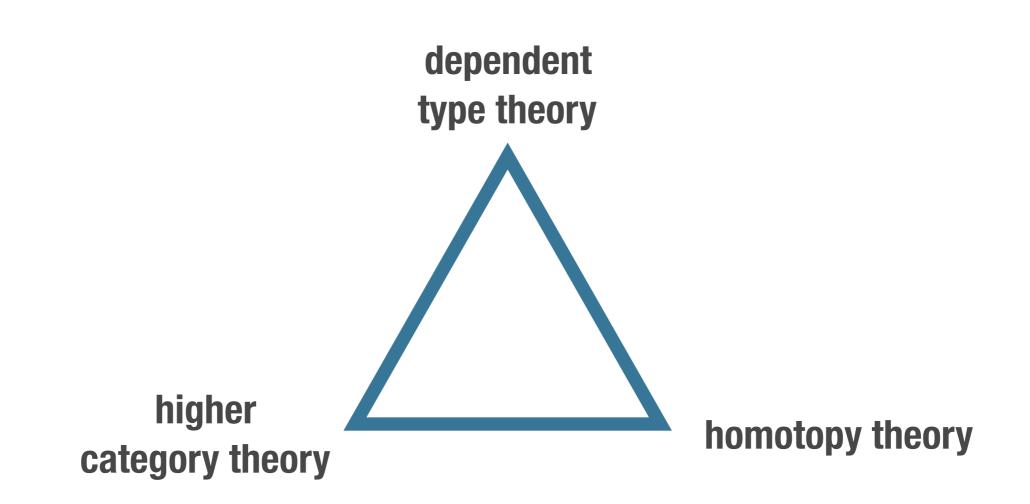
A Functional Programmer's Guide to Homotopy Type Theory

Dan Licata Wesleyan University

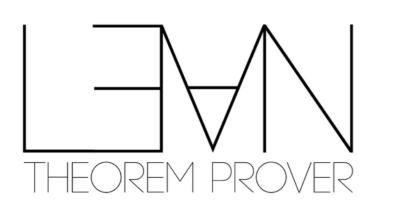
Homotopy type theory



PRL Project "Proof/Program Refinement Logic"

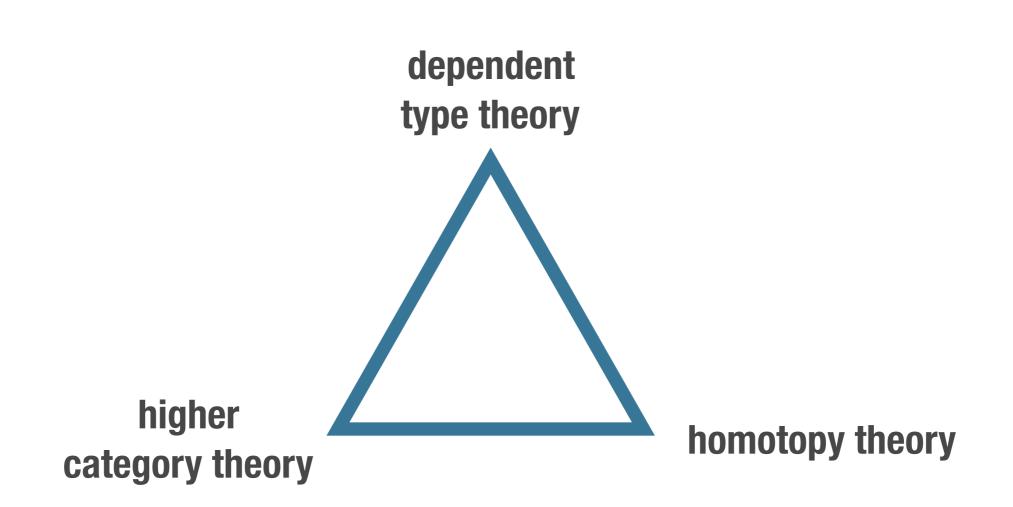
Agda

Agda is a dependently typed functional programming language.



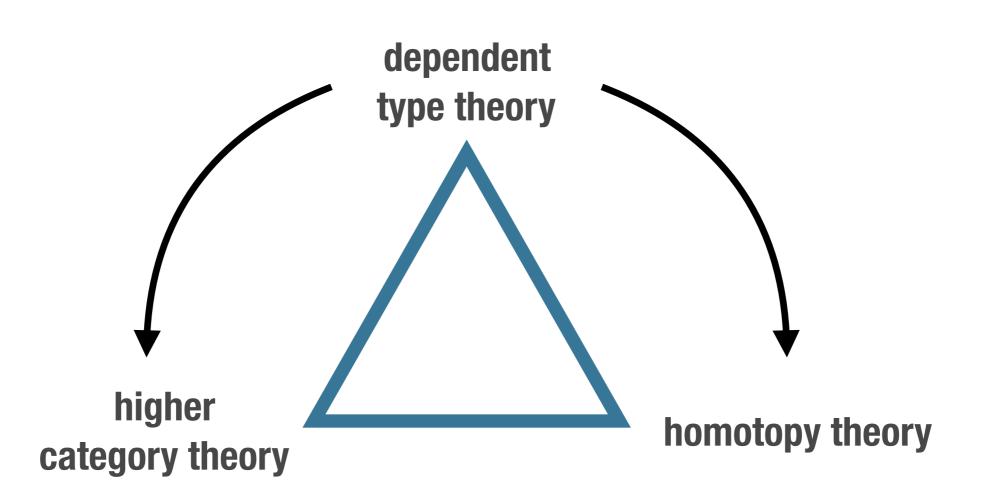
A Language with Dependent Types

Semantics



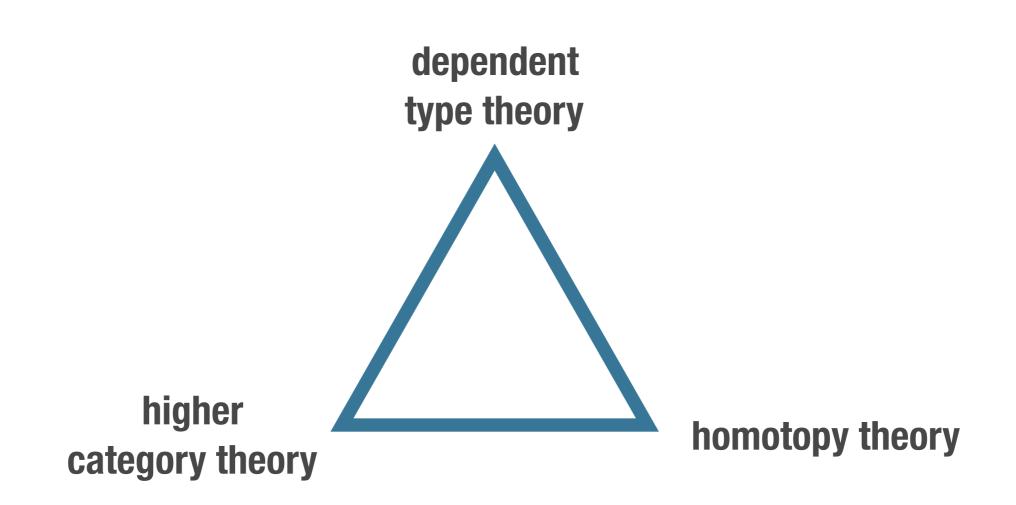
Awodey,van den Berg,Gambino,Garner,Hofmann, Lumsdaine,Streicher,Voevodsky,Warren 1994-2010

Semantics

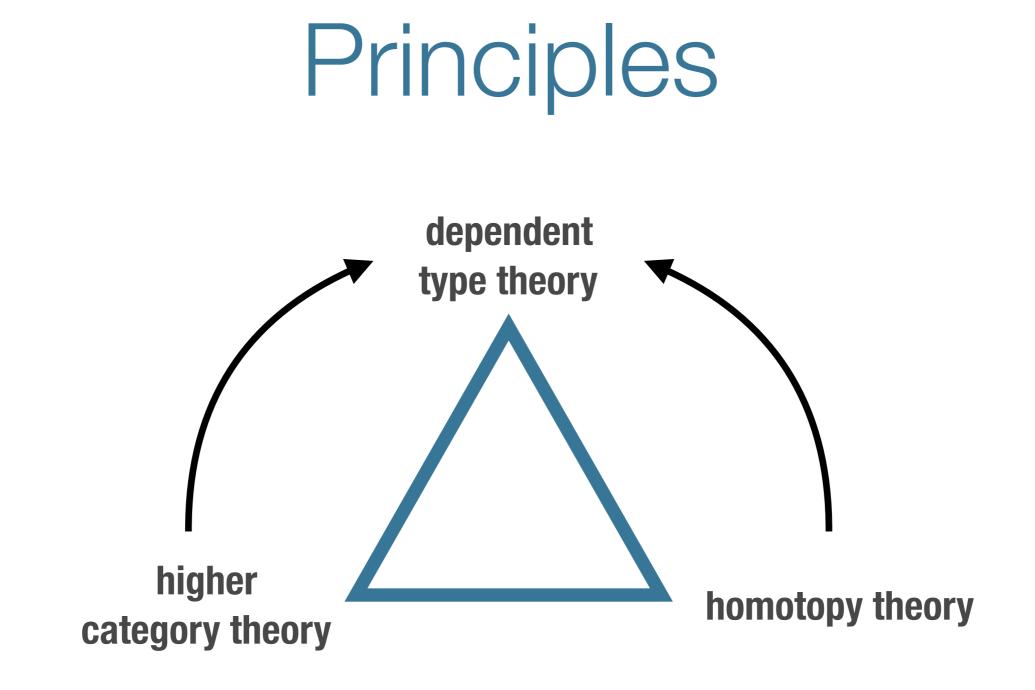


Awodey,van den Berg,Gambino,Garner,Hofmann, Lumsdaine,Streicher,Voevodsky,Warren 1994-2010

Principles

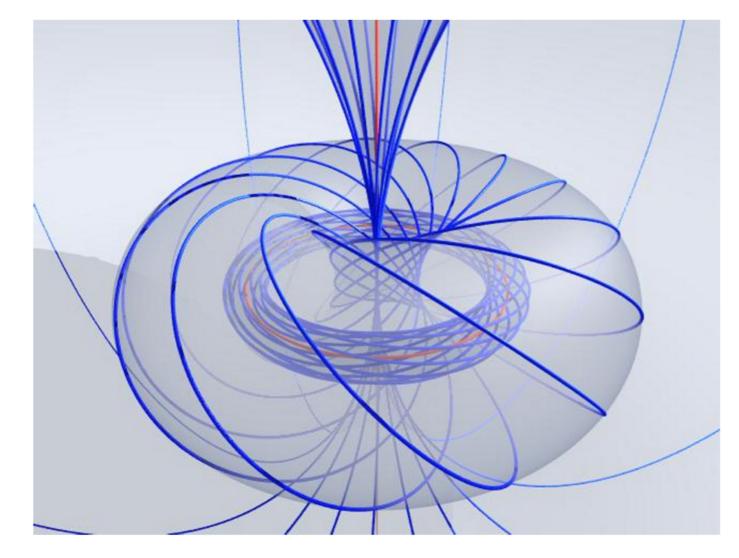


Univalence [Voevodsky, 2006] Higher inductive types [Bauer,Lumsdaine,Shulman,Warren, 2011]



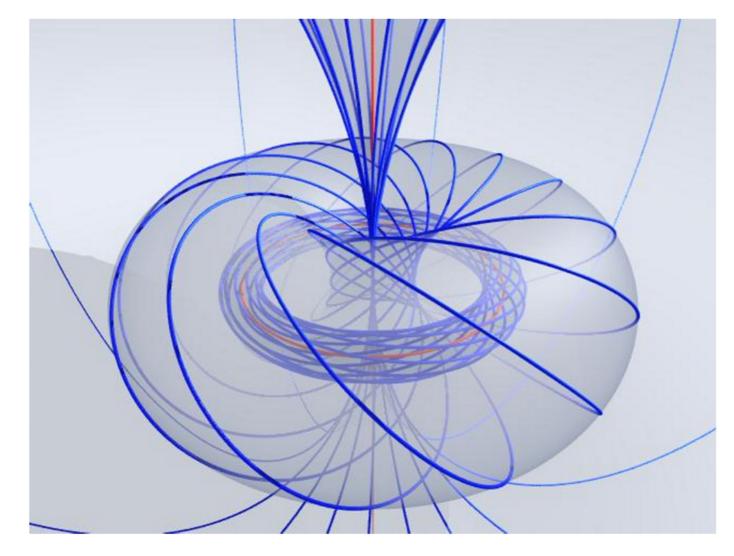
Univalence [Voevodsky, 2006] Higher inductive types [Bauer,Lumsdaine,Shulman,Warren, 2011]

FP as a language for objects of higher homotopy type



©Benoît R. Kloeckner CC-BY-NC

FP as a language for objects of higher homotopy type



rotLoop : (a : S1) -> Id S1 a a = split base -> loopS1 loop @ i -> constSquare @ i rot : S1 -> S1 -> S1 = split base \rightarrow (\ (y : S1) \rightarrow y) loop @ i -> $(\ (y : S1) \rightarrow rotLoop y @ i)$ rotpath (x : S1) : Id U S1 S1 = ua (rot x, ...) $H : S2 \rightarrow U = split$ north -> S1 south -> S1 merid a @ x -> rotpath a @ x

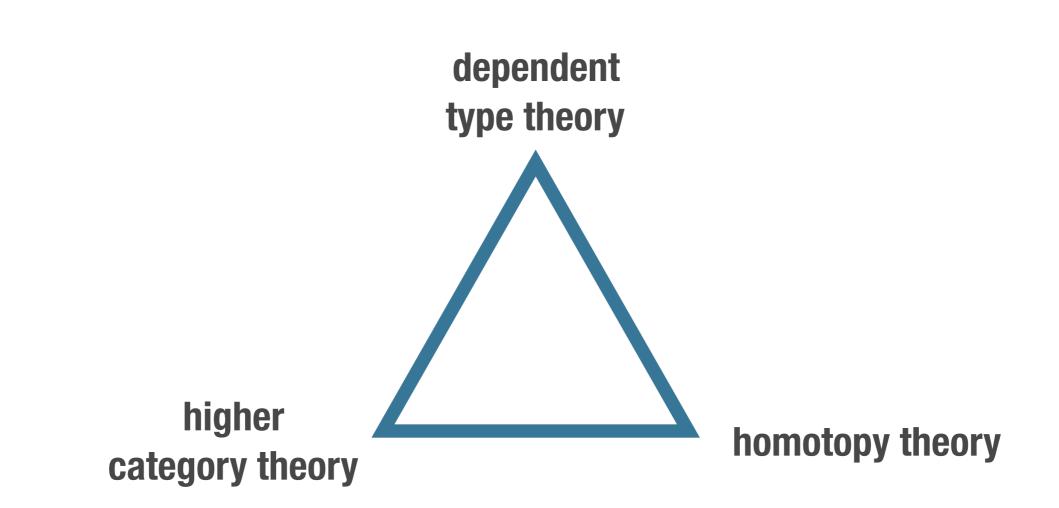
©Benoît R. Kloeckner CC-BY-NC

Mechanized proofs

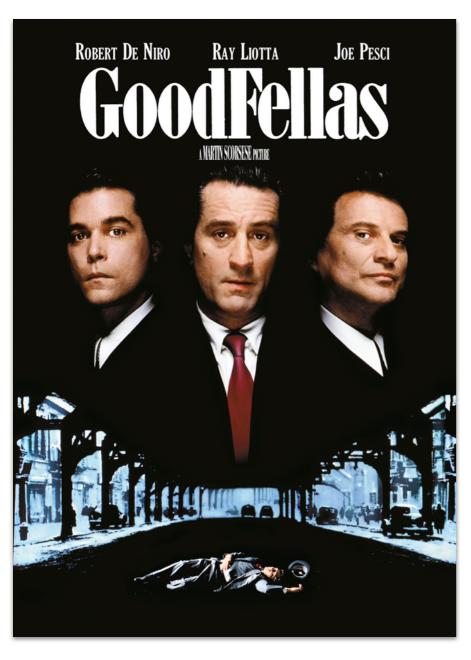
Freudenthal Van Kampen $\pi_1(S^1) = \mathbb{Z}$ Covering spaces $\pi_{k < n}(S^n) = 0$ $\pi_n(S^n) = \mathbb{Z}$ K(G,n)Whitehead Hopf fibrations for n-types $\pi_2(S^2) = \mathbb{Z}$ **Blakers-Massey** Cohomology $\pi_3(S^2) = \mathbb{Z}$ $T^2 = S^1 \times S^1$ axioms

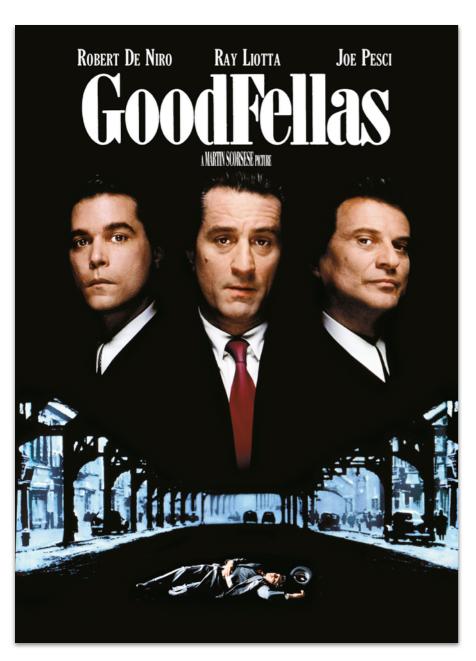
Projective Spaces Mayer-Vietoris

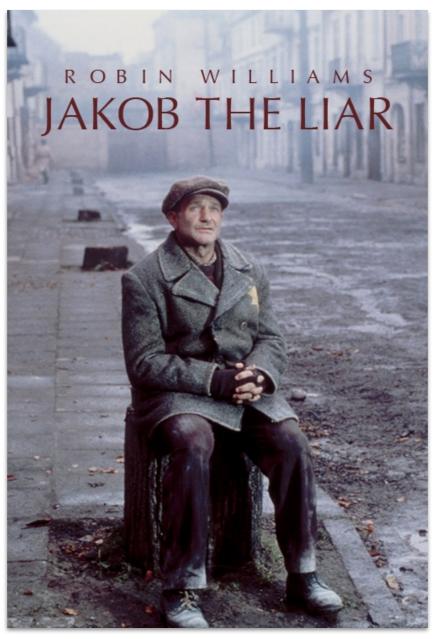
[Brunerie,Buchholtz,Cavallo,Finster, Hou,Licata,Lumsdaine,Rilke,Shulman]

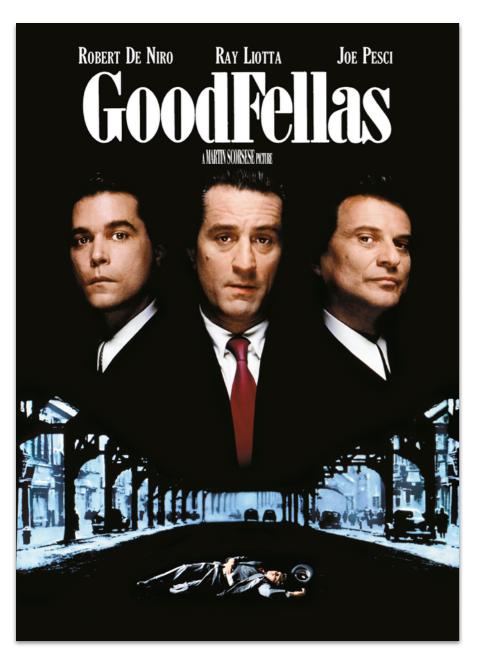


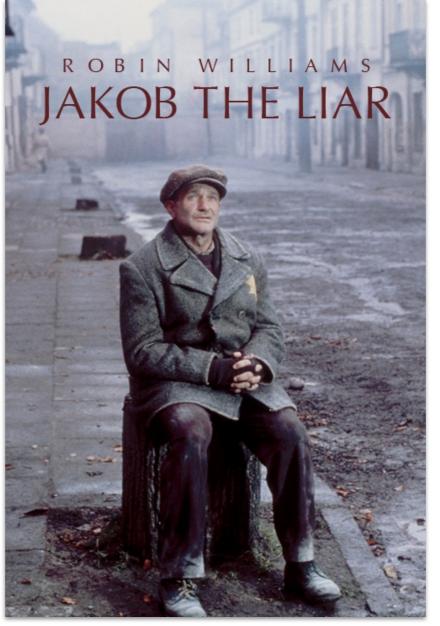
What does this all mean in programming terms?

