayson] 

Universe polymorphism [Sozeau,Tabareau]

Private data types [Bertot]

Can postulate univalence as axiom

Can postulate/implement individual 
higher inductive types



Eventually
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Native implementation of higher inductive types 
[Barras, Shulman,Lumsdaine]

Computational implementation of
univalence and higher inductive types 
[Coquand,Huber,Bezem,Barras,
 Licata,Harper,Brunerie,Shulman,
 Altenkirch,Kaposi,Polansky…]



hProps and hSets
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Prop
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Prop plays several roles: 

Run-time erasability

Can assume uniqueness of elements:
∀ A:Prop, ∀ p q:A, p=q

Can assume classical axioms such as 
excluded middle, choice, etc.

Impredicativity



Prop vs hProp
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Prop hProp

mechanism built-in sort definable predicate

erasability yes no

uniqueness assume yes

classicality assume assume

impredicativity yes assume*
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Definition hProp (A:Type) : Type :=
   forall x y : A, (x = y)

Prop vs hProp

forall x:A,B(x) if B(x) is always an hProp

record whose components are hProps

Wx:A.B where B(x) is always an hProp

not bool, sums, etc.

funext
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Definition hProp(A:Type):Type :=
   forall x y : A, x = y

Prop vs hProp

||A||-1 : make an hProp from any type A, e.g.
||A + B||-1 is irrelevant ‘or’
||{ x : A & B }||-1 is ‘exists’ with irrelevant witness 

hProp A is an hProp

unique existence: {x:A & P(x)}, where P(x) is an 
hProp and any two x and y satisfying P are equal
                      not erasable(∃! x:Nat & P(x)) ! Nat 
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Definition hSet (A : Type) : Type :=
   forall x y : A,
   forall p q : x = y, p = q

hSets

forall x:A,B(x) if A and B are hSets
record whose components are hSets
Wx:A.B where B(x) is always an hSet
A + B where A and B are hSets
therefore Nat, lists/trees/… of hSets

UIP as a type class, closed under 
all the types you know and love
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Definition isTrunc(n:Level)(A:Type):Type :=
   match n with
     -1 => hProp A
  | n+1 => forall x y : A,isTrunc n (x=y)

Truncation levels

at what level does iterated 
equality type become 
trivial?

x =A yp : 
p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...
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Class IsEquiv {A B : Type} (f : A -> B) := 
BuildIsEquiv {
  equiv_inv : B -> A ;
  eisretr : forall x:A, f(equiv_inv x) = x ; 
  eissect : forall x:A, equiv_inv(f x) = x ;
  …;
}



Equivalence

28

Class IsEquiv {A B : Type} (f : A -> B) := 
BuildIsEquiv {
  equiv_inv : B -> A ;
  eisretr : forall x:A, f(equiv_inv x) = x ; 
  eissect : forall x:A, equiv_inv(f x) = x ;
  …;
}

make IsEquiv(f) into an hProp; 
trivial for hSets



Equivalence

28

Class IsEquiv {A B : Type} (f : A -> B) := 
BuildIsEquiv {
  equiv_inv : B -> A ;
  eisretr : forall x:A, f(equiv_inv x) = x ; 
  eissect : forall x:A, equiv_inv(f x) = x ;
  …;
}

make IsEquiv(f) into an hProp; 
trivial for hSets

Definition Equiv (A B : Type) :=
   {f : A ! B & IsEquiv(f)}



Univalence
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A x B → C

A → B → C

list unit
nat

Type

A =Type B is (equivalent to) Equiv A B
∴ all structures/properties respect equivalence

bool

id not



Univalence
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1.Transport

2.Parametricity reasoning about modules

3.Equality of structures
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Definition transport
  {A : Type} (C : A ! Type)
  {x y : A} (p : x = y) : C x ! C y :=
    match p with idpath => (fun u => u) end
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Definition transport
  {A : Type} (C : A ! Type)
  {x y : A} (p : x = y) : C x ! C y :=
    match p with idpath => (fun u => u) end

1.transport: any C:A!Type respects equality in 
A by a function that can potentially do work

2.univalence: equivalence induces equality in Type

3.so any C : Type ! Type respects equivalence
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Convert dates between European and US formats,
inside a data structure