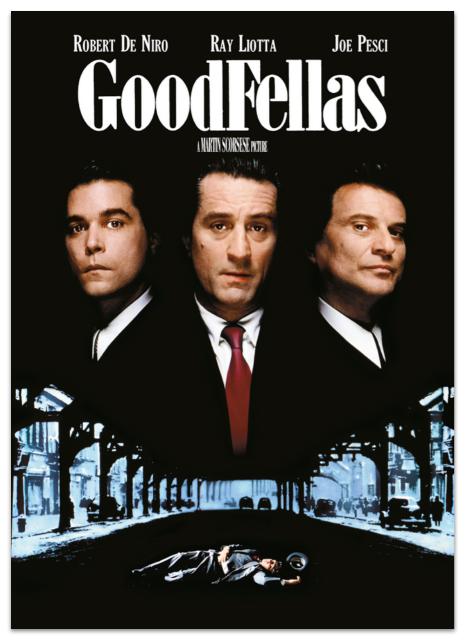


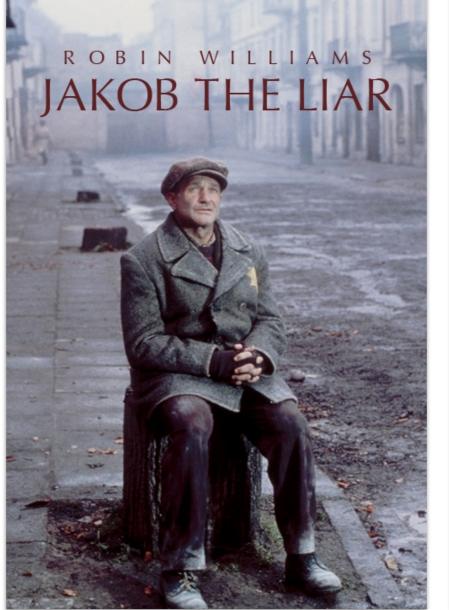


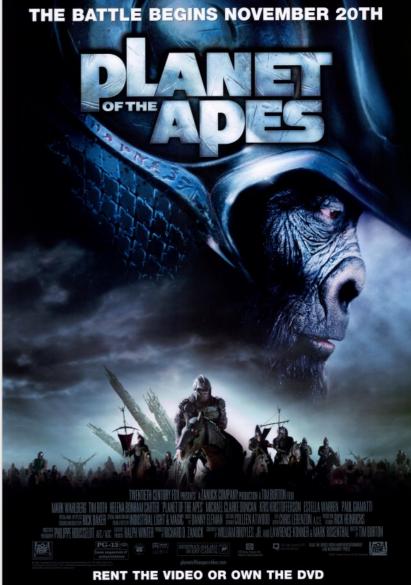




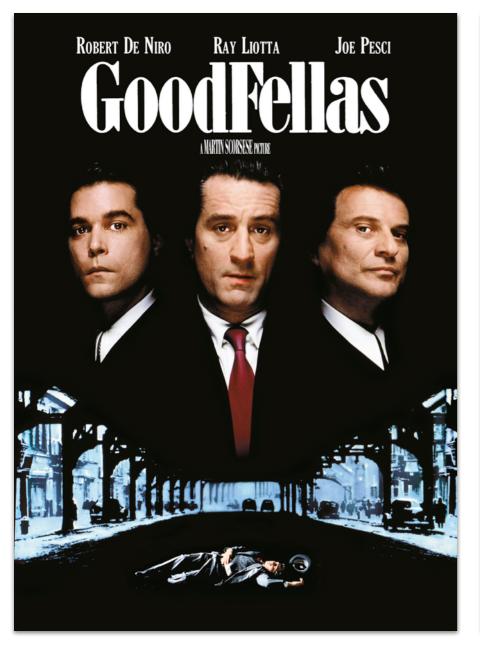


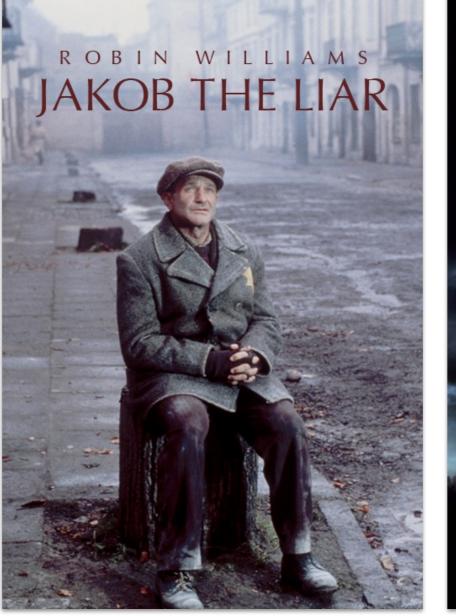


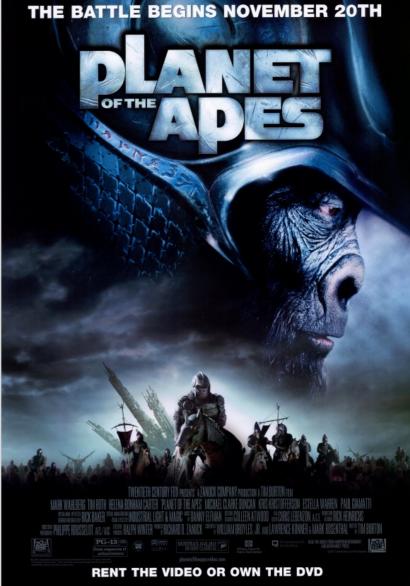




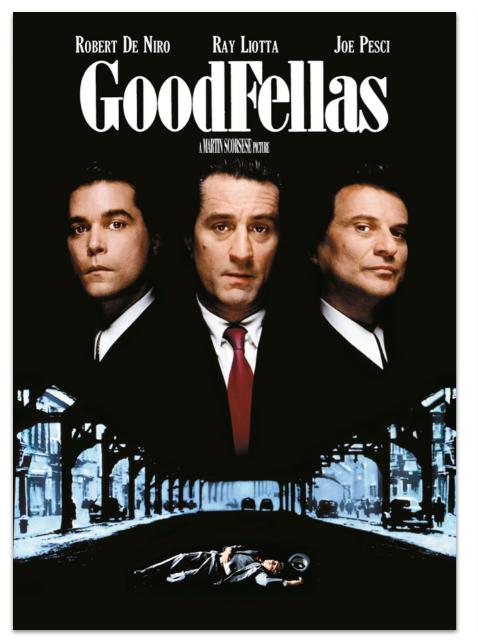
In a world that's powered by violence...

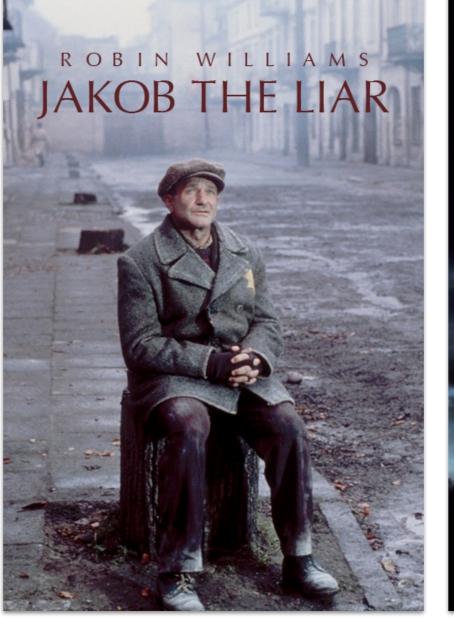






In a world that's powered by violence... In a world where owning a radio was strictly forbidden...

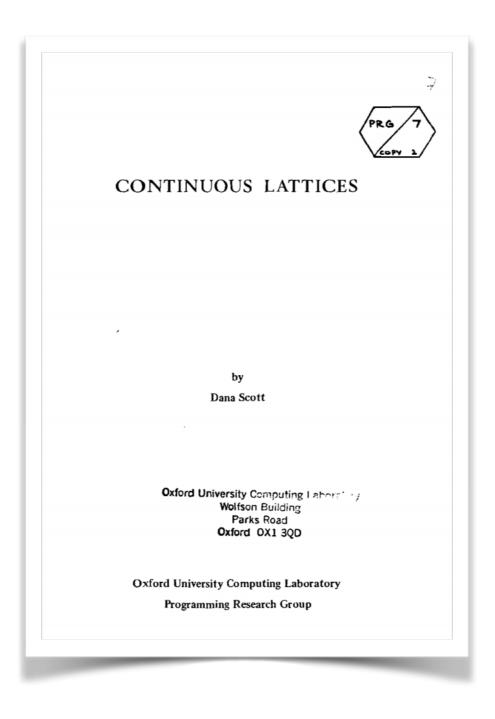




In a world that's powered by violence... In a world where owning a radio was strictly forbidden...

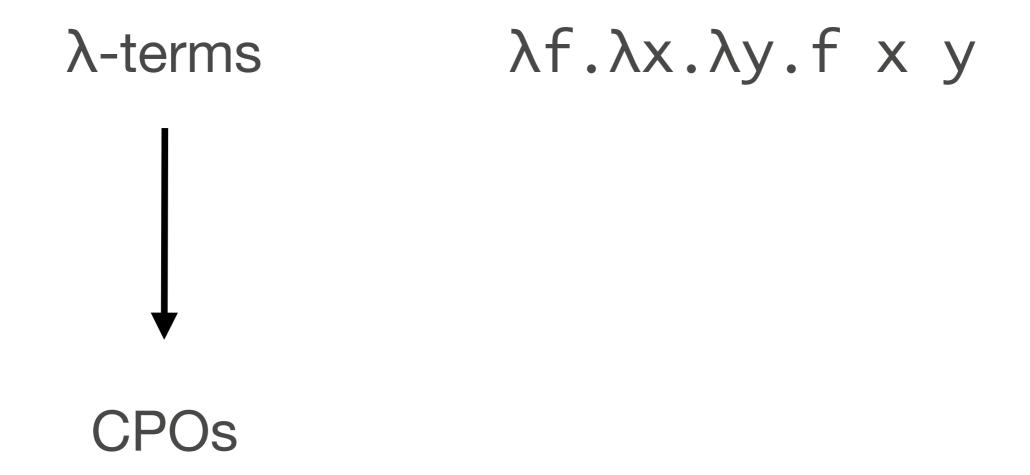
In a world where freedom is history...

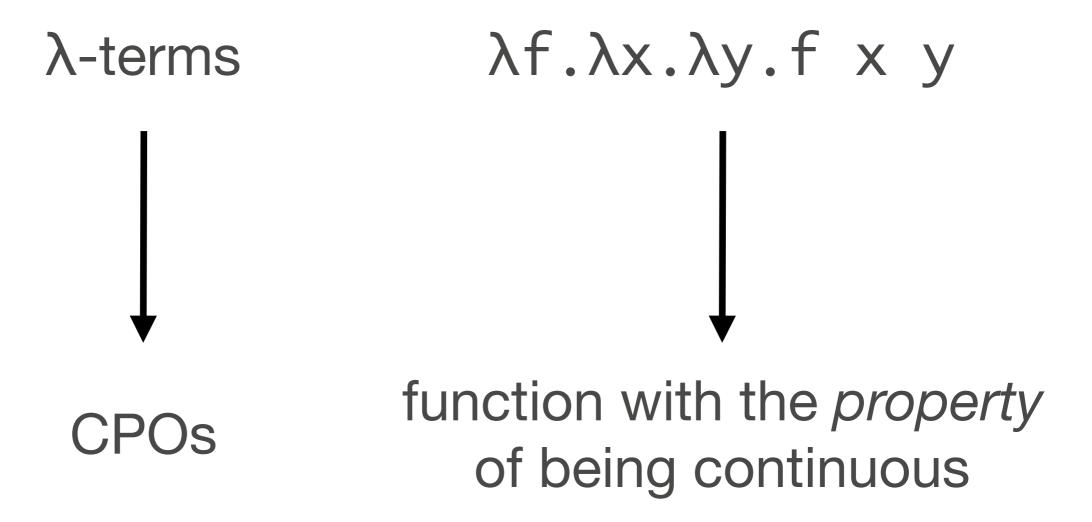
In a world where all functions are monotone and preserve least upper bounds...

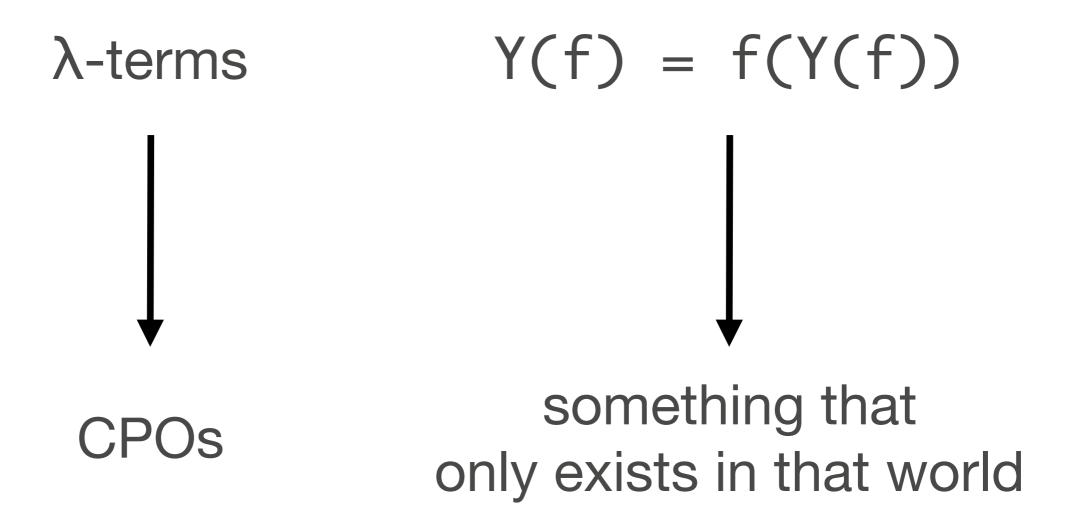


In a world where all functions are monotone and preserve least upper bounds...

λ-terms







In a world where all functions secretly **are** something...

In a world where all functions secretly **do** something...

In a world where all functions secretly **do** something...

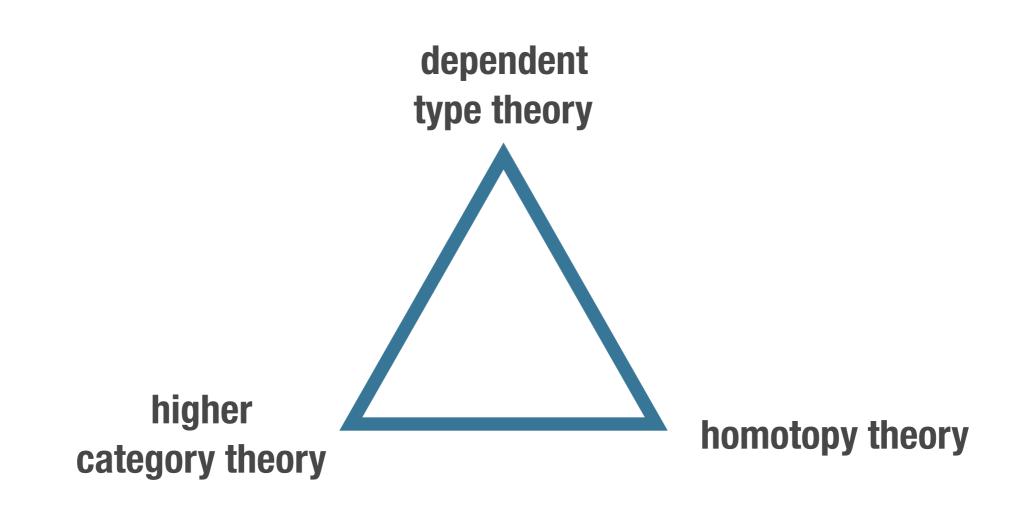
get "code for free" / generic programs

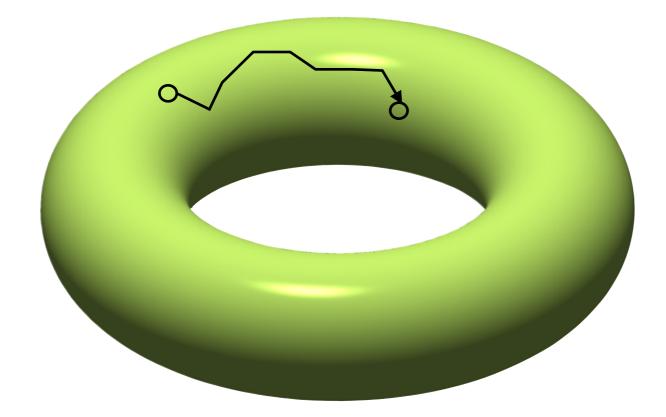
In a world where all functions secretly **do** something...

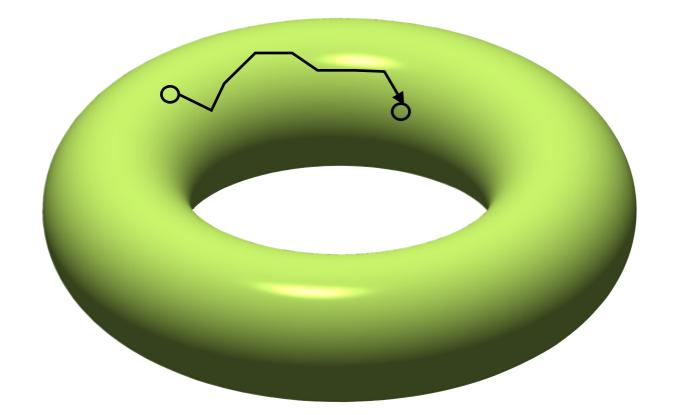
get "code for free" / generic programs

* can add new principles that depend on them

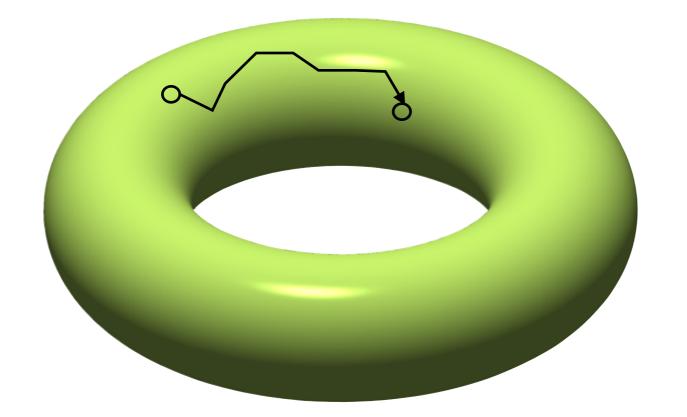
Homotopy type theory





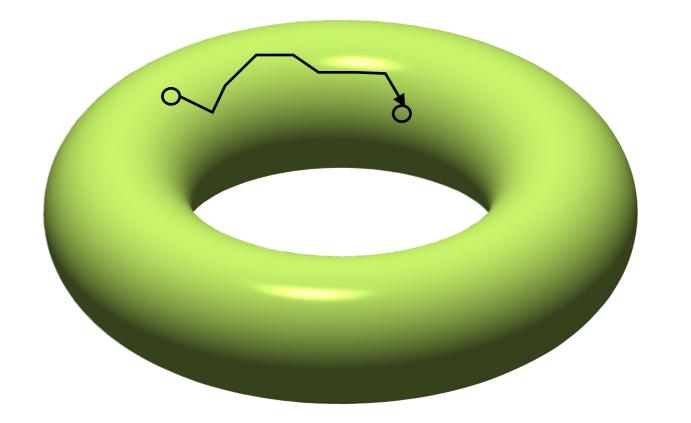


each type is a space, with points and paths



each type is a space, with points and paths

programs are points

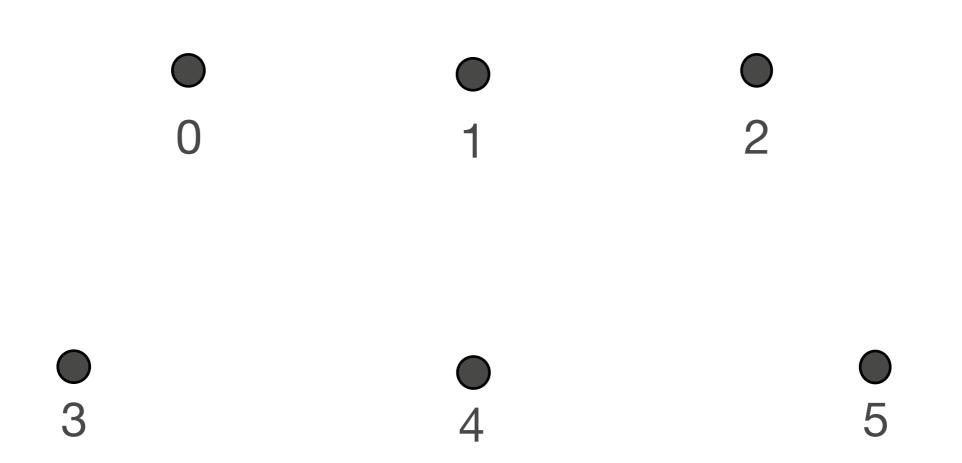


each type is a space, with points and paths

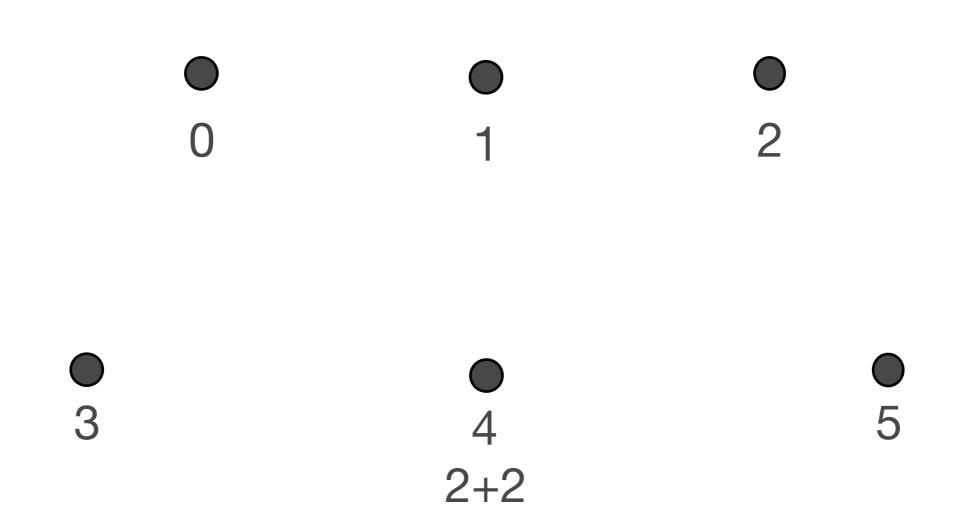
programs are points

points can be "literally the same" or connected by a path

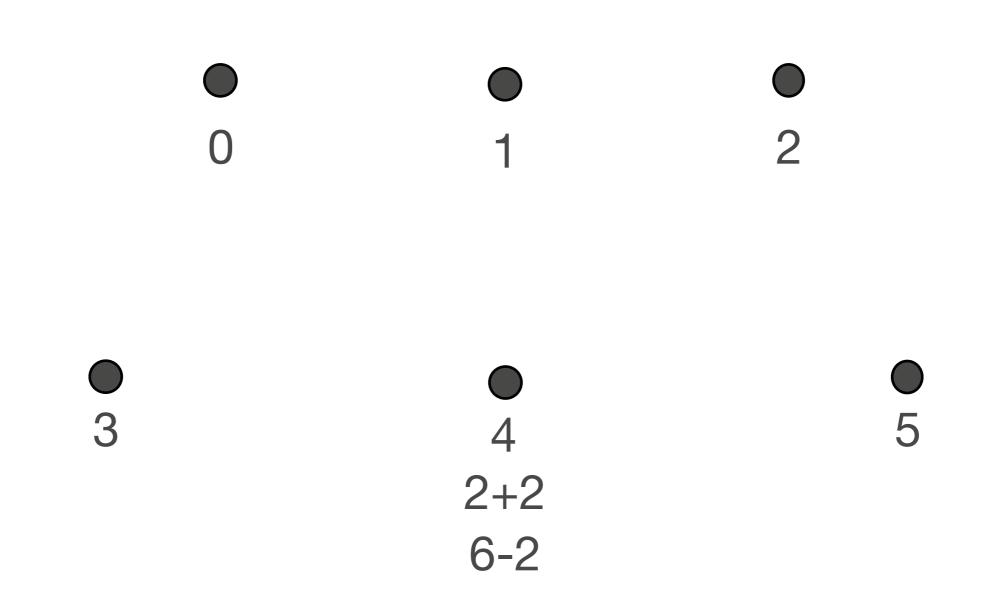
Many types are discrete (Nat)

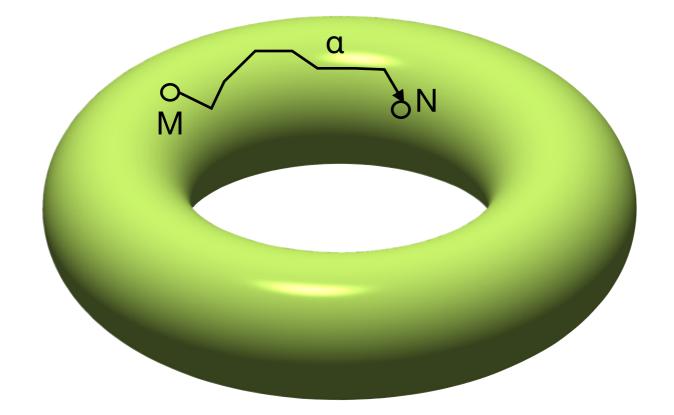


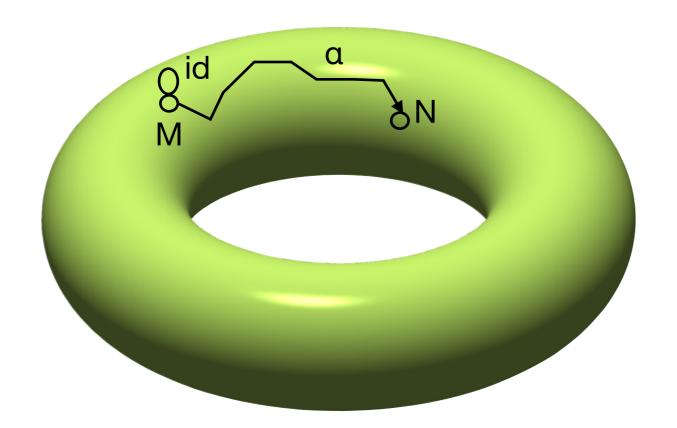
Many types are discrete (Nat)



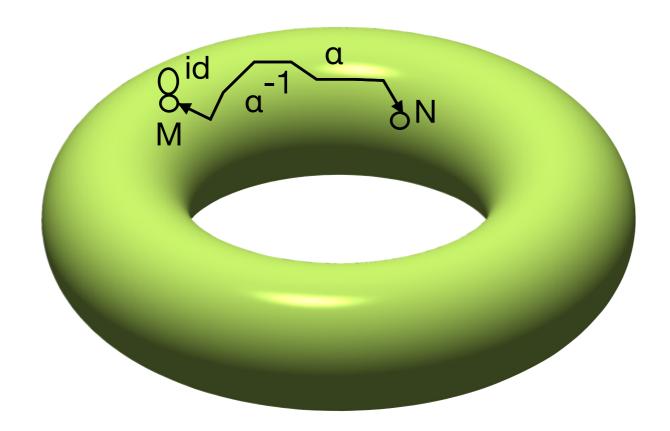
Many types are discrete (Nat)





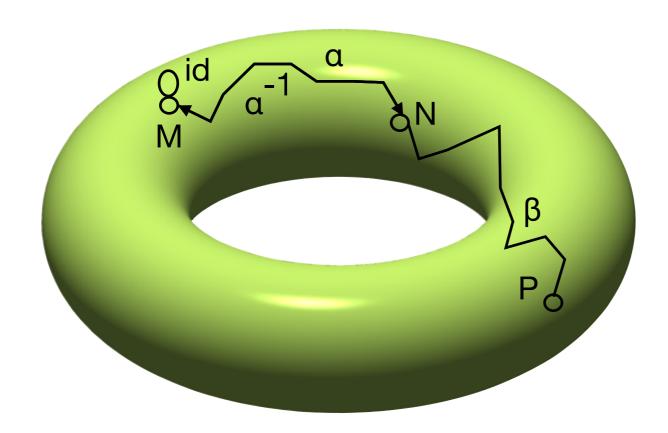


reflexivity id : Path M M



reflexivity id : Path M M

symmetry α⁻¹ : Path N M

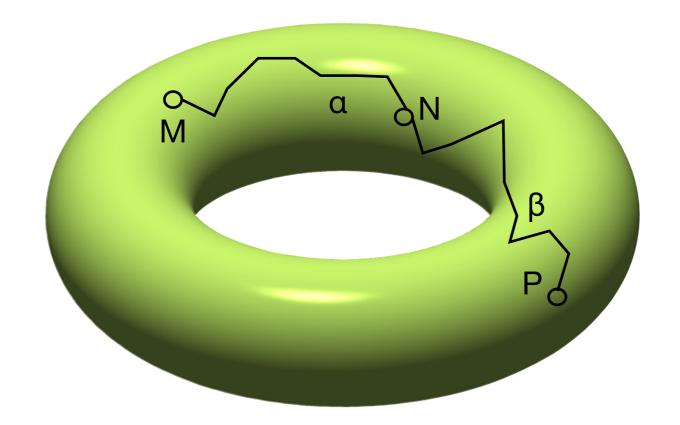


reflexivity

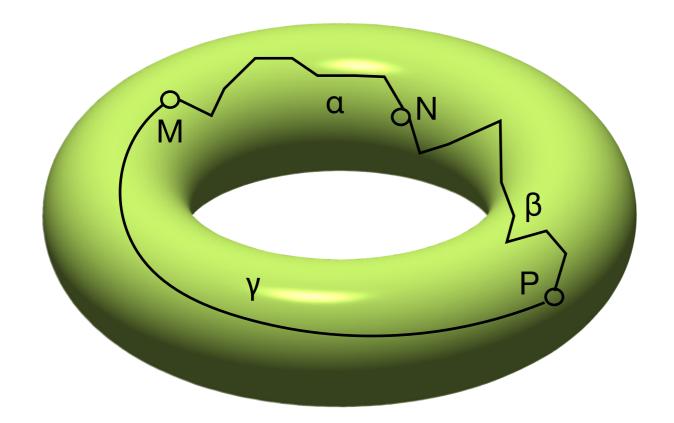
id : Path M M

symmetry α⁻¹ : Path N M

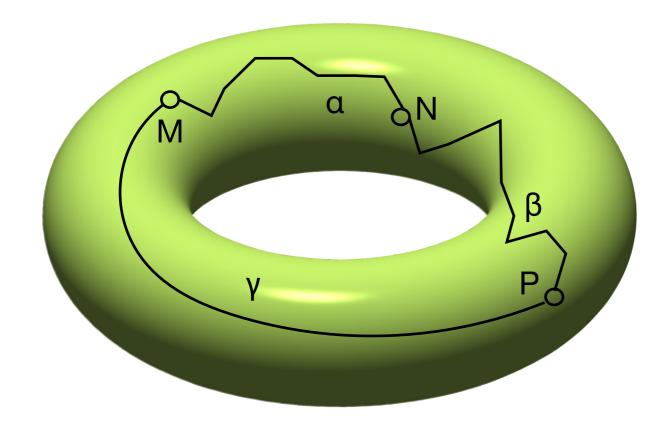
transitivity $\beta \circ \alpha$: Path M P



$\beta \circ \alpha$: Path M P

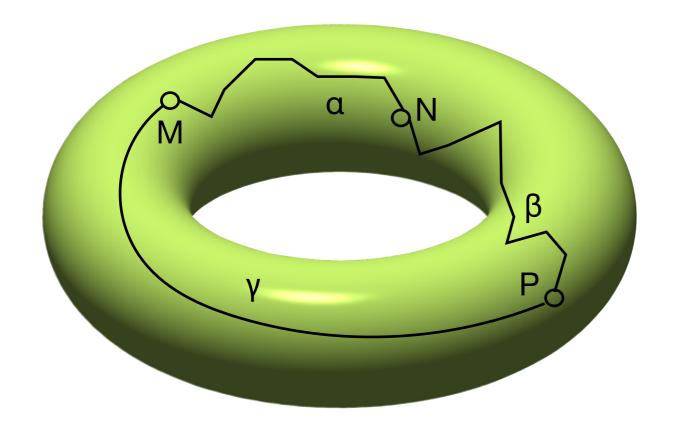


- $\beta \circ \alpha$: Path M P
 - γ : Path M P



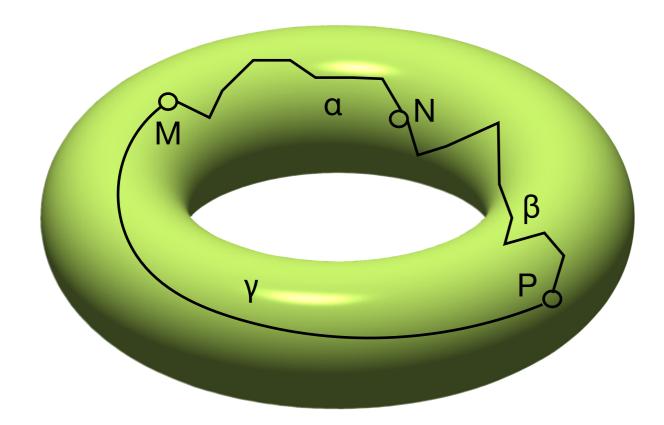
- β o α : Path M P
 - γ : Path M P

 $(\beta \circ \alpha) \neq \gamma$

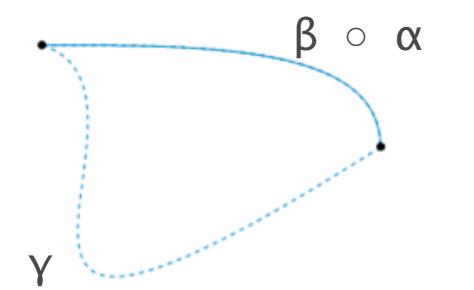


- β o α : Path M P
 - γ: Path M P

- $(\beta \circ \alpha) \neq \gamma$
- Path_{Path M P} ($\beta \circ \alpha$) γ

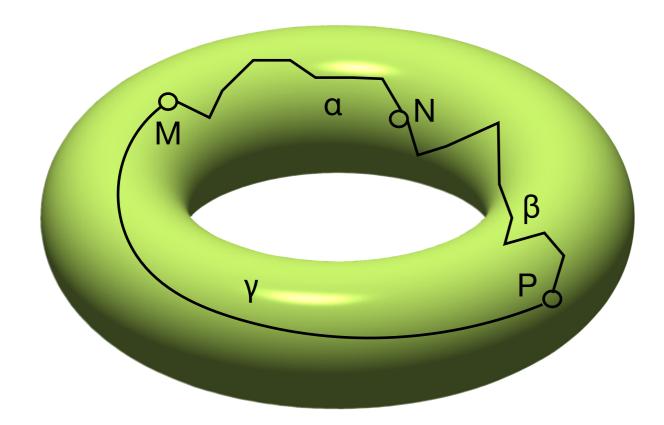


- β o α : Path M P
 - γ : Path M P

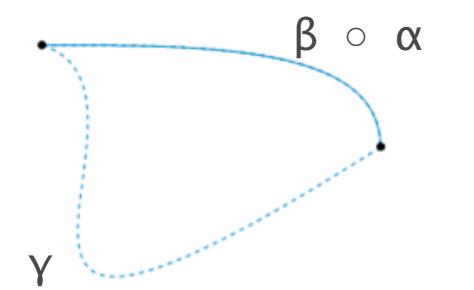


 $(\beta \circ \alpha) \neq \gamma$

- Path_{Path M P} ($\beta \circ \alpha$) γ



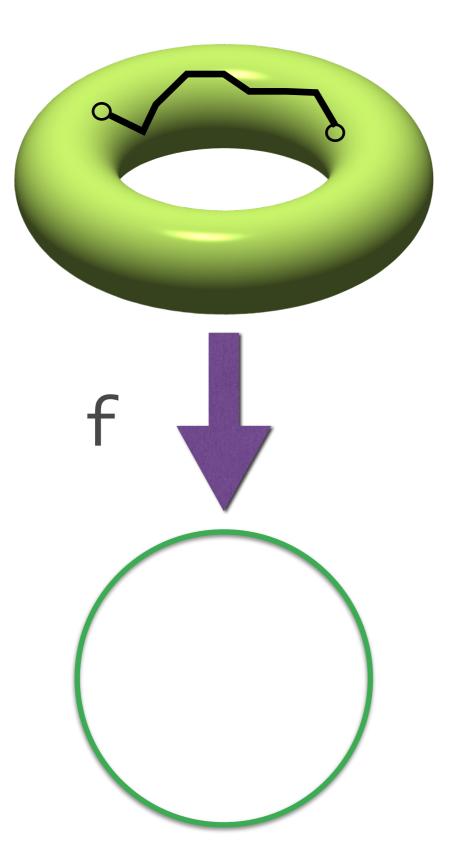
- β o α : Path M P
 - γ : Path M P



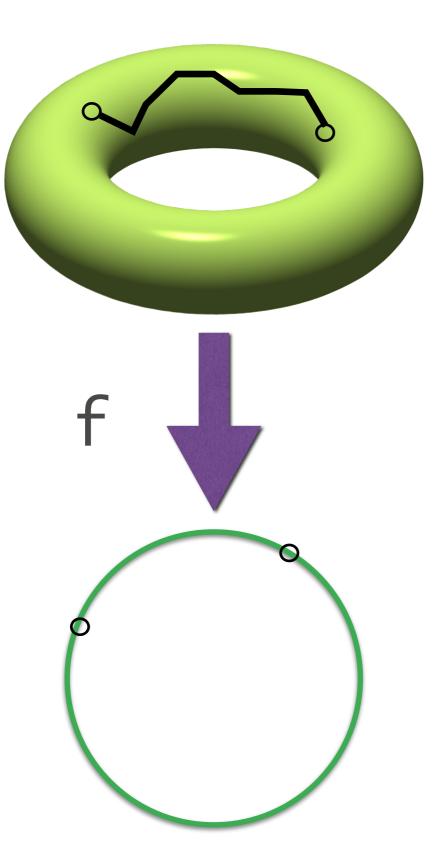
 $(\beta \circ \alpha) \neq \gamma$

- Path_{Path M P} ($\beta \circ \alpha$) γ

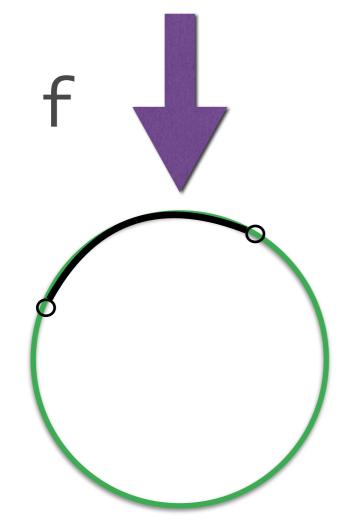
Functions "secretly" act on paths



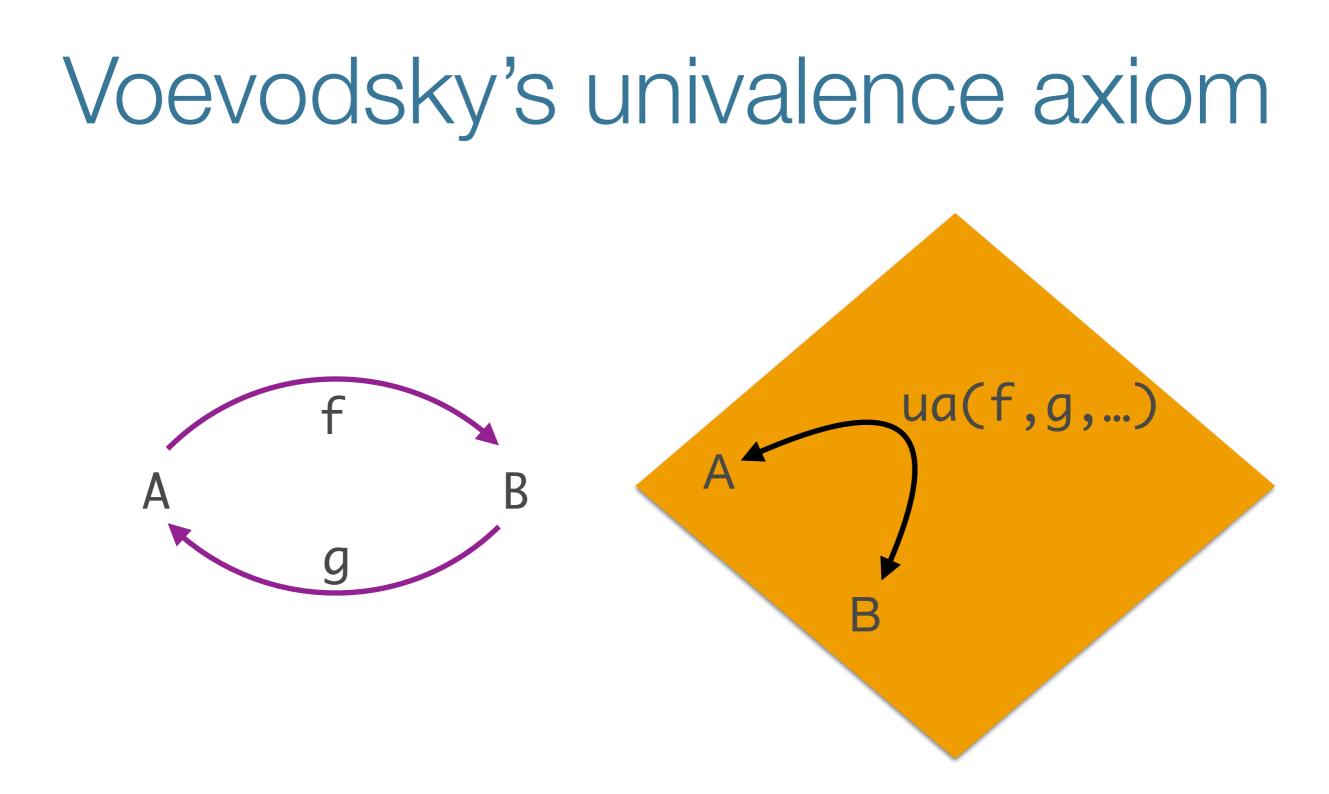
Functions "secretly" act on paths



Functions "secretly" act on paths



Path x y → Path f(x) f(y)



bijections induce paths between types

Monad interface (classic)

[Godemont,Moggi,Wadler]

record Monad (T : Type \rightarrow Type) : Type where field return : $\forall \{A\} \rightarrow A \rightarrow T A$ _>>=_ : $\forall \{A \ B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B$

Monad interface (classic)

[Godemont,Moggi,Wadler]

record Monad (T : Type \rightarrow Type) : Type where field return : $\forall \{A\} \rightarrow A \rightarrow T A$ $_>>=_$: $\forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B$ lunit : $\forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a$ runit : $\forall \{A\} \{c : T A\} \rightarrow (c >>= return) == c$ assoc : $\forall \{A B C\} \{c : T A\} \{f : A \rightarrow T B\} \{g : B \rightarrow T C\}$ $\rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)$

Applicative interface

[McBride,Patterson]

record Applicative (T : Type \rightarrow Type) : Type where field

pure : $\forall \{A\} \rightarrow A \rightarrow T A$

 $_{^{*}}_{-} : \forall \{A B\} \rightarrow T (A \rightarrow B) \rightarrow T A \rightarrow T B$

Applicative interface

[McBride,Patterson]

record Applicative (T : Type \rightarrow Type) : Type where field

pure : $\forall \{A\} \rightarrow A \rightarrow T A$

 $_{^{*}}_{-} : \forall \{A B\} \rightarrow T (A \rightarrow B) \rightarrow T A \rightarrow T B$

effects influence value but not structure

Applicative interface

[McBride,Patterson]

record Applicative (T : Type \rightarrow Type) : Type where field pure : $\forall \{A\} \rightarrow A \rightarrow T A$ $_{<*>}_$: $\forall \{A B\} \rightarrow T (A \rightarrow B) \rightarrow T A \rightarrow T B$ pure-id : $\forall \{A\} \{c : T A\} \rightarrow pure (\setminus x \rightarrow x) <^* > c == c$ pure-comp : $\forall \{A \ B \ C\} \{f : T \ (A \rightarrow B)\} \{g : T \ (B \rightarrow C)\} \{c : T \ A\}$ \rightarrow ((pure _0_ <*> g) <*> f) <*> c == g <*> (f <*> c) apply-pure : $\forall \{A B\} \{f : A \rightarrow B\} \{a : A\}$ \rightarrow pure f <*> pure a == pure (f a) apply-to-pure : $\forall \{A B\} \{f : T (A \rightarrow B)\} \{a : A\}$ \rightarrow f <*> (pure a) == pure (λ f₁ \rightarrow f₁ a) <*> f

effects influence value but not structure

Monad interface (new)