Example

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]
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[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

convert
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[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

convert



33
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 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) := 
ua(swapfn,swapfn,self-inv)

convert
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[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
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 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) := 
ua(swapfn,swapfn,self-inv)

3.Define a type family describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

convert
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[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

1.Define a function
swapfn(x,y) := (y,x)

2.Define swap : (A × B) = (B × A) := 
ua(swapfn,swapfn,self-inv)

3.Define a type family describing where to swap:
There(X)=List{key:int, n:string, d:X×int}

4.Define
convert(db) := transportThere(swap,db)

convert
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Computational interpretation of transport:

transportThere(swap,db)
There(X)=List{key:int, n:string, d:X×int}

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]



34

Computational interpretation of transport:

transportThere(swap,db)
=  List.map (transportThere1 swap) db

There(X)=List{key:int, n:string, d:X×int}
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 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
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34

Computational interpretation of transport:

transportThere(swap,db)
=  List.map (transportThere1 swap) db

[{key=4,n=“John”,d=(5,30,1956)},
 {key=8,n=“Hugo”,d=(12,29,1978)},
 {key=15,n=“James”,d=(7,1,1968)},
 {key=16,n=“Sayid”,d=(10,2,1967)},
 {key=23,n=“Jack”,d=(12,3,1969)},
 {key=42,n=“Sun”,d=(3,20,1980)}]

[{key=4,n=“John”, d=(30,5,1956)},
 {key=8,n=“Hugo”,d=(29,12,1978)},
 {key=15,n=“James”,d=(1,7,1968)},
 {key=16,n=“Sayid”,d=(2,10,1967)},
 {key=23,n=“Jack”,d=(3,12,1969)},
 {key=42,n=“Sun”,d=(20,3,1980)}]

There1(X)={key:int, n:string, d:X×int}
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Computational interpretation of transport:

transportThere(swap,db)

=  List.map ({key,n,(d,m,y)} =>
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Class Monoid (m : Type) := {
  mempty : m ;
  mappend : m -> m -> m ;
  mappend_mempty_left :>
    left_neutral mappend mempty ;
  mappend_mempty_right :>
    right_neutral mappend mempty ;
  mappend_assoc :> associative mappend
}
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Class Monoid (m : Type) := {
  mempty : m ;
  mappend : m -> m -> m ;
  mappend_mempty_left :>
    left_neutral mappend mempty ;
  mappend_mempty_right :>
    right_neutral mappend mempty ;
  mappend_assoc :> associative mappend
}

transportMonoid : write a monoid structure on B 
given a Monoid A and an equivalence
between A and B
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2.Parametricity reasoning about modules

3.Equality of structures
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Record Dict := BuildDict {
  dict : hSet ;
  insert : dict ! (key × value) ! dict;
  … }

D1 =Dict D2 there is a                   between 
dict(D1) and dict(D2) 
that is preserved by the 
operations

relation
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  dict : hSet ;
  insert : dict ! (key × value) ! dict;
  … }

D1 =Dict D2 there is a                   between 
dict(D1) and dict(D2) 
that is preserved by the 
operations
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RedBlackTree : DictAssocList : Dict
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Parametricity

38

1.Give a bijection between
dict(RedBlackTree) and dict(AssocList)
that is preserved by the operations

2.For any correctness spec P,
to prove P(Client(RedBlackTrees))
suffices to show P(Client(AssocList))

RedBlackTree : DictAssocList : Dict

Client(D : Dict)
reasoning fast
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Two groups are equal iff there is a 
group isomorphism between them

Two categories are equal iff they are 
equivalent

Two functors are equal iff they are 
naturally isomorphic

…



Univalence

41

1.Transport

2.Parametricity reasoning about modules

3.Equality of structures
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Higher inductive types
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1.Quotient types

2.Spaces

3.Programming applications
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HigherInductive MultiSet(A:hSet) : hSet := 
  [] : MultiSet A
| :: : A ! MultiSet A ! MultiSet A
| ex : forall x y : A, forall xs:MultiSet A,
        x :: y :: xs = y :: x :: xs