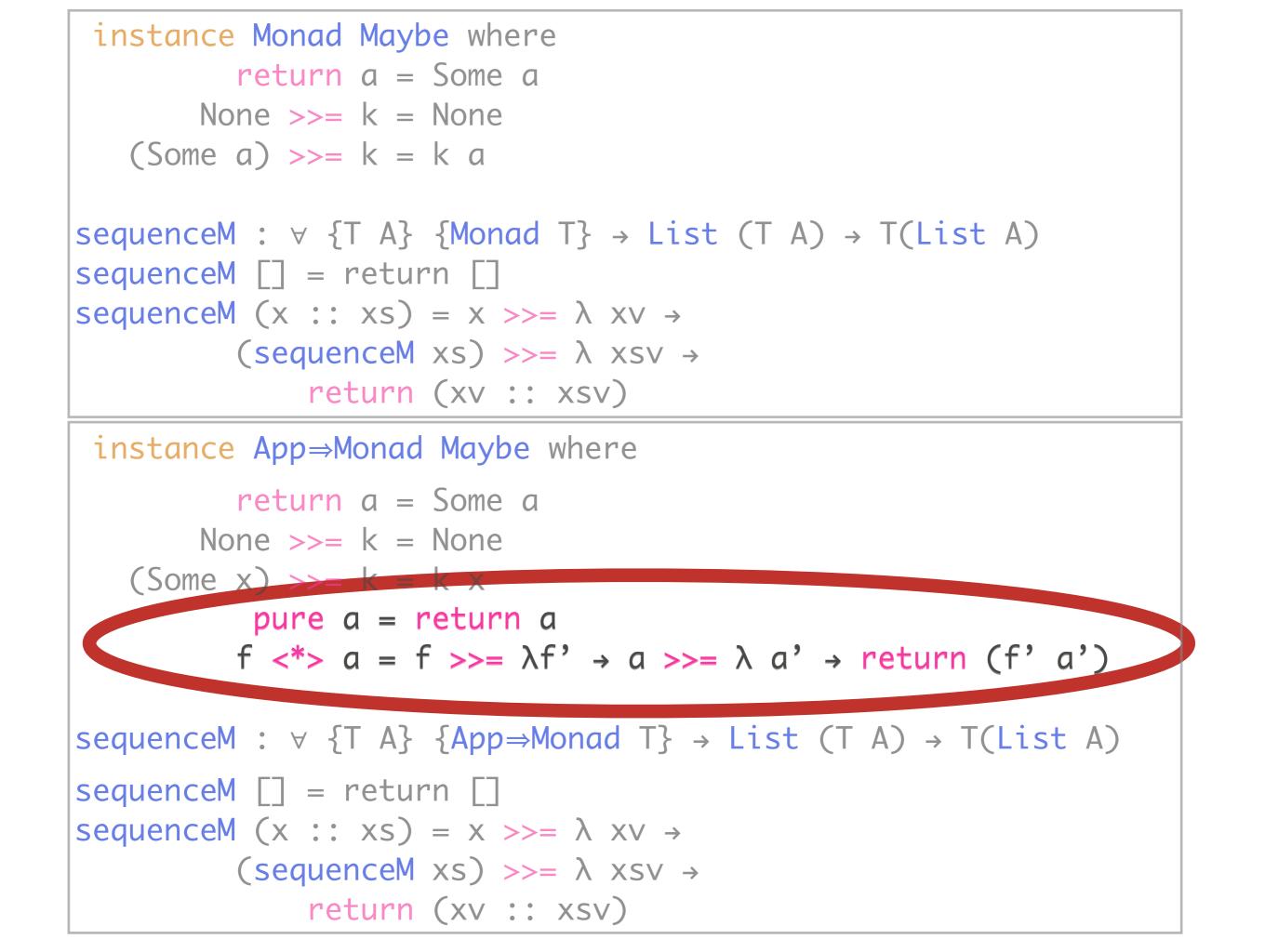
record App \Rightarrow Monad (T : Type \rightarrow Type) : Type where

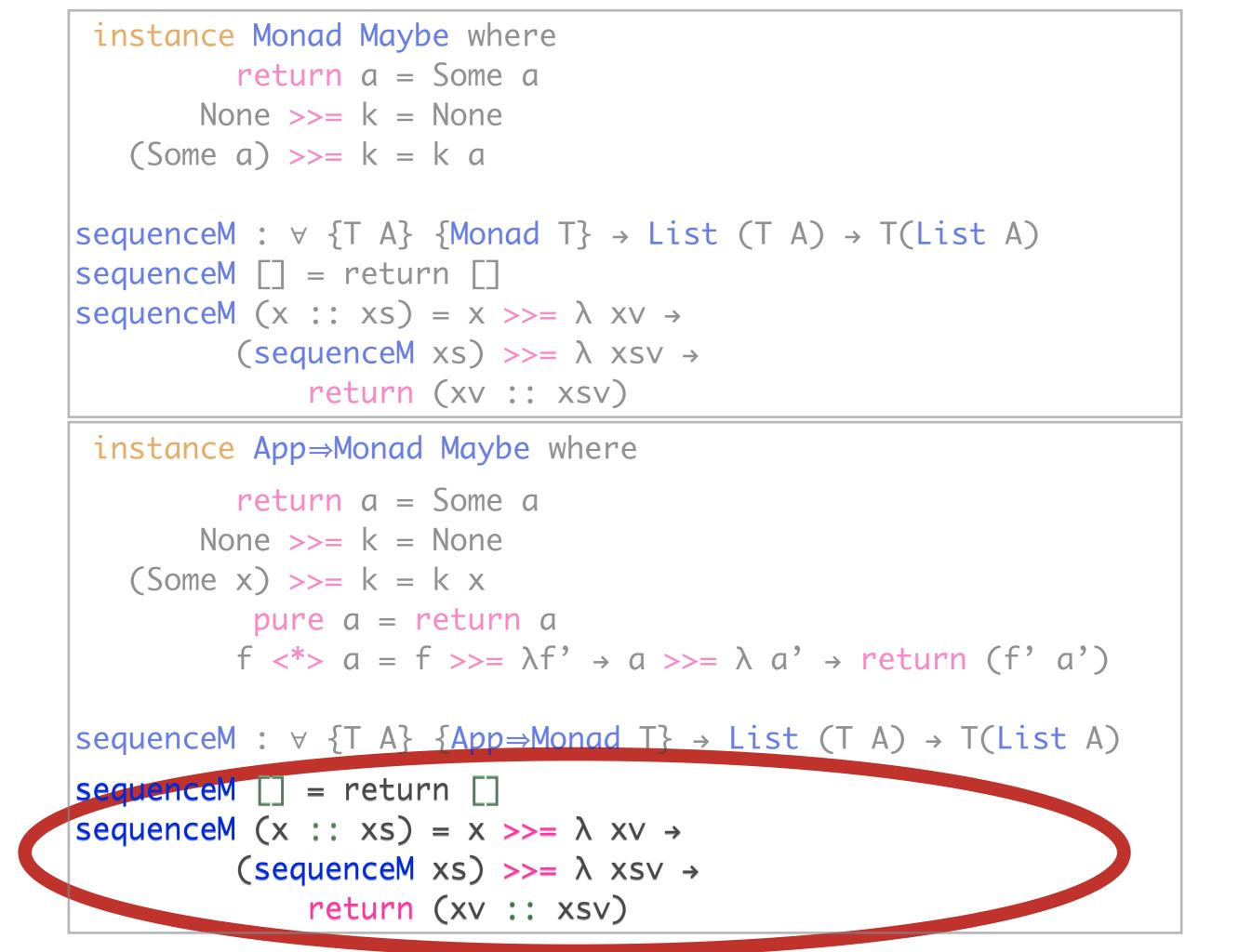
$$\begin{array}{l} \mbox{return} : \forall \{A\} \rightarrow A \rightarrow T A \\ _>>=_ : \forall \{A \ B\} \rightarrow T \ A \rightarrow (A \rightarrow T \ B) \rightarrow T \ B \\ \mbox{lunit} : \forall \{A \ B\} \{a : A\} \{f : A \rightarrow T \ B\} \rightarrow (\mbox{return} \ a >>= f) == f \ a \\ \mbox{runit} : \forall \{A\} \{c : T \ A\} \rightarrow (c >>= \mbox{return}) == c \\ \mbox{assoc} : \forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\} \\ \rightarrow ((c >>= f) >>= g) == c >>= (\lambda \ x \rightarrow f \ x >>= g) \end{array}$$

Monad interface (new)

record App
$$\Rightarrow$$
Monad (T : Type \rightarrow Type) : Type where
AT : Applicative T
return : $\forall \{A\} \rightarrow A \rightarrow T A$
 $_>>=_$: $\forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B$
lunit : $\forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a$
runit : $\forall \{A\} \{c : T A\} \rightarrow (c >>= return) == c$
assoc : $\forall \{A B C\} \{c : T A\} \{f : A \rightarrow T B\} \{g : B \rightarrow T C\}$
 $\rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)$
return-pure : $\forall \{A\} \{a : A\} \rightarrow pure a == return a$
 $<^*>-ap$: $\forall \{A B\} \{f : T (A \rightarrow B)\} \{a : T A\}$
 $\rightarrow f <^*> a == (f >>= \lambda f' \rightarrow$
return (f' a'))

```
instance Monad Maybe where
            return a = Some a
         None >>= k = None
   (Some a) >>= k = k a
sequenceM : \forall {T A} {Monad T} \rightarrow List (T A) \rightarrow T(List A)
sequenceM [] = return []
sequenceM (x :: xs) = x >>= \lambda xv \rightarrow
           (sequenceM xs) >>= \lambda xsv \rightarrow
                 return (xv :: xsv)
 instance App\RightarrowMonad Maybe where
            return a = Some a
         None >>= k = None
   (Some x) >>= k = k x
             pure a = return a
           f <^{*} a = f >> = \lambda f' \rightarrow a >> = \lambda a' \rightarrow return (f' a')
sequenceM : \forall {T A} {App \Rightarrow Monad T} \Rightarrow List (T A) \Rightarrow T(List A)
sequenceM [] = return []
sequenceM (x :: xs) = x >>= \lambda xv \rightarrow
            (sequenceM xs) >>= \lambda xsv \rightarrow
                 return (xv :: xsv)
```



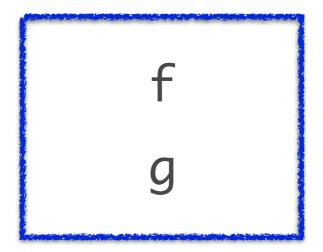


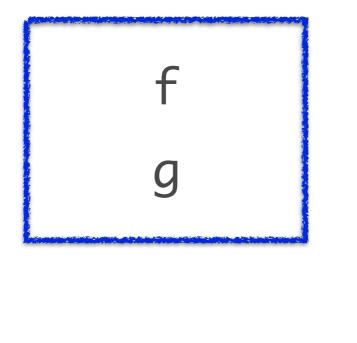
Instance of classic → instance of new

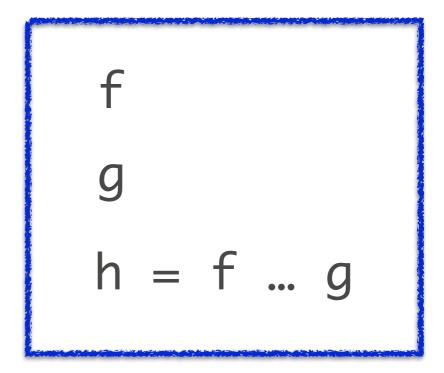
```
record Monad (T : Type \rightarrow Type) : Type where
   field
      return : \forall \{A\} \rightarrow A \rightarrow T A
      \rightarrow : \forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B
      lunit : \forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a
      runit : \forall \{A\} \{c : T A\} \rightarrow (c \gg return) == c
      assoc : \forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\}
                 \rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)
                                               record App\RightarrowMonad (T : Type \rightarrow Type) : Type where
                                                     AT : Applicative T
                                                      return : \forall \{A\} \rightarrow A \rightarrow T A
                                                     \_>>=\_ : \forall \{A \ B\} \rightarrow T \ A \rightarrow (A \rightarrow T \ B) \rightarrow T \ B
                                                     lunit : \forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a
                                                      runit : \forall \{A\} \{c : T A\} \rightarrow (c \implies return) == c
                                                      assoc : \forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\}
                                                                 \rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)
                                                      return-pure : \forall {A} {a : A} \rightarrow pure a == return a
                                                      <*>-ap : \forall {A B} {f : T (A \rightarrow B)} {a : T A}
                                                                        \rightarrow f <*> a == ( f >>= \lambda f' \rightarrow
                                                                                                a >>= \lambda a' \rightarrow
                                                                                                 return (f' a'))
```

Instance of new → instance of classic

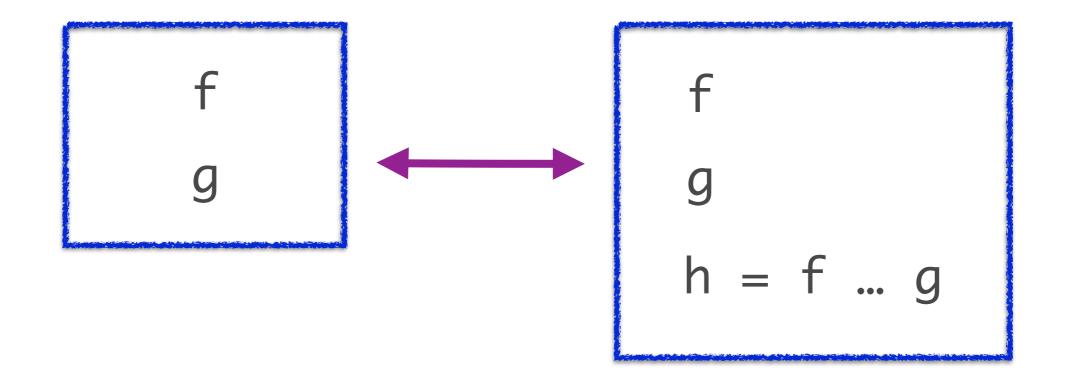
```
record Monad (T : Type \rightarrow Type) : Type where
   field
      return : \forall \{A\} \rightarrow A \rightarrow T A
      \rightarrow : \forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B
      lunit : \forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a
      runit : \forall \{A\} \{c : T A\} \rightarrow (c \gg return) == c
      assoc : \forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\}
                 \rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)
                                               record App\RightarrowMonad (T : Type \rightarrow Type) : Type where
                                                     AT : Applicative T
                                                      return : \forall \{A\} \rightarrow A \rightarrow T A
                                                     \_>>=\_ : \forall \{A \ B\} \rightarrow T \ A \rightarrow (A \rightarrow T \ B) \rightarrow T \ B
                                                     lunit : \forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a
                                                      runit : \forall \{A\} \{c : T A\} \rightarrow (c \implies return) == c
                                                      assoc : \forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\}
                                                                 \rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)
                                                      return-pure : \forall {A} {a : A} \rightarrow pure a == return a
                                                      <*>-ap : \forall {A B} {f : T (A \rightarrow B)} {a : T A}
                                                                        \rightarrow f <*> a == ( f >>= \lambda f' \rightarrow
                                                                                                a >>= \lambda a' \rightarrow
                                                                                                 return (f' a'))
```



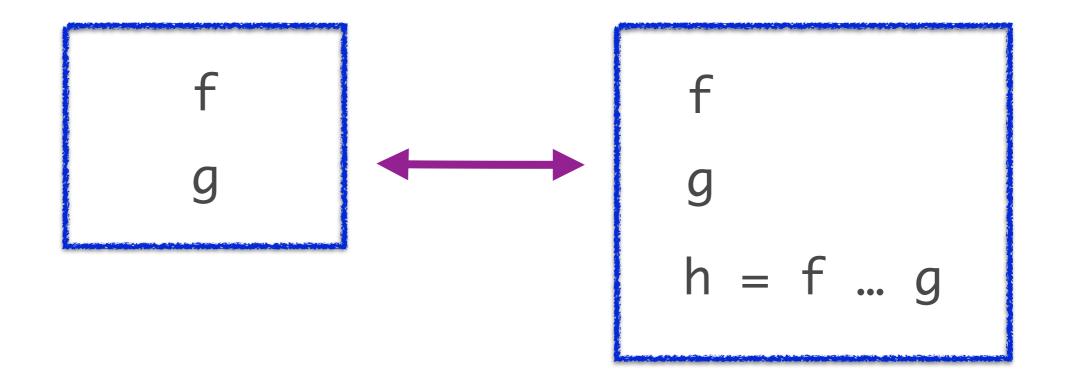




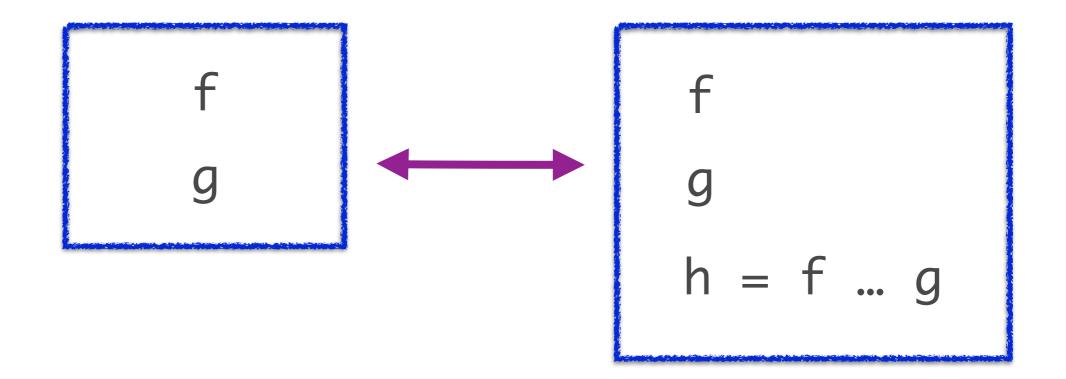
* extend interface with an operation that is determined by the others (convenience, efficiency)



- * extend interface with an operation that is determined by the others (convenience, efficiency)
- * the (default implementation, forget)-bijection can be used to dynamically convert between them



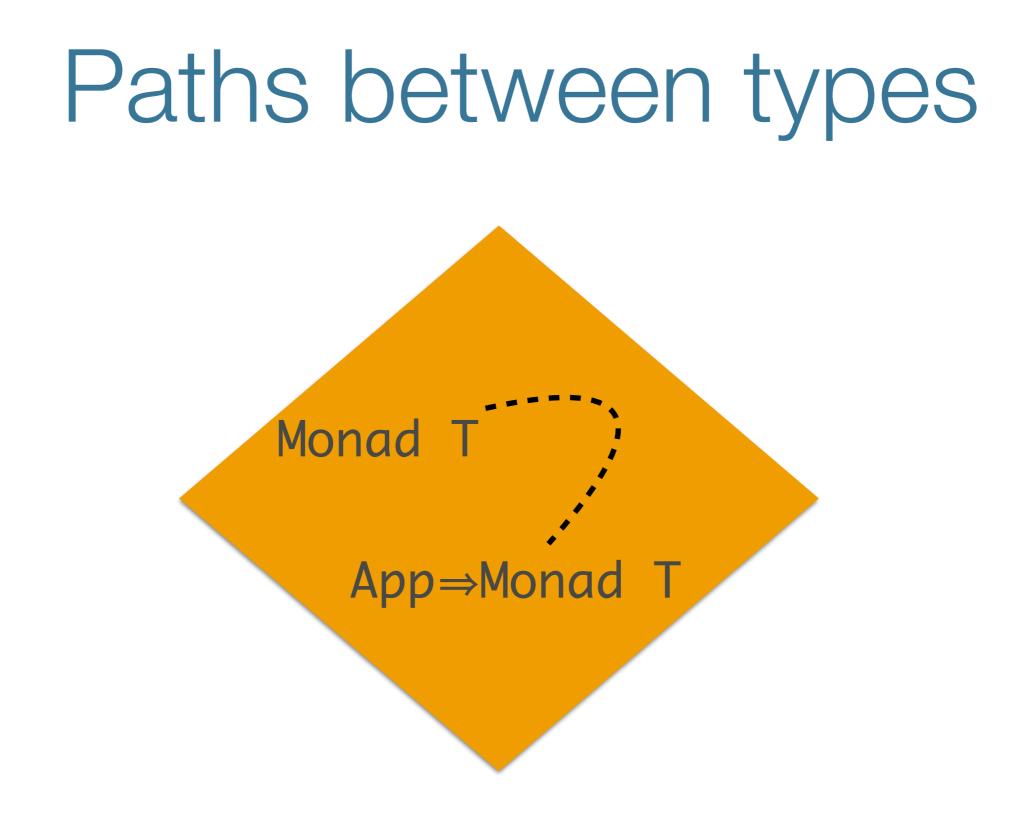
- * extend interface with an operation that is determined by the others (convenience, efficiency)
- * the (default implementation, forget)-bijection can be used to dynamically convert between them
- # it's "obvious" how to apply this in context



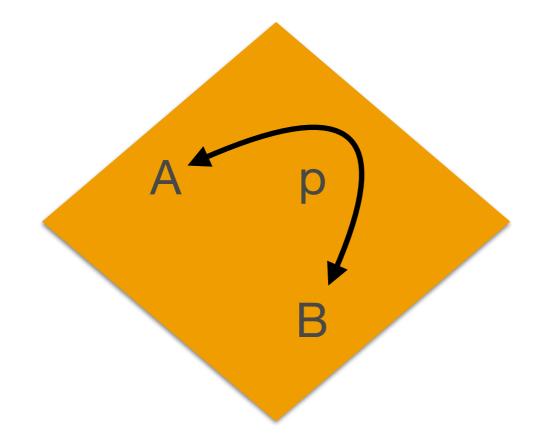
- * extend interface with an operation that is determined by the others (convenience, efficiency)
- * the (default implementation, forget)-bijection can be used to dynamically convert between them
- # it's "obvious" how to apply this in context
- * partially evaluate to modify source code

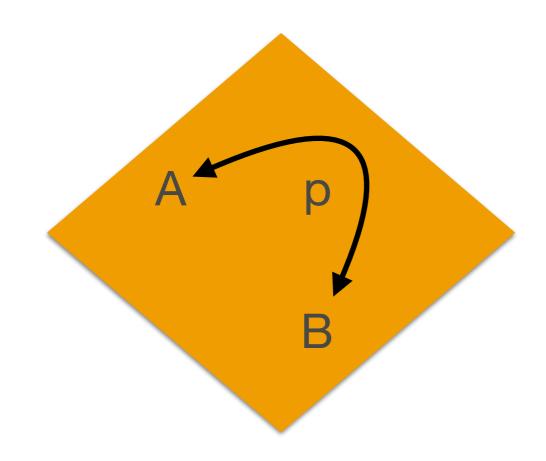
Paths between types

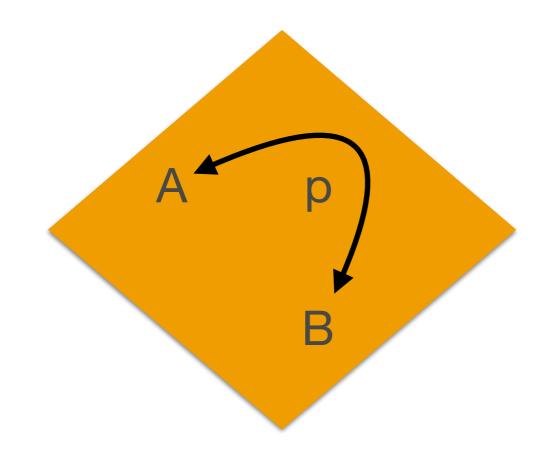
App⇒Monad T



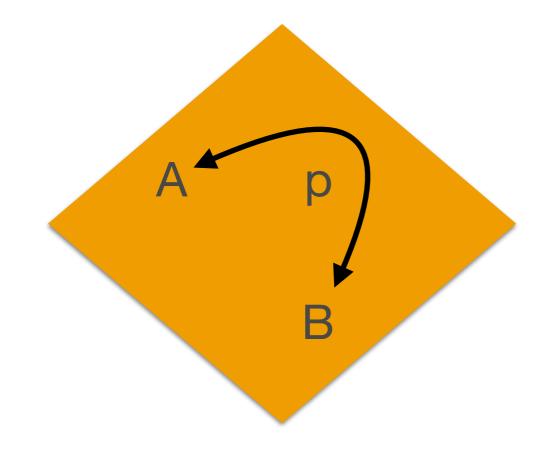
Path-related types do **not** have same elements



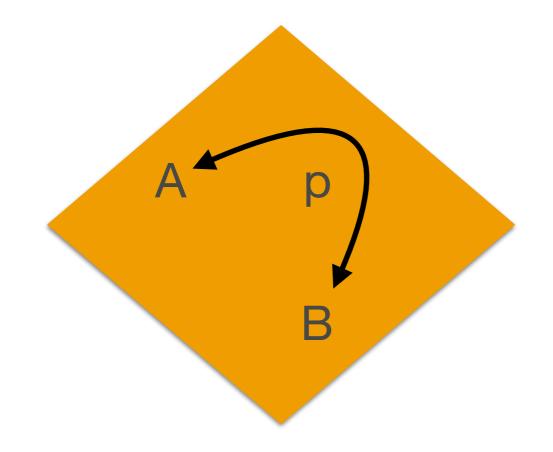




coe p : $A \rightarrow B$

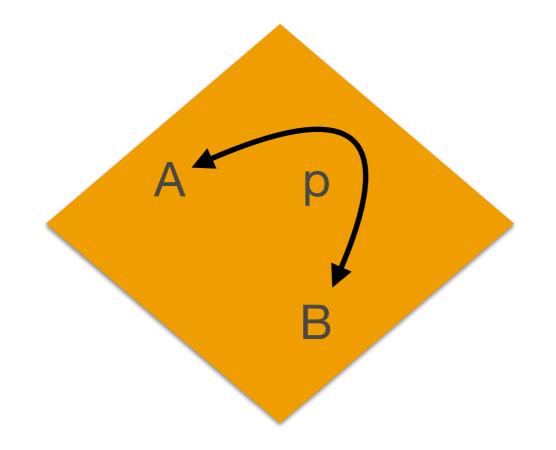


- coe p : $A \rightarrow B$
- coe p⁻¹ : B \rightarrow A



- coe p : $A \rightarrow B$
- coe p⁻¹ : B \rightarrow A

(mutually inverse)



- coe p : $A \rightarrow B$
- coe p⁻¹ : B \rightarrow A

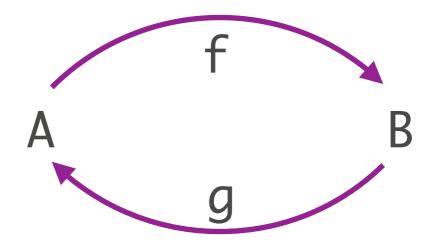
(mutually inverse)

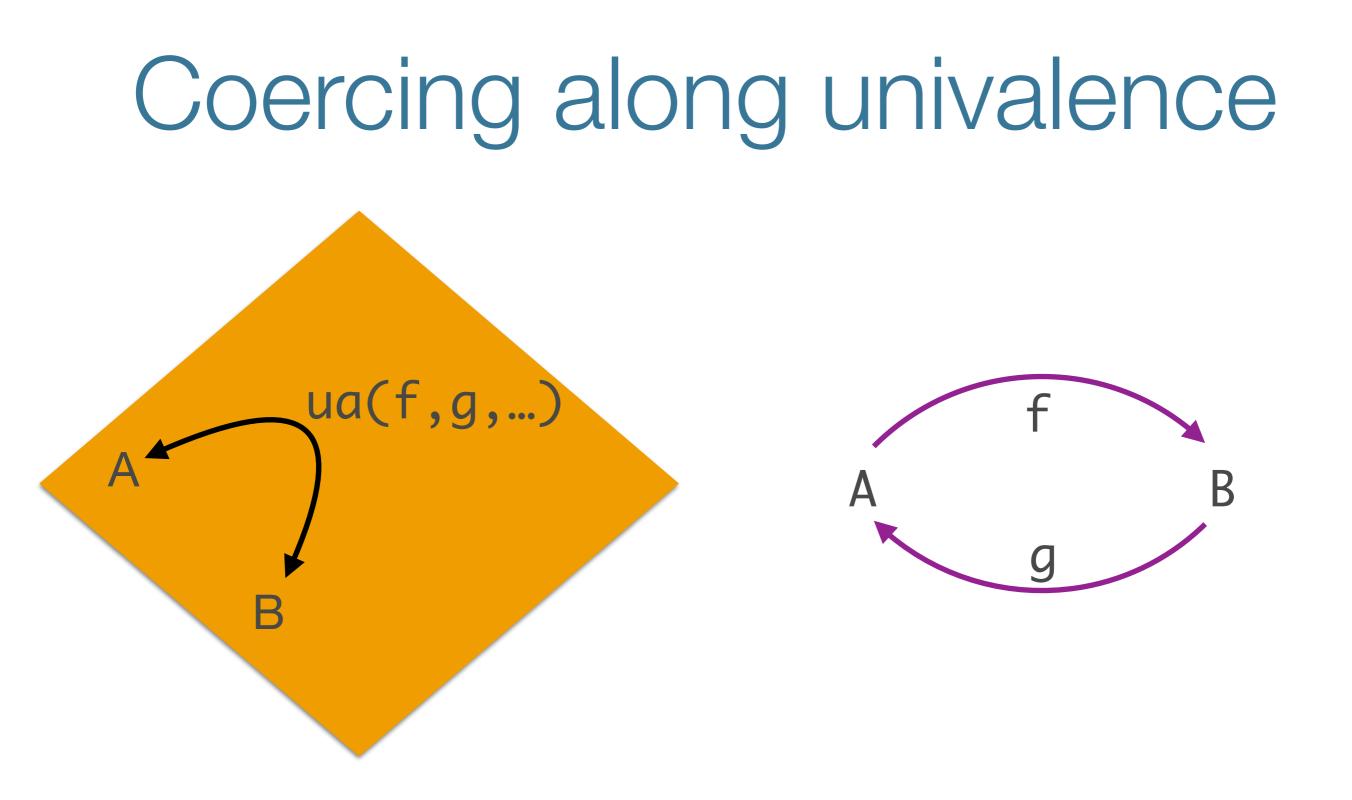
moving along a path might do some work

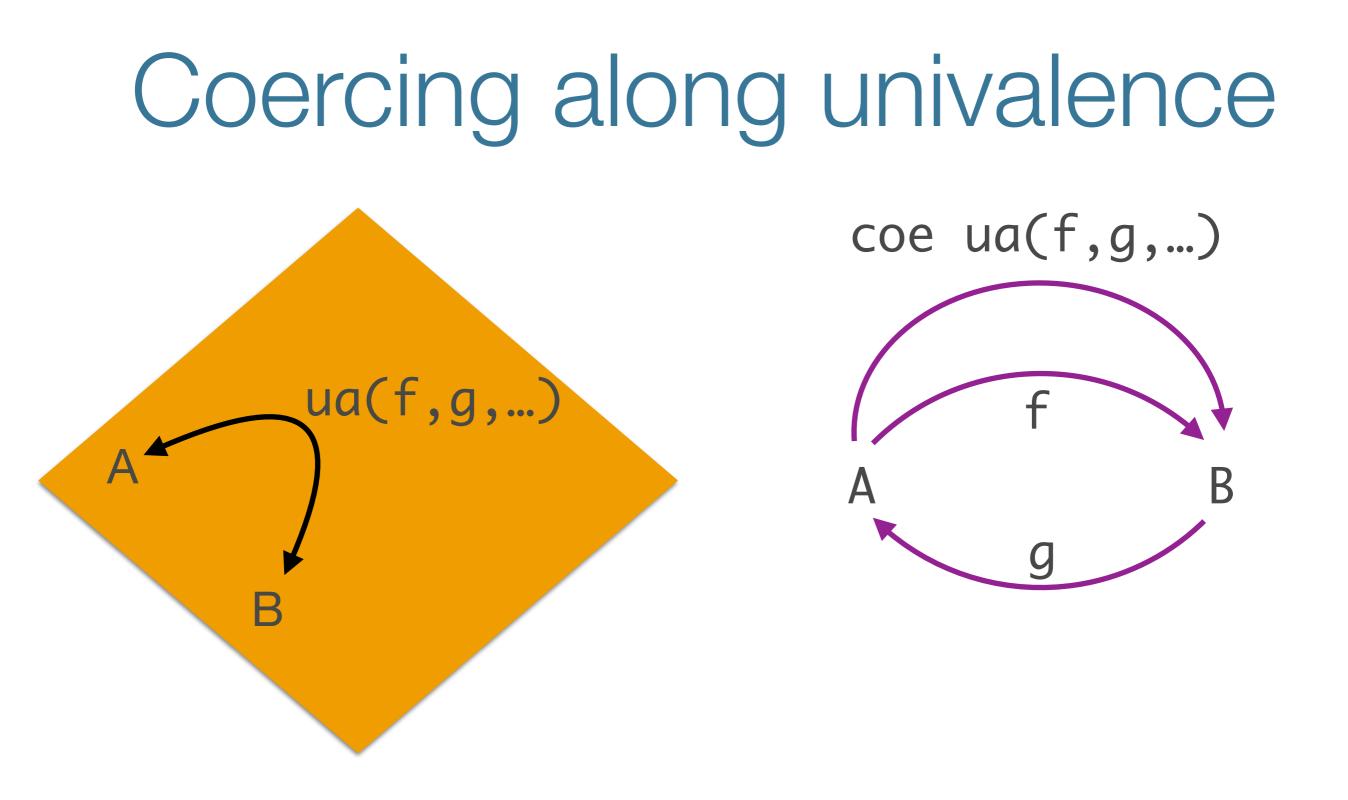
Voevodsky's univalence axiom Nat × String Monad T String × Nat App⇒Monad T

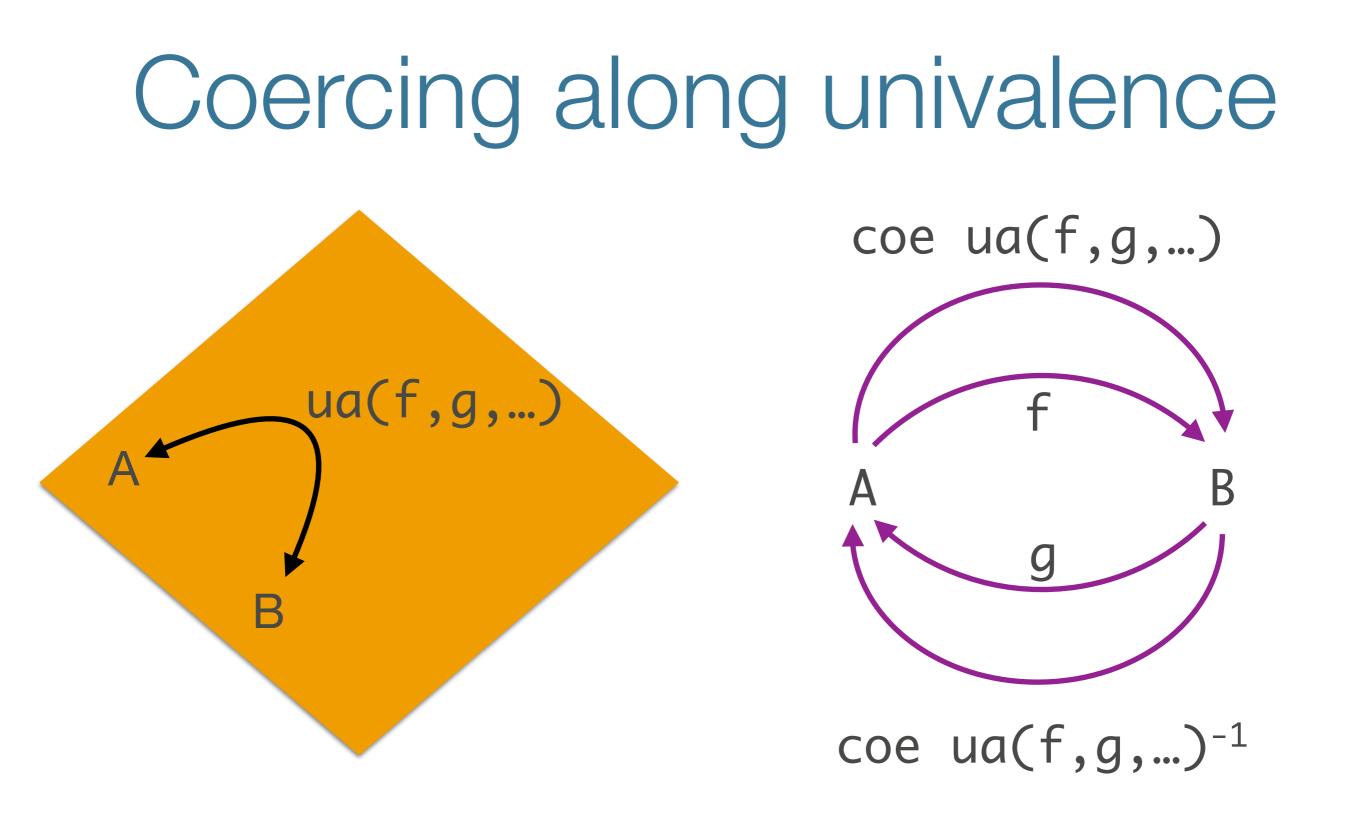
bijections induce paths between types*

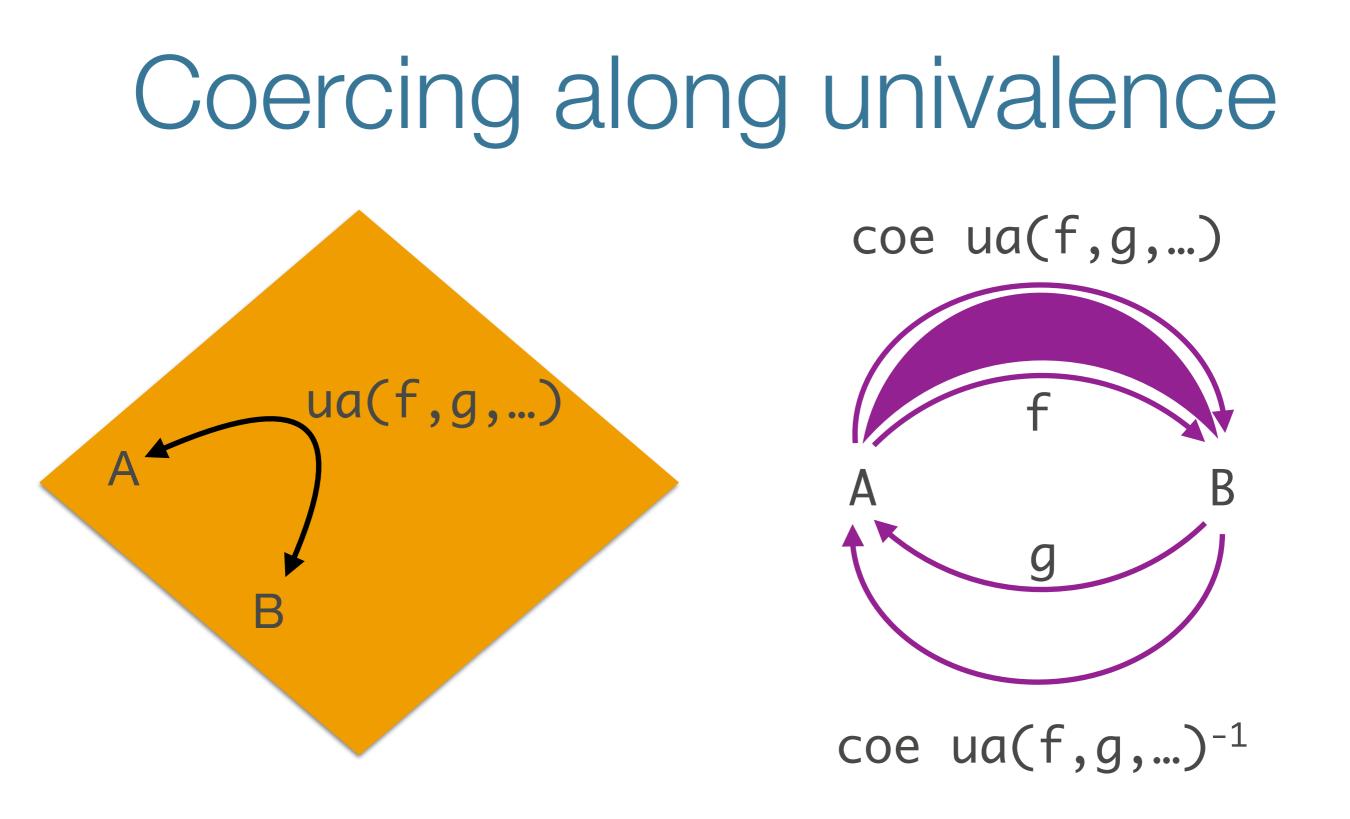
Coercing along univalence

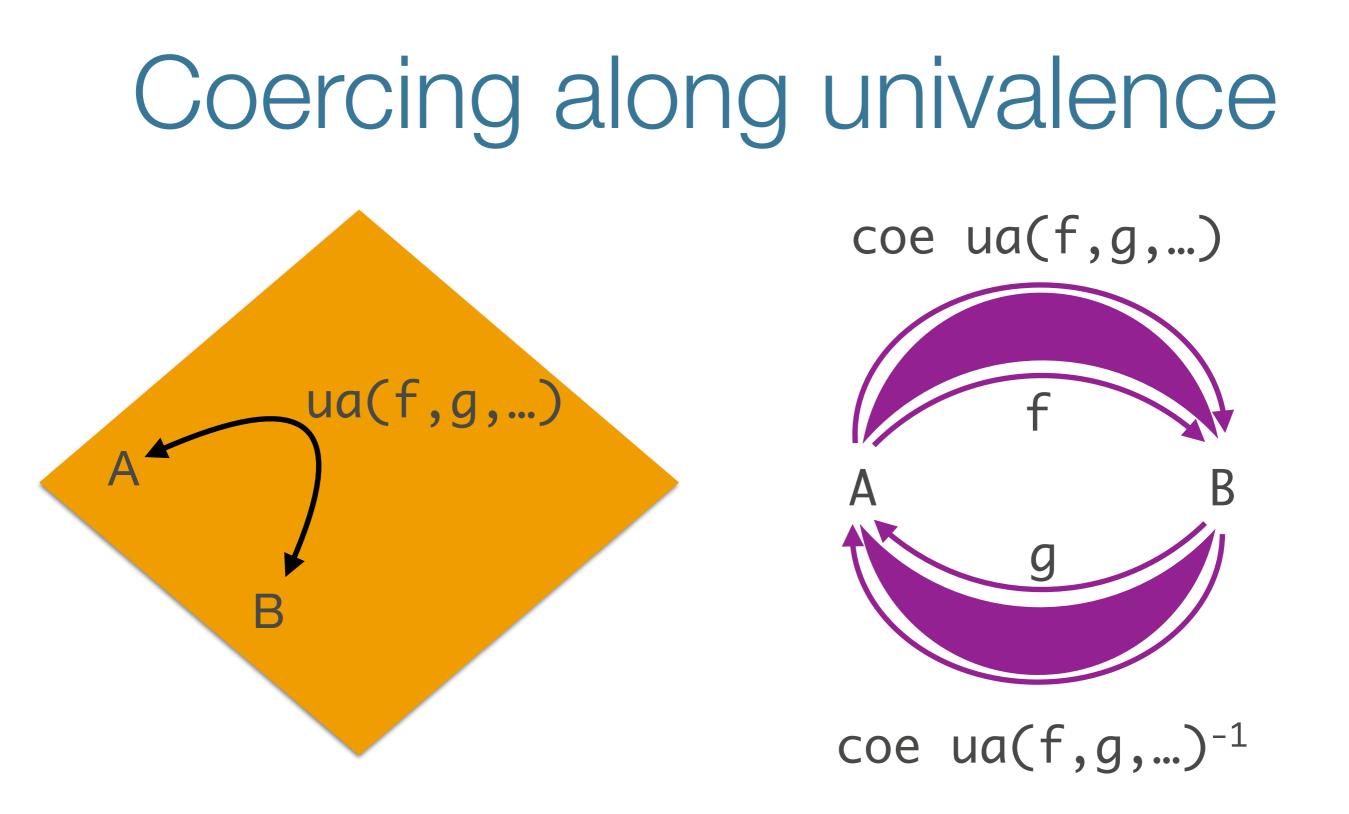






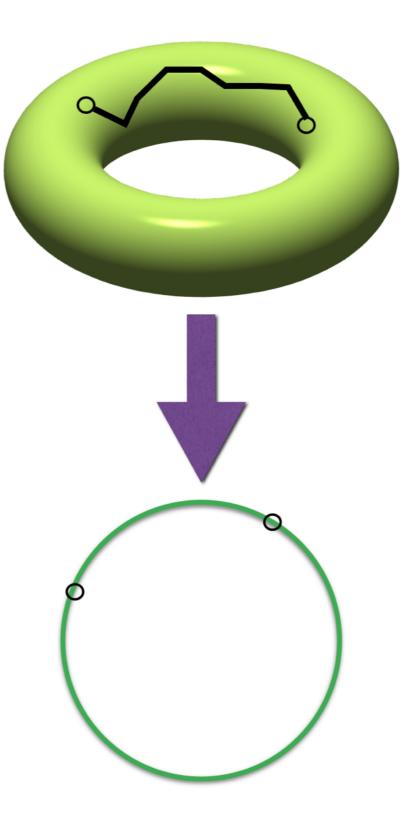






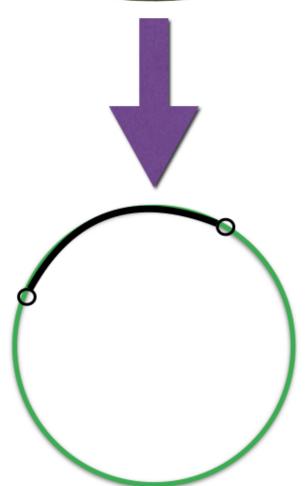
Type constructors act on points

A type B type A \rightarrow B type



And "secretly" act on paths

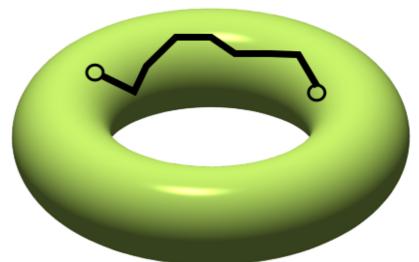
- α : Path A A'
- β : Path B B'
- $\alpha \rightarrow \beta$: Path (A \rightarrow B) (A' \rightarrow B')