Quotients
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HigherInductive MultiSet(A:hSet) : hSet := 
  [] : MultiSet A
| :: : A ! MultiSet A ! MultiSet A
| ex : forall x y : A, forall xs:MultiSet A,
        x :: y :: xs = y :: x :: xs

path constructor 



Quotients
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1::2::[]

2::1::[]

1::2::3::[]
1::3::2::[]

MultiSet Nat



Functions act on paths
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Definition ap
  {A B : Type} (f : A ! B)
  {x y : A} (p : x = y) : f x = f y :=
    match p with idpath => idpath end

all functions take equals to equals



Functions act on paths
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For any f : MultiSet Nat ! X

ap f (ex 1 2 (3::[])) : 
  f [1,2,3] = f [2,1,3]

ap (fun y => f(1::y)) (ex 2 3 []) :
  f [1,2,3] = f [1,3,2]



Quotients

48

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=
match xs with 
   [] => ys
 | x :: xs => x :: append xs ys
 | ex x y xs => ex x y (append xs ys)  
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Quotients

48

Fixpoint append {A:Type}
(xs : MultiSet A) (ys : MultiSet A) : MultiSet A
:=
match xs with 
   [] => ys
 | x :: xs => x :: append xs ys
 | ex x y xs => ex x y (append xs ys)  

case for path constructor

Need to show:
x :: y :: append xs ys =
y :: x :: append xs ys 
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MS_rec {A B : Type}
       (n : A)
       (c : A ! MultiSet A ! B ! B)
       (e : forall x y, xs, b : B, 
              c x (y :: xs) (c y xs b)
            = c y (x :: xs) (c x xs b))
       : MultiSet A ! B 
apppend xs ys := 
  MS-rec ys (fun x _ xs’ => x :: xs’)
            (fun x y _ xs’ => 
              ex x y xs’)



Quotients

49

MS_rec {A B : Type}
       (n : A)
       (c : A ! MultiSet A ! B ! B)
       (e : forall x y, xs, b : B, 
              c x (y :: xs) (c y xs b)
            = c y (x :: xs) (c x xs b))
       : MultiSet A ! B 
apppend xs ys := 
  MS-rec ys (fun x _ xs’ => x :: xs’)
            (fun x y _ xs’ => 
              ex x y xs’) Need to show:

x :: y :: xs’ = y :: x :: xs’
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Free congruence given by some point 
generators ([],::) and path generators (ex).  

Can use this to define general quotient type 
A / R where R : A → A → hProp is an 
equivalence relation 

No more setoids!
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2.Spaces

3.Programming applications
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base
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The circle

52

Circle S1 is a higher inductive type 
generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...
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Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

loop

base

loop’
base’



The circle

53

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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How many different loops are there on 
the circle, up to homotopy?

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

loop

base
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base



55

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

Homotopy groups of spheres



56

n-
di

m
en

si
on

al
 s

ph
er

e
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Homotopy groups of spheres
kth homotopy group



Homotopy in HoTT
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-types

Cohomology
 axioms

[Brunerie, Cavallo, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 

T2 = S1 × S1 
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a
b
c

diff
2c2
< b
---
> d

a
d
c

=

Patch

Version control
Collaborative editing
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a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths
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f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2



A patch theory
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Repository is a char vector of length n

f i b r a t i o n

Basic patch is   a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2
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Generator for
equality of equality

R:Type



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

doc[n]

points describe 
repository contents



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

points describe 
repository contents

paths are patches



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i



A patch theory as a HIT

62

Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
paths between paths are 
equations between patches



A patch theory as a HIT
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Generator for
equality of equality

R:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are 
equations between patches
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Conclusion



category theory homotopy theory

type theory

Homotopy Type Theory

65

new programs
and types

new computer-
checked proofs



Reading list

66

1.The HoTT Book, homotopytypetheory.org

2.HoTT in Coq:
github.com/hott/hott
github.com/UniMath/UniMath

3.Homotopy theory in Agda:
    Fundamental group of the circle [LICS’13]
    πn(Sn) = ℤ [CPP’13]
    Eilenberg-MacLane spaces [3:30pm today LICS]
    github.com/dlicata335/
  github.com/hott/hott-agda

4.Homotopical Patch Theory [ICFP’14]