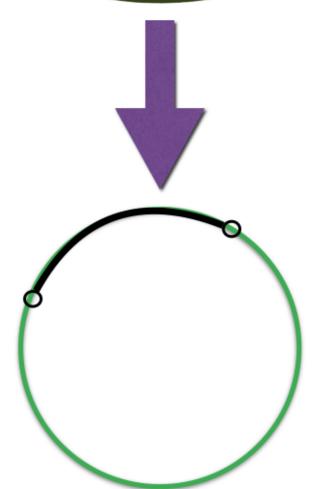


And "secretly" act on paths

- α : Path A A'
- β : Path B B'
- $\alpha \rightarrow \beta$: Path (A \rightarrow B) (A' \rightarrow B')

 $\begin{array}{rcl} \cos (\alpha \ \Rightarrow \ \beta) & (h \ : A \ \Rightarrow \ B) = \\ \cos \ \beta & \circ & h & \circ & \cos \ \alpha^{-1} \end{array}$





```
instance Monad Maybe where
	return a = Some a
	None >>= k = None
	(Some a) >>= k = k a
sequenceM : \forall {T A} {Monad T} \rightarrow List (T A) \rightarrow T(List A)
sequenceM [] = return []
	sequenceM (x :: xs) = x >>= \lambda xv \rightarrow
	(sequenceM xs) >>= \lambda xsv \rightarrow
	return (xv :: xsv)
```

record Monad (T : Type \rightarrow Type) : Type where field return : $\forall \{A\} \rightarrow A \rightarrow T A$ _>>=_ : ∀ {A B} → T A → (A → T B) → T B lunit : $\forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a$ runit : $\forall \{A\} \{c : T A\} \rightarrow (c \implies return) == c$ assoc : $\forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{q : B \rightarrow T \ C\}$ \rightarrow ((c >>= f) >>= g) == c >>= ($\lambda x \rightarrow f x >>= g$) ua(d) record App \Rightarrow Monad (T : Type \rightarrow Type) : Type where AT : Applicative T **return** : $\forall \{A\} \rightarrow A \rightarrow T A$ \rightarrow : $\forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B$ lunit : $\forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a$ runit : $\forall \{A\} \{c : T A\} \rightarrow (c \gg return) == c$ assoc : $\forall \{A \ B \ C\} \{c : T \ A\} \{f : A \rightarrow T \ B\} \{g : B \rightarrow T \ C\}$ \rightarrow ((c >>= f) >>= g) == c >>= (λ x \rightarrow f x >>= g) return-pure : $\forall \{A\} \{a : A\} \rightarrow pure a ==$ return a $: \forall \{A B\} \{f : T (A \rightarrow B)\} \{a : T A\}$ <*>-ap \rightarrow f <*> a == (f >>= λ f' \rightarrow $a >>= \lambda a' \rightarrow$

return (f' a'))

40

C : ((Type → Type) → Type) → Type
C Mon = {instance : Mon Maybe,
 sequenceM : ∀ {T A} {Mon T}
 → List (T A) → T(List A)}

record Monad (T : Type \rightarrow Type) : Type where field return : $\forall \{A\} \rightarrow A \rightarrow T A$ $_>>=_$: $\forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B$ lunit : $\forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a$ runit : $\forall \{A\} \{c : T A\} \rightarrow (c >>= return) == c$ assoc : $\forall \{A B C\} \{c : T A\} \{f : A \rightarrow T B\} \{g : B \rightarrow T C\}$ $\rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)$ ua(d)

```
record App\RightarrowMonad (T : Type \rightarrow Type) : Type where

AT : Applicative T

return : \forall \{A\} \rightarrow A \rightarrow T A

\_>>=\_ : \forall \{A B\} \rightarrow T A \rightarrow (A \rightarrow T B) \rightarrow T B

lunit : \forall \{A B\} \{a : A\} \{f : A \rightarrow T B\} \rightarrow (return a >>= f) == f a

runit : \forall \{A\} \{c : T A\} \rightarrow (c >>= return) == c

assoc : \forall \{A B C\} \{c : T A\} \{f : A \rightarrow T B\} \{g : B \rightarrow T C\}

\rightarrow ((c >>= f) >>= g) == c >>= (\lambda x \rightarrow f x >>= g)

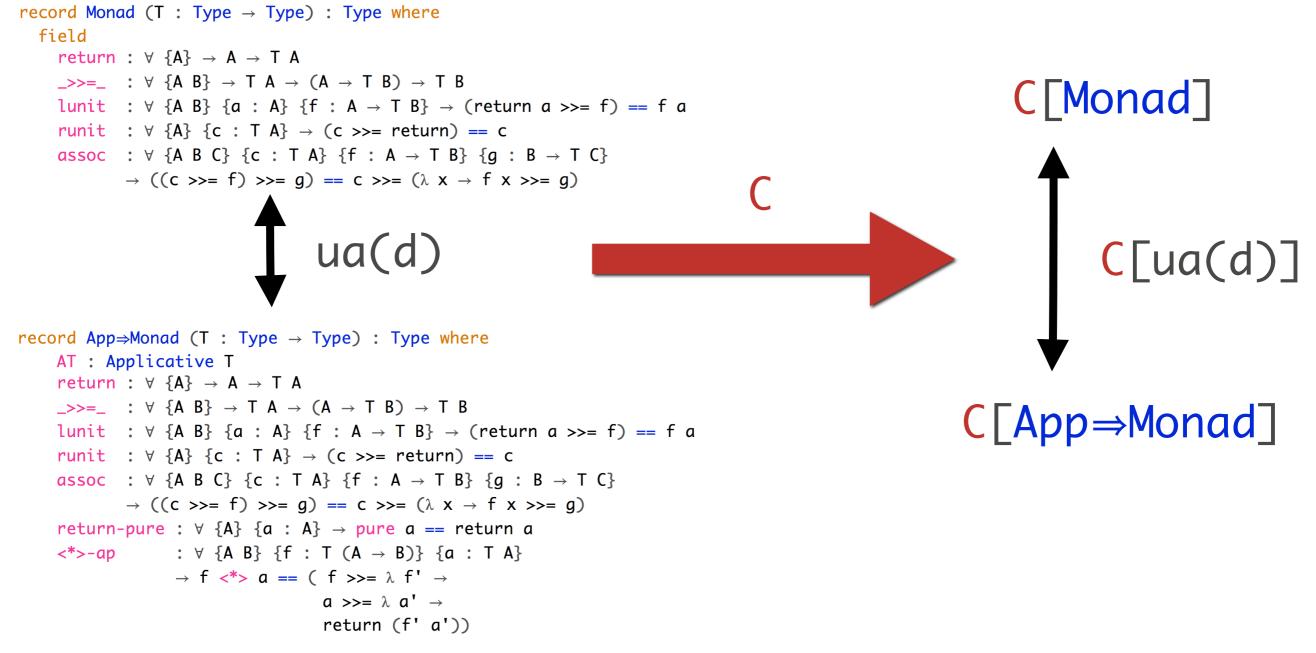
return-pure : \forall \{A\} \{a : A\} \rightarrow pure a == return a

<^*>-ap : \forall \{A B\} \{f : T (A \rightarrow B)\} \{a : T A\}

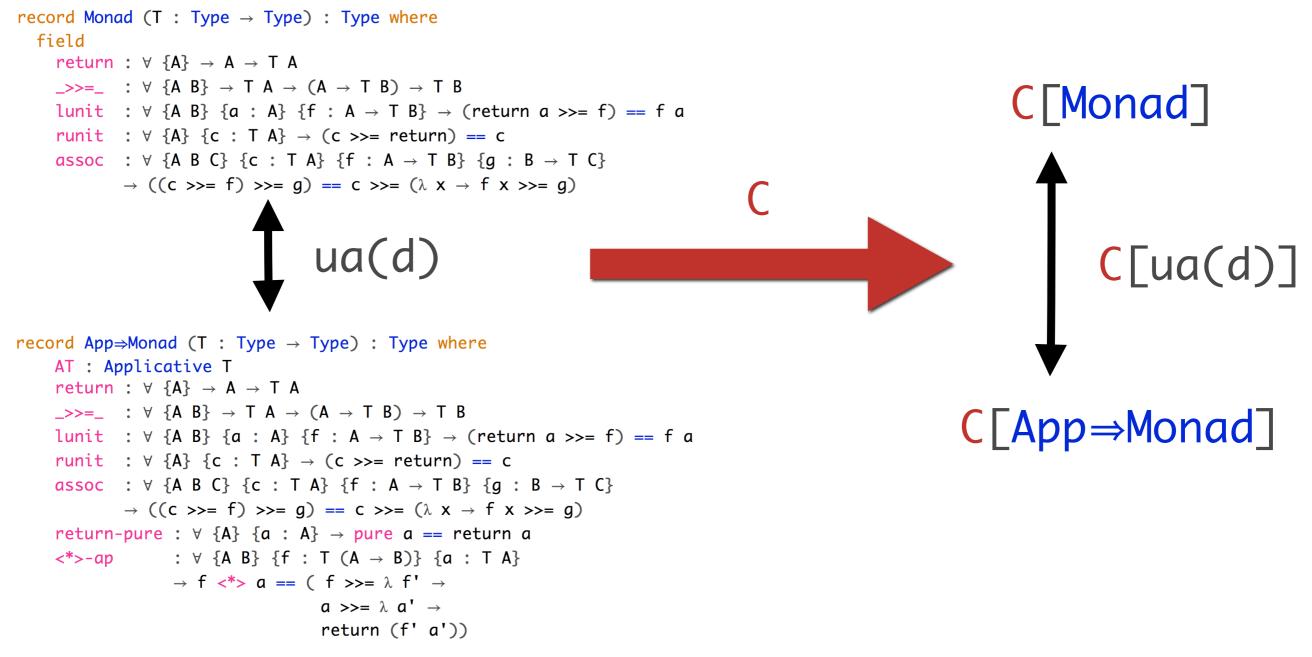
\rightarrow f <^*> a == (f >>= \lambda f' \rightarrow

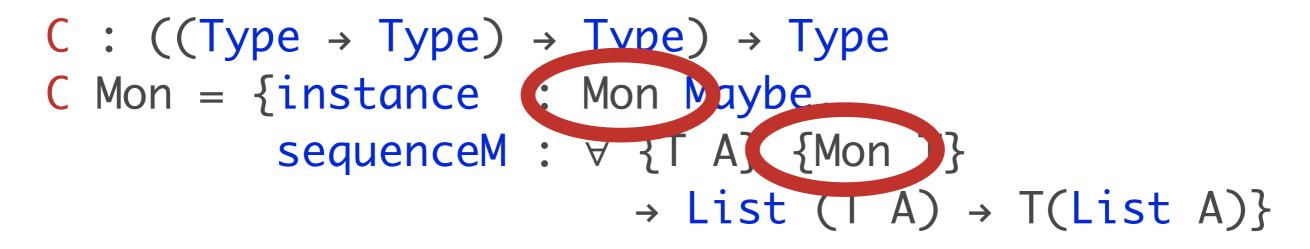
a >>= \lambda a' \rightarrow

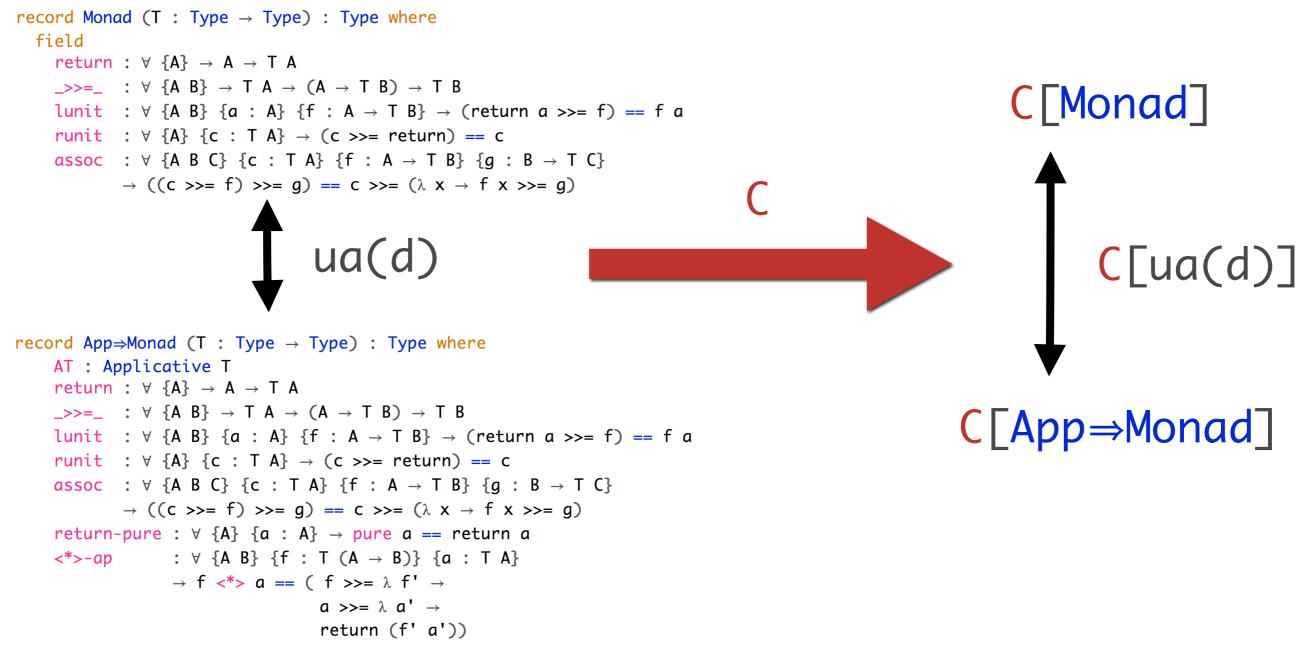
return (f' a'))
```



C : ((Type → Type) → Type) → Type C Mon = {instance : Mon Maybe, sequenceM : ∀ {Γ A} {Mon T} → List (T A) → T(List A)}



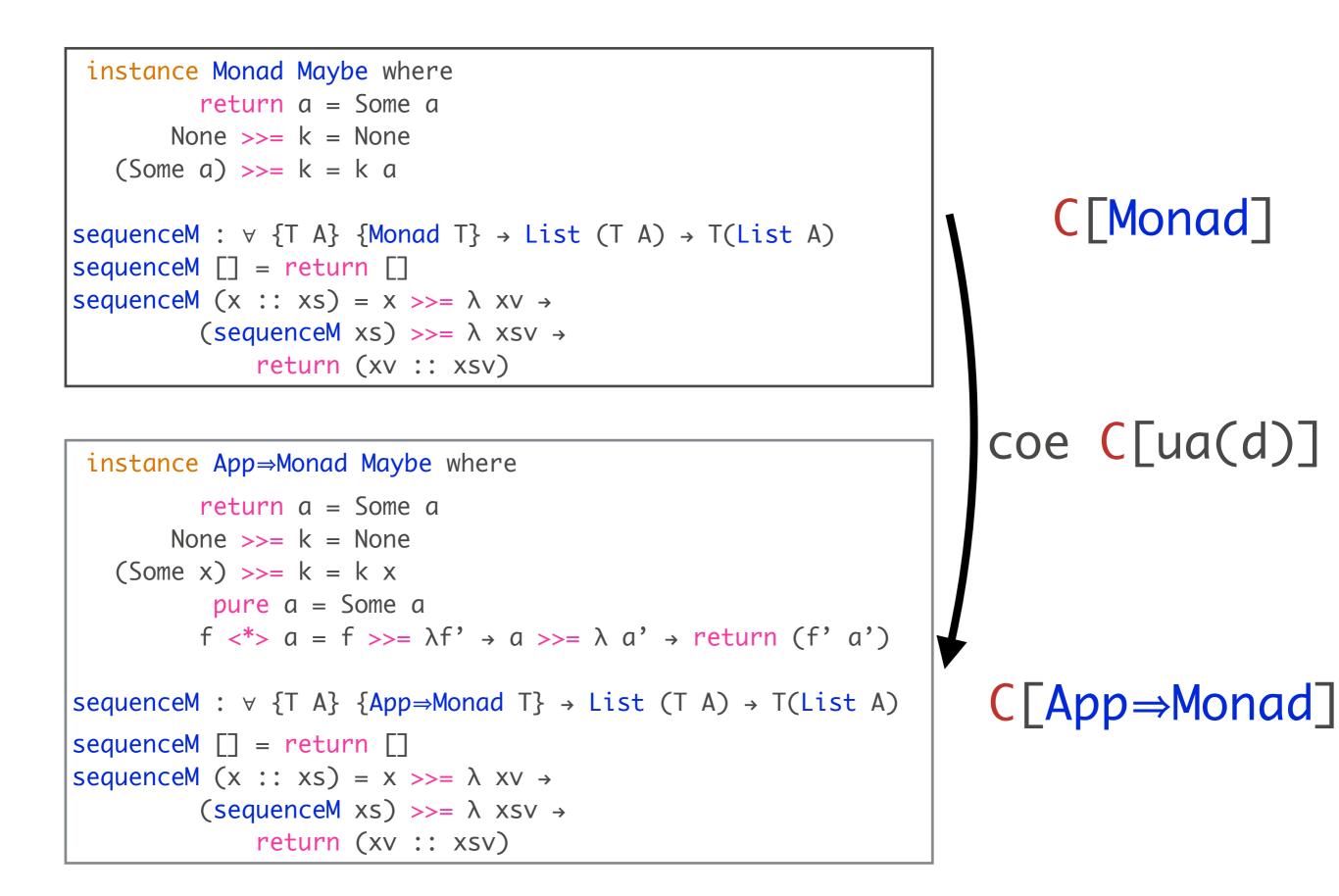


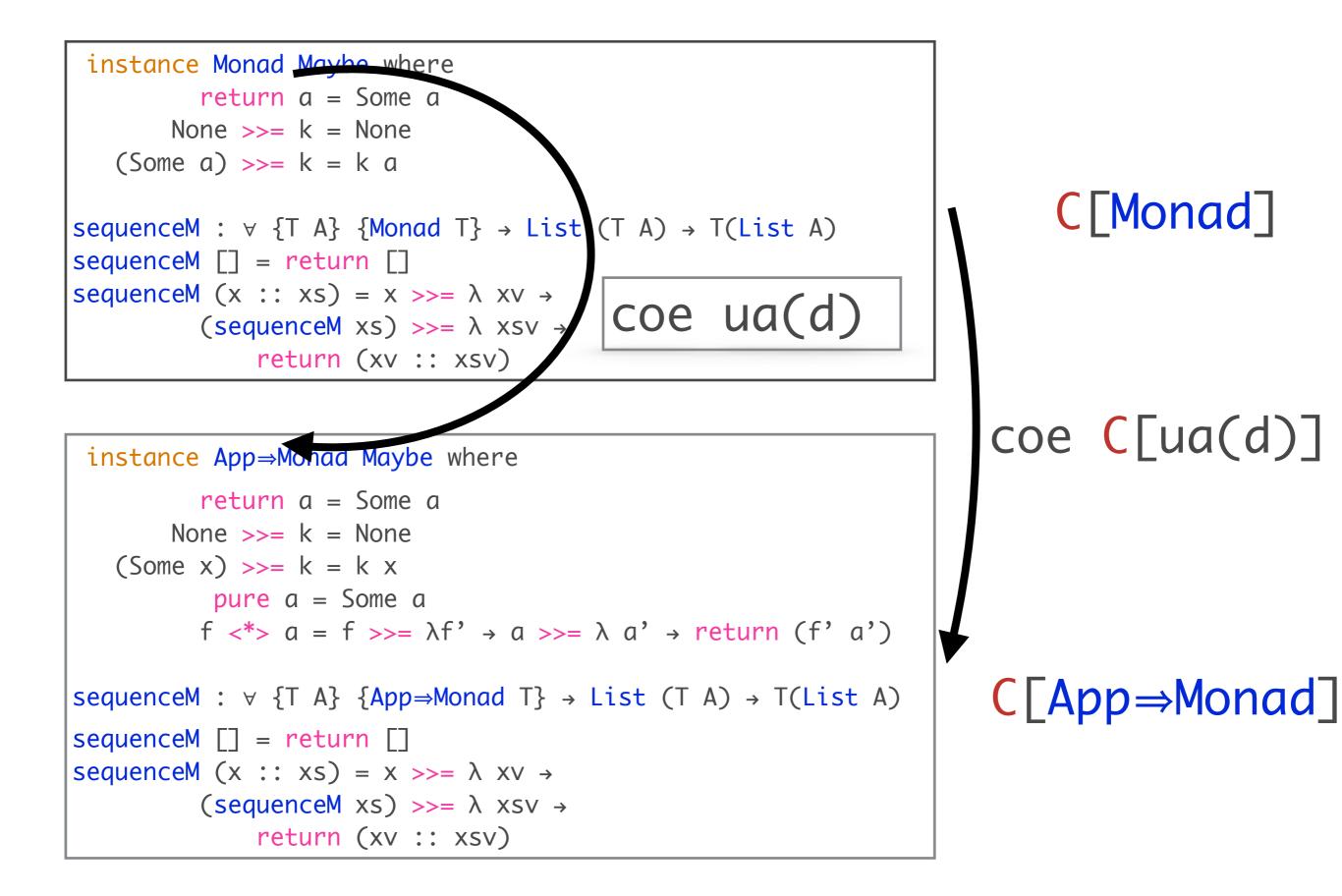


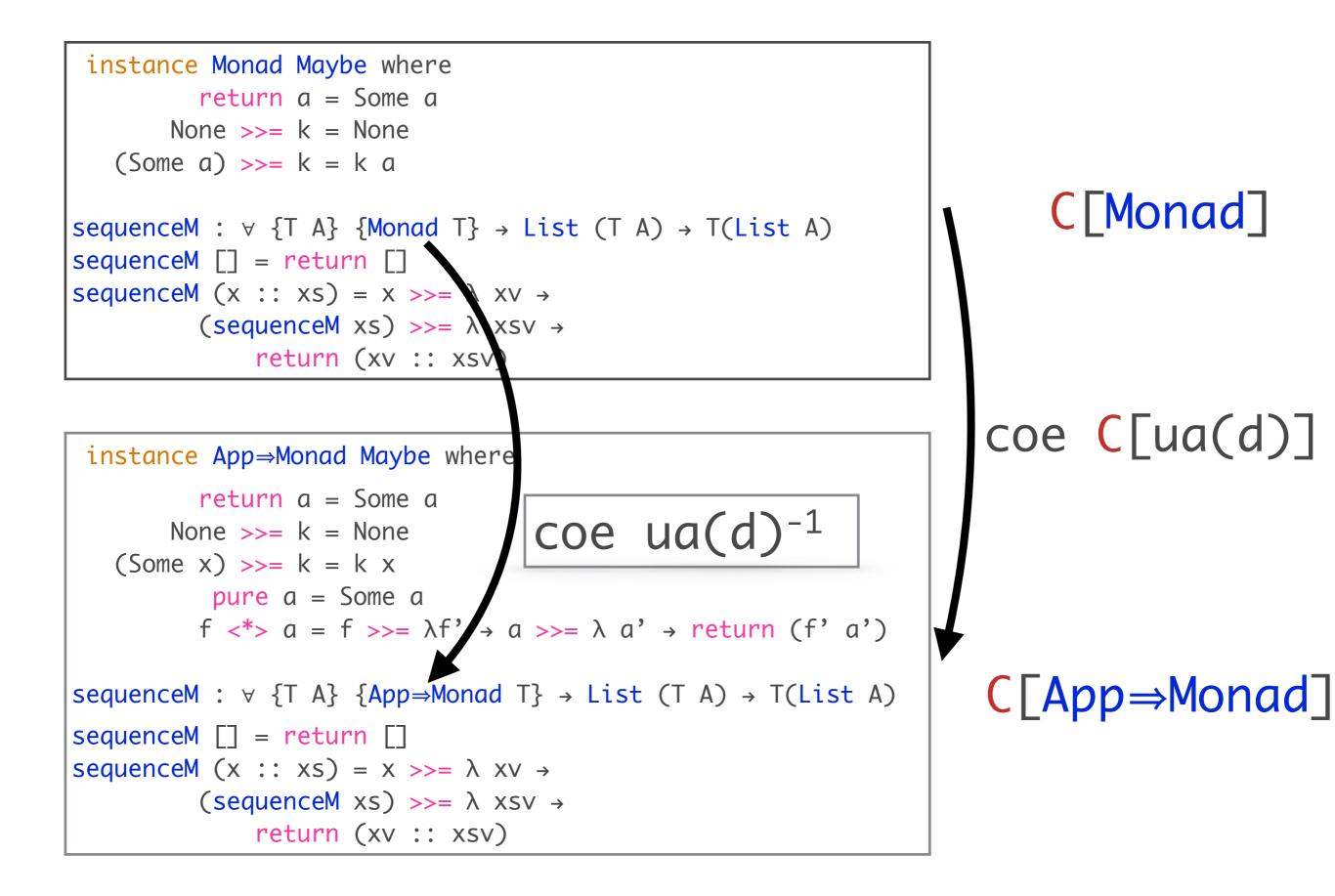
C[Monad]

coe C[ua(d)]

C[App⇒Monad]





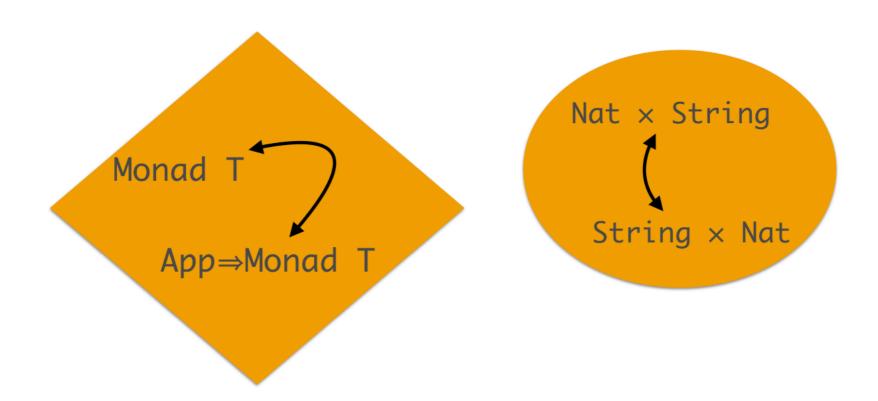


In a world where all functions secretly **do** something...

get "code for free" / generic programs

* can add new principles that depend on them

Univalence



in a world where all functions act on paths,
... and paths between types induce bijections
you can allow bijections to induce paths
... and ∴ lift any bijection by a generic program

Which types act on paths?

Works for:

 $*\Pi, \Sigma, +, Path, (co)$ inductives

Which types act on paths?

Works for:

 $*\Pi, \Sigma, +, Path, (co)$ inductives

Doesn't work for:

* intersection types $A \cap B$

made explicit as \times of predicates

* intensional type analysis case A of can define non-univalent $B \times C \Rightarrow ...$ inductive codes for types

Other sources of bijections

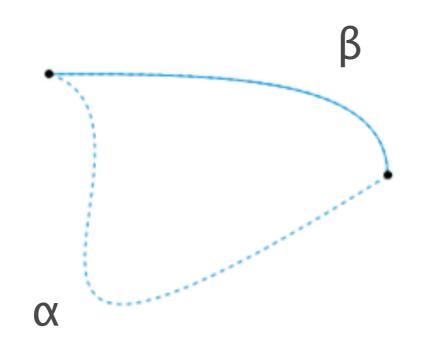
*List A ~ Tree/{assoc, unit} A

- * List and Tree/{assoc, unit} implementations of ordered collections, if coercion of operations agree: treemap f = fromlist o listmap f o tolist (parametricity for graphs of bijections)
- $*(\Sigma n:Nat.Vec A n) \simeq List A$

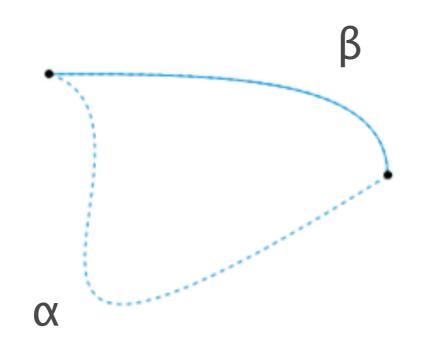
***Everywhere** $P xs \simeq (x : A) \rightarrow x \in xs \rightarrow P x$

* Lots more in libraries/formalizations

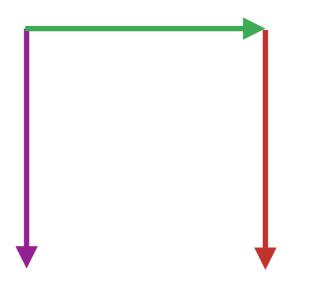
Paths are data



Paths are data

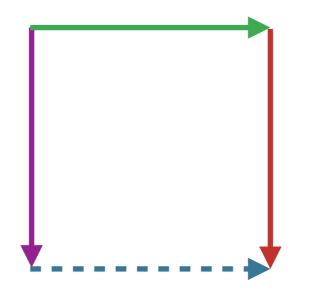


Cubical type theories



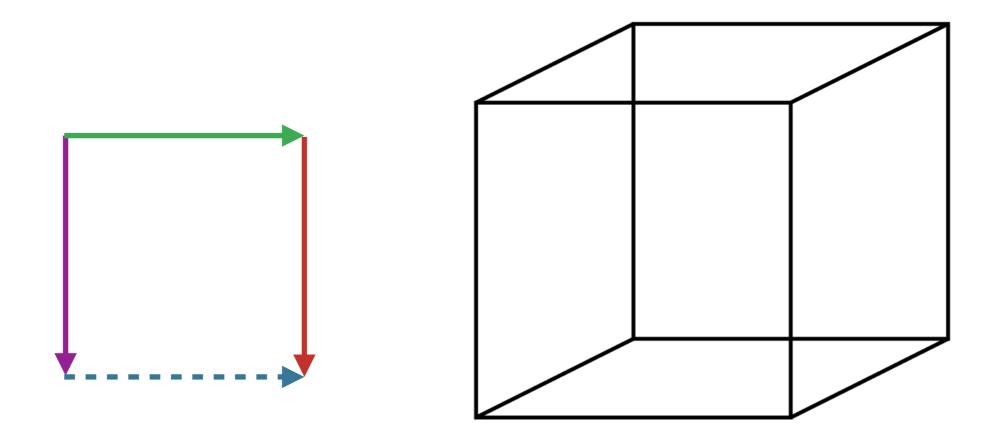
Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg; Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata; Angiuli,Harper,Wilson; Pitts,Orton

Cubical type theories



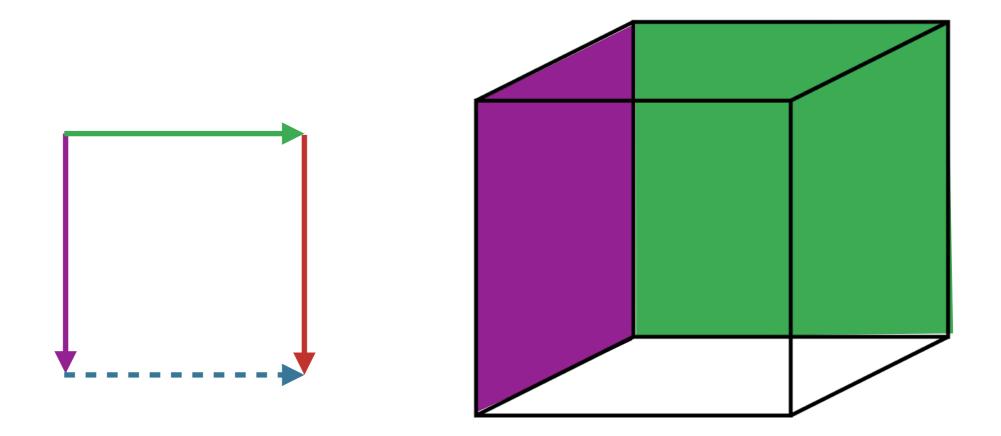
Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg; Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata; Angiuli,Harper,Wilson; Pitts,Orton

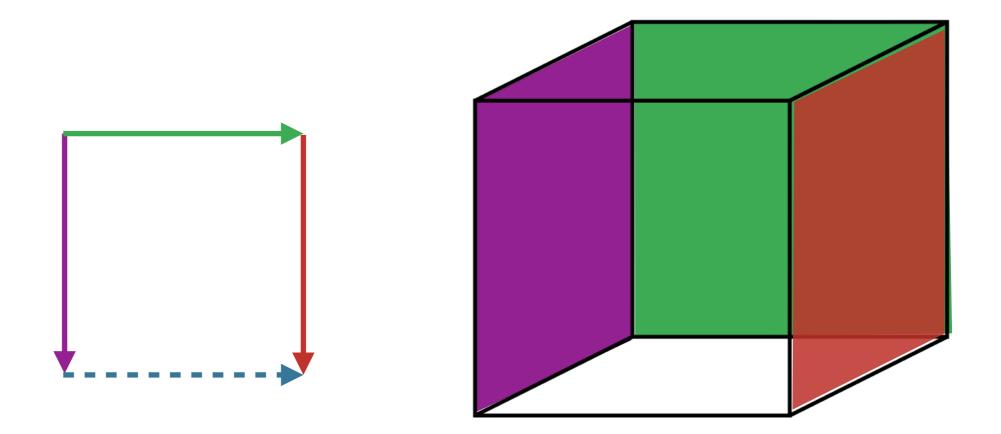
Cubical type theories

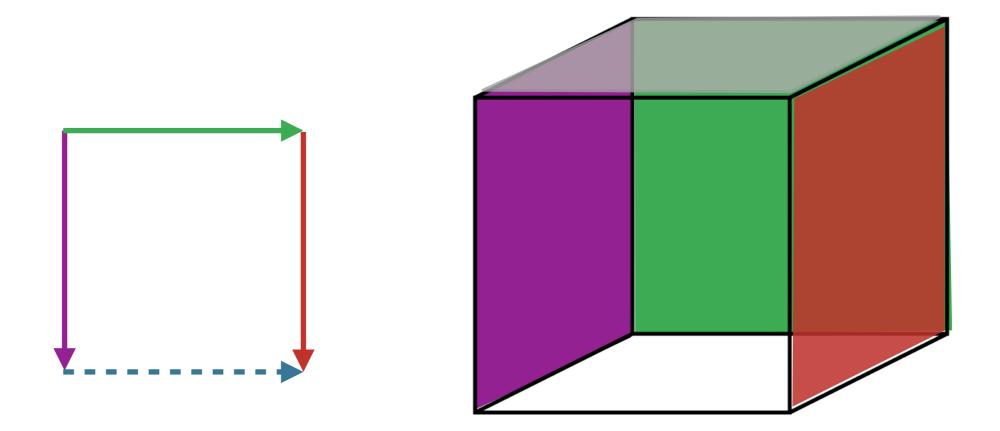


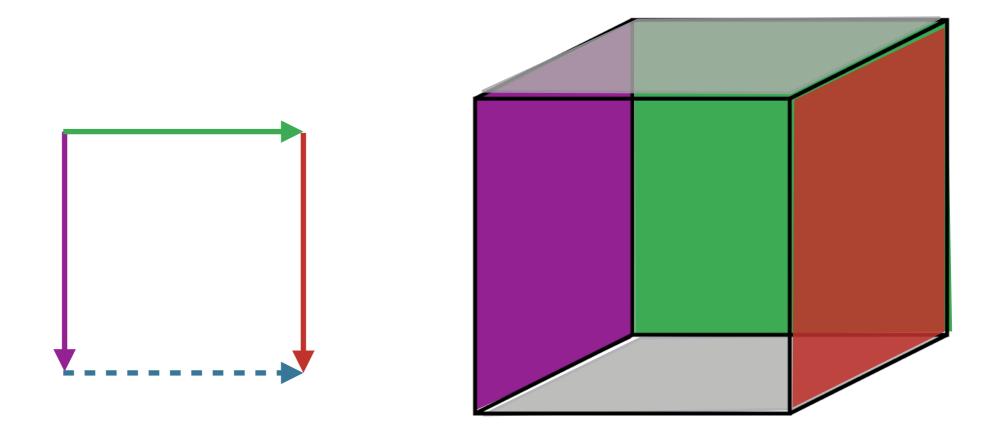
Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg; Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata; Angiuli,Harper,Wilson; Pitts,Orton

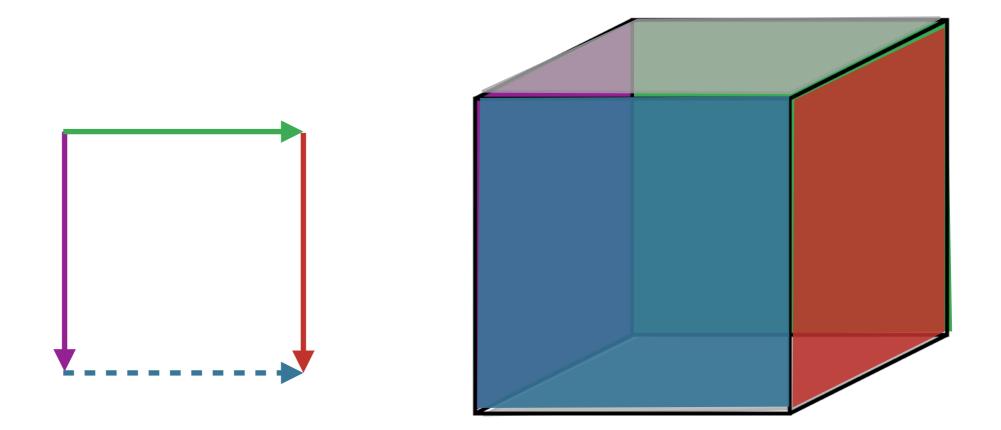






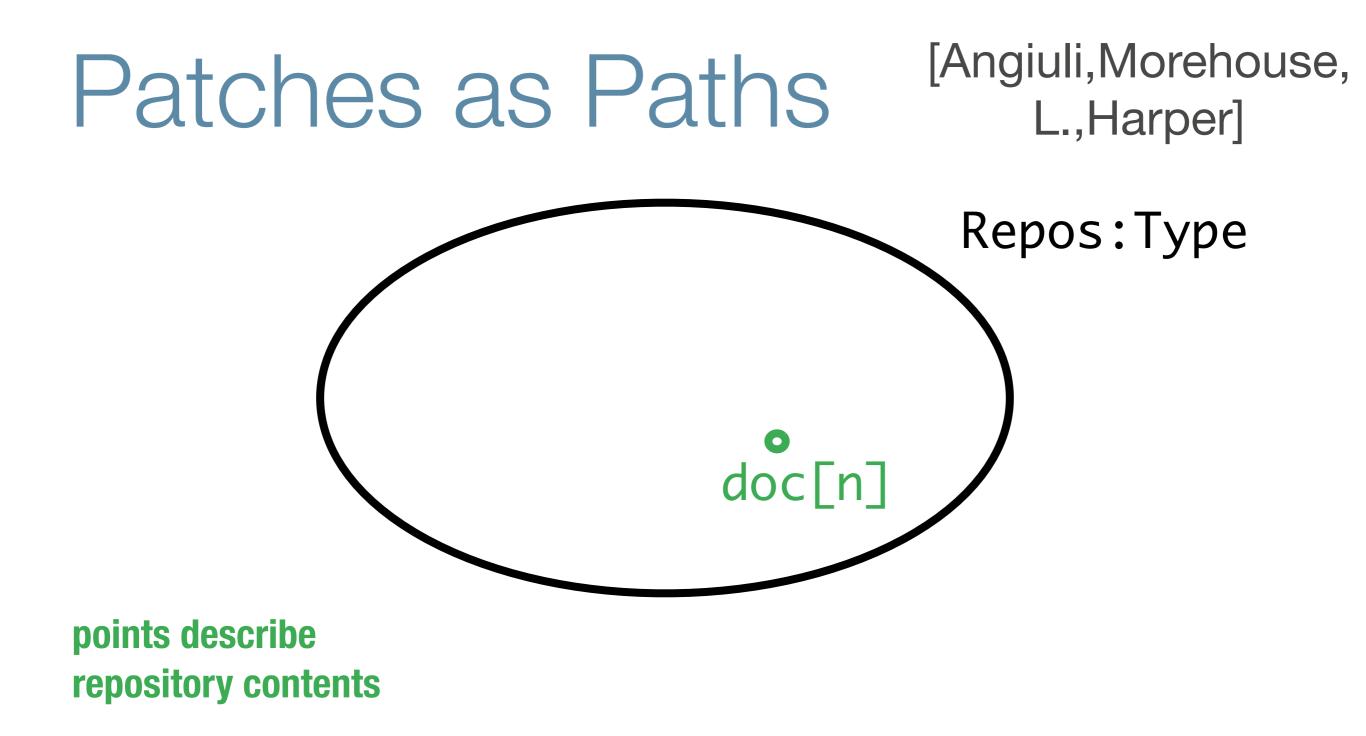


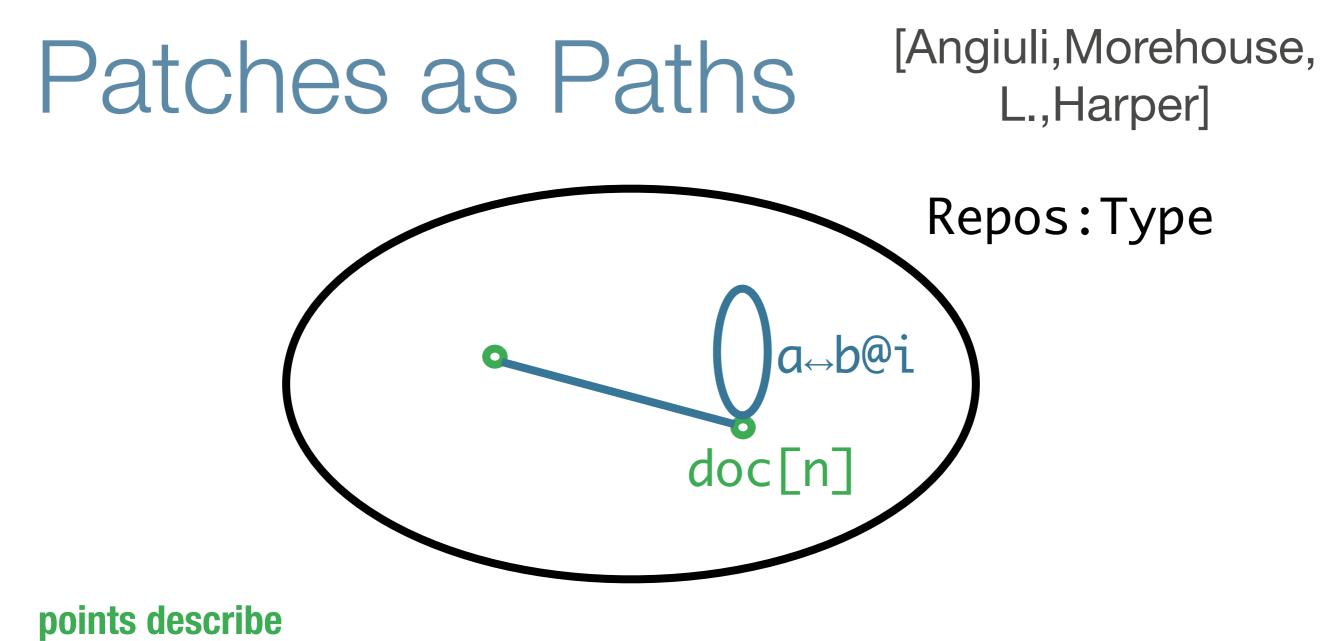




Datatypes with paths

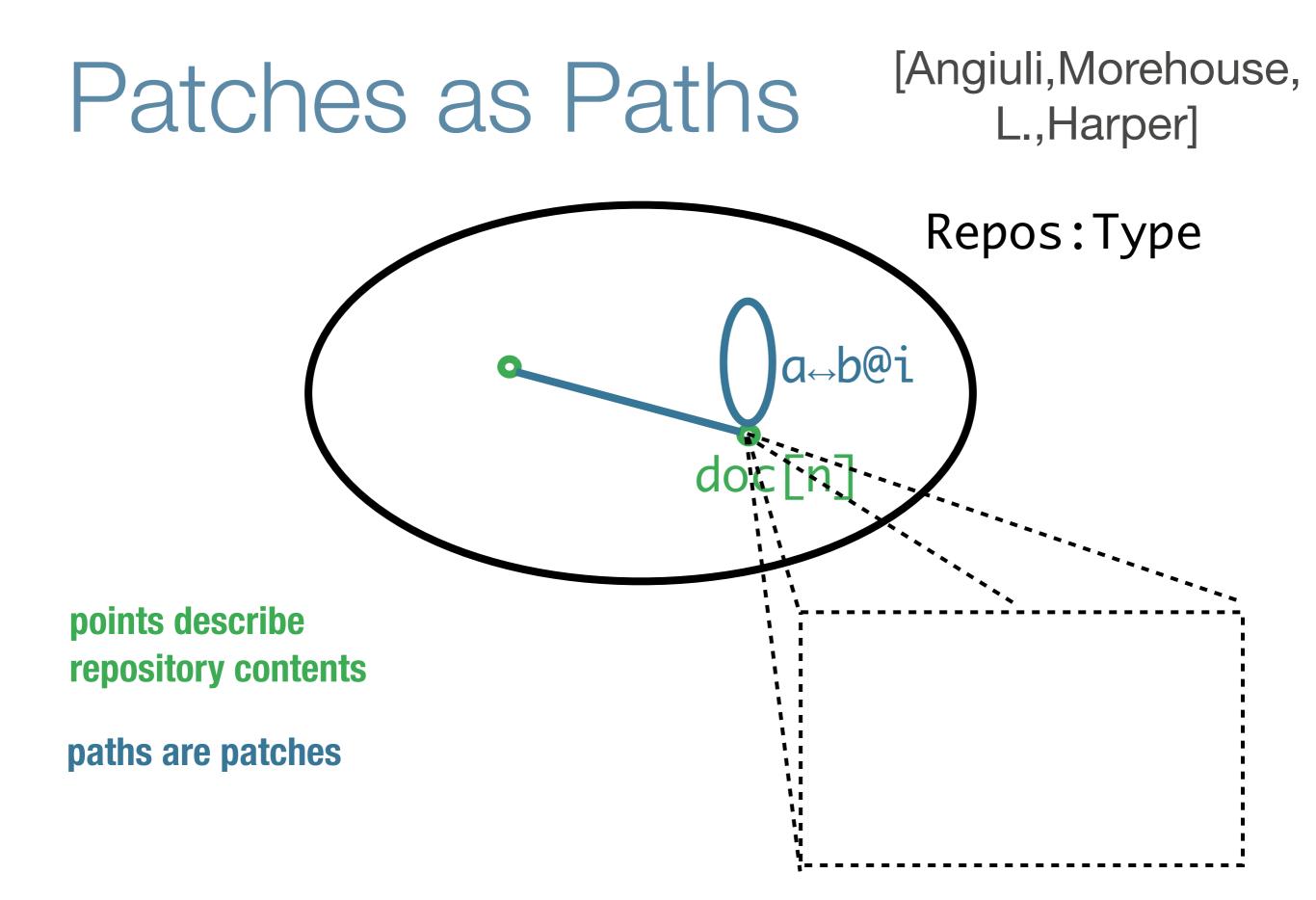


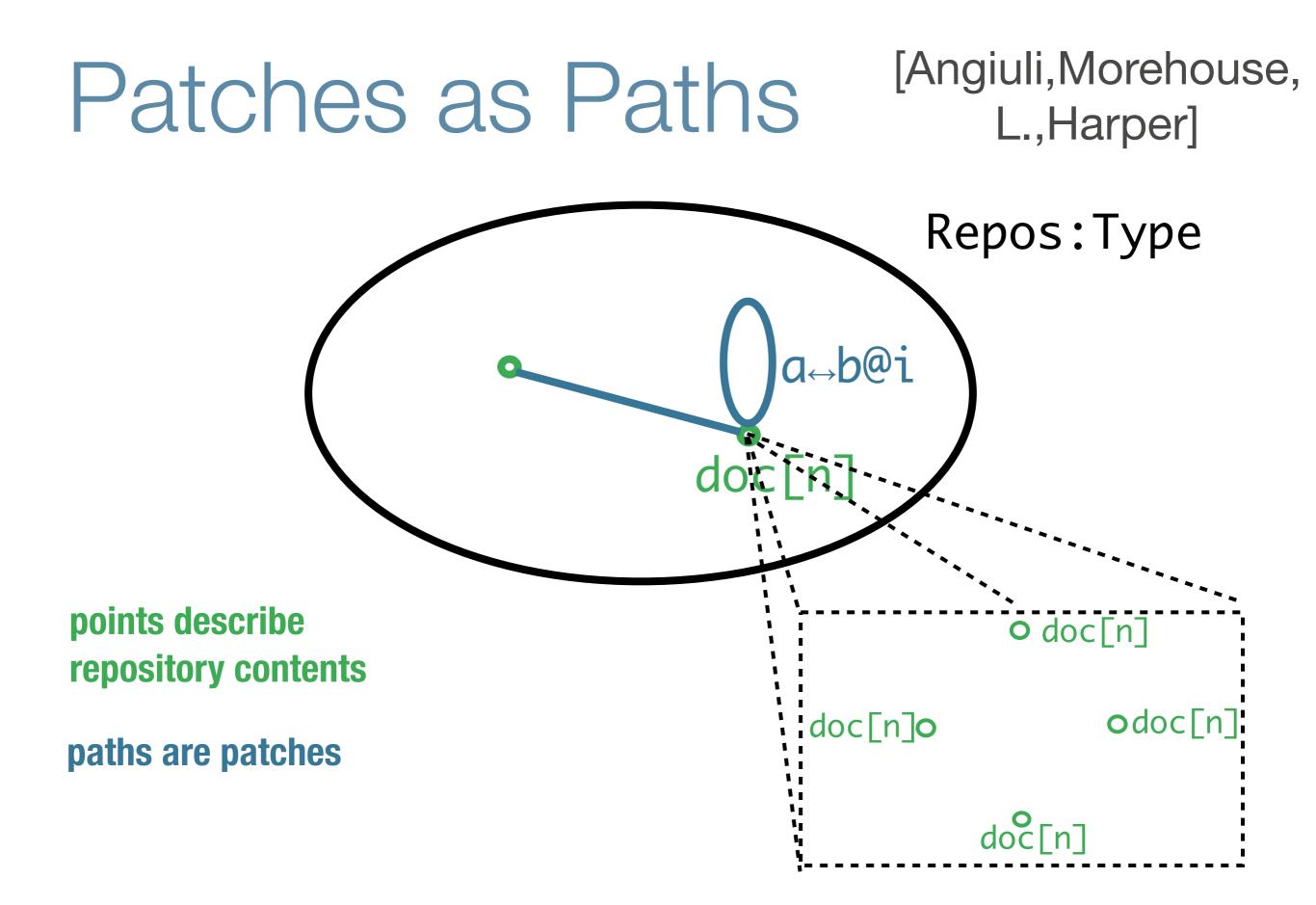


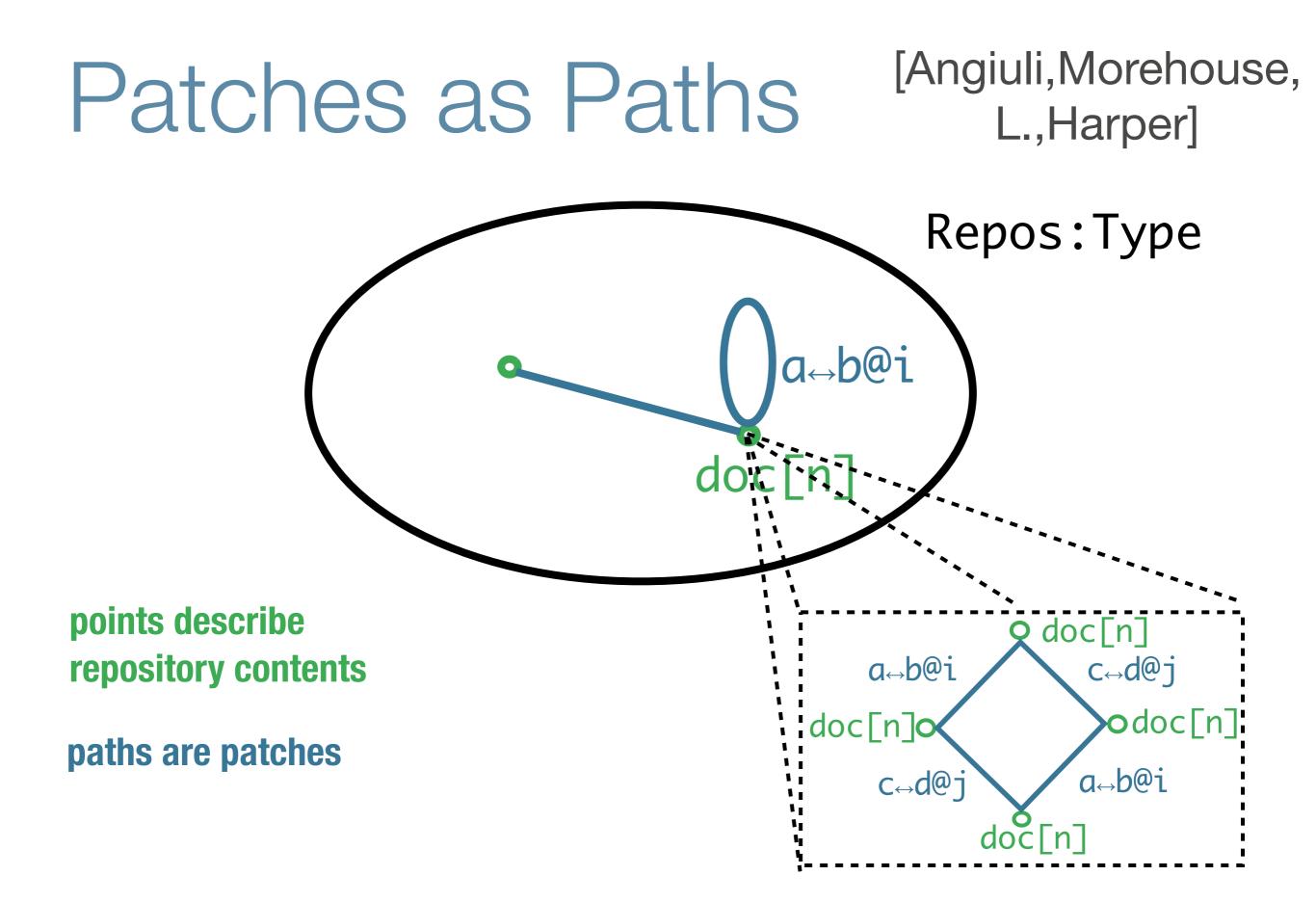


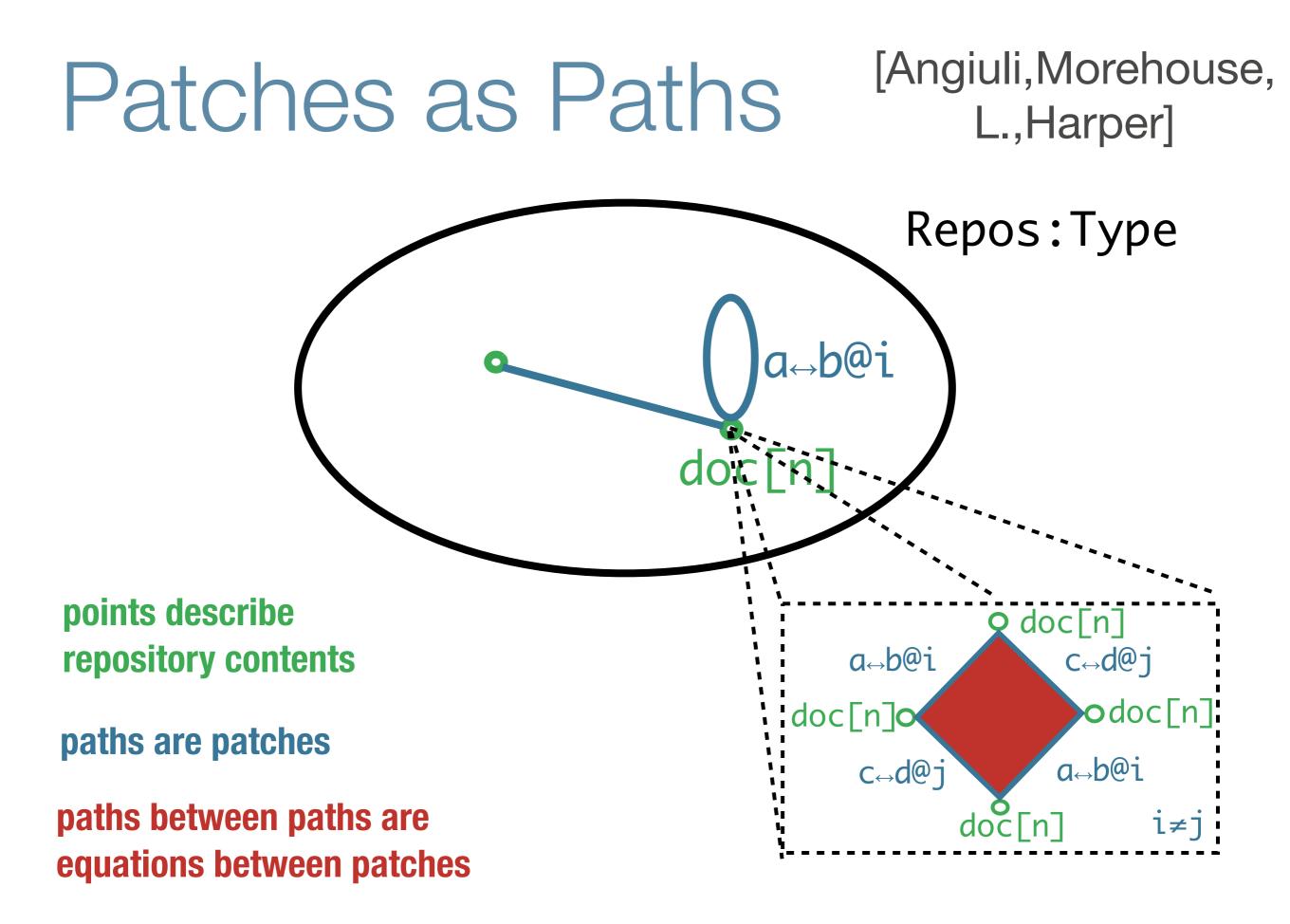
repository contents

paths are patches



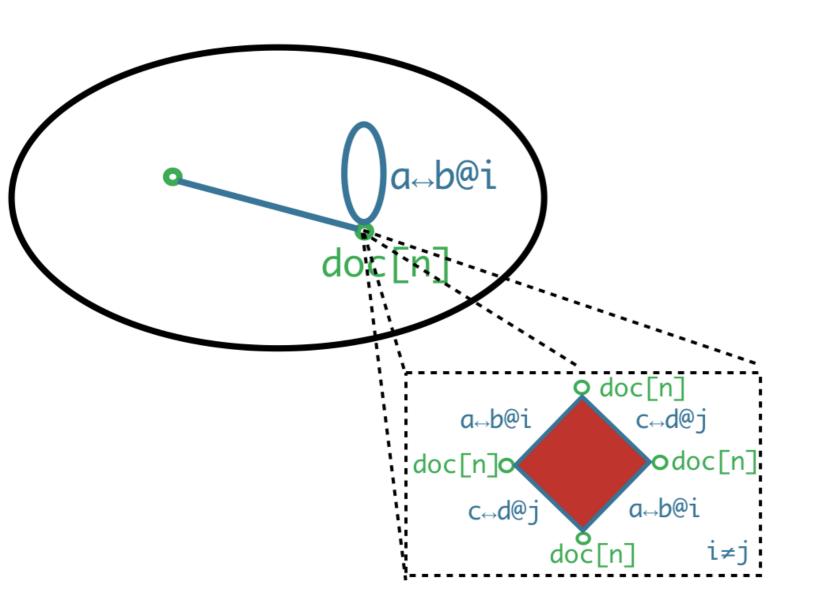


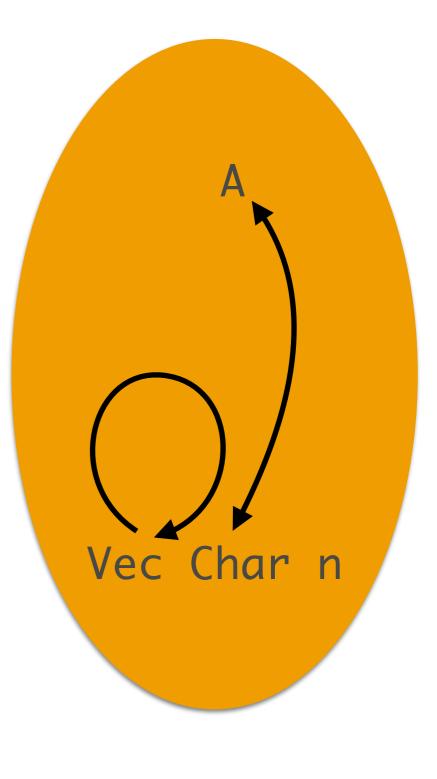


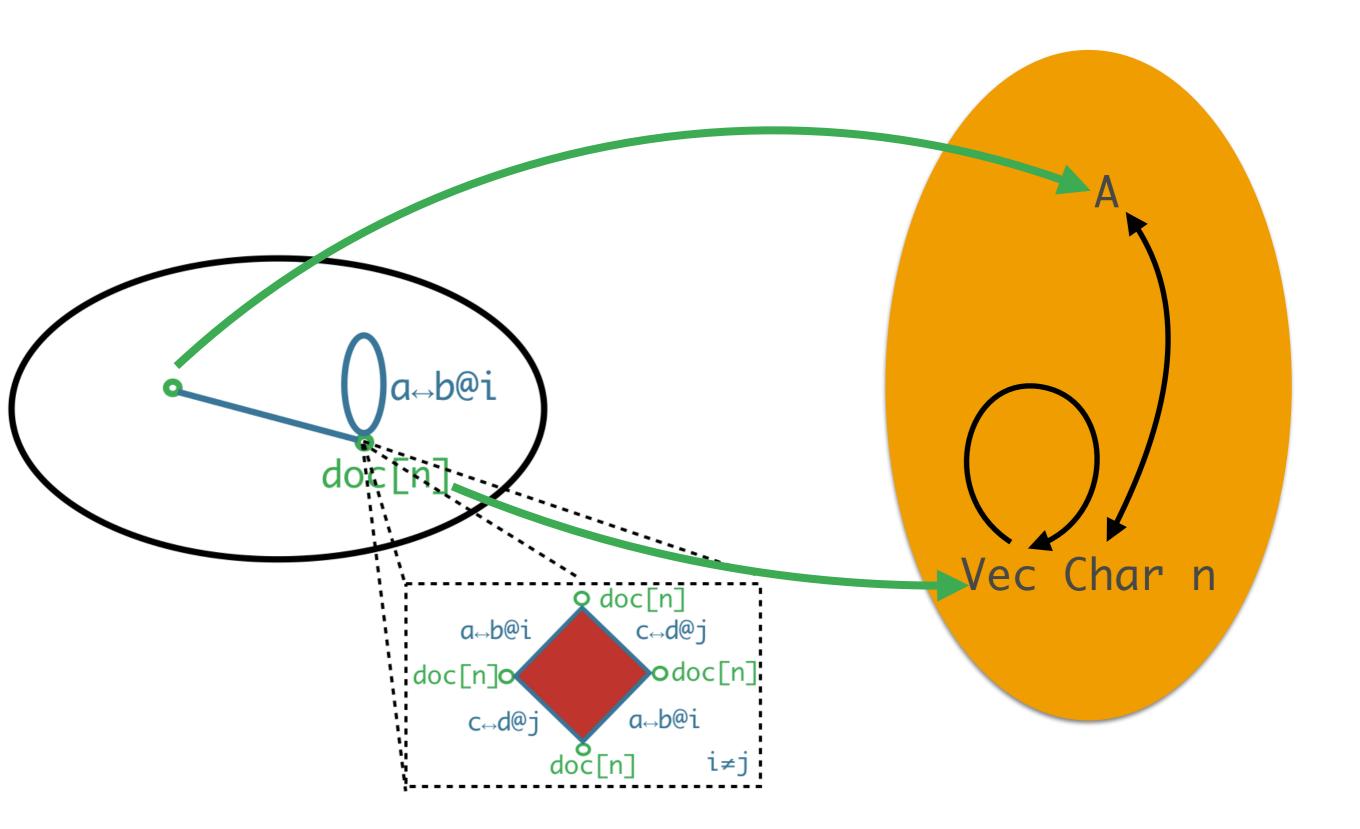


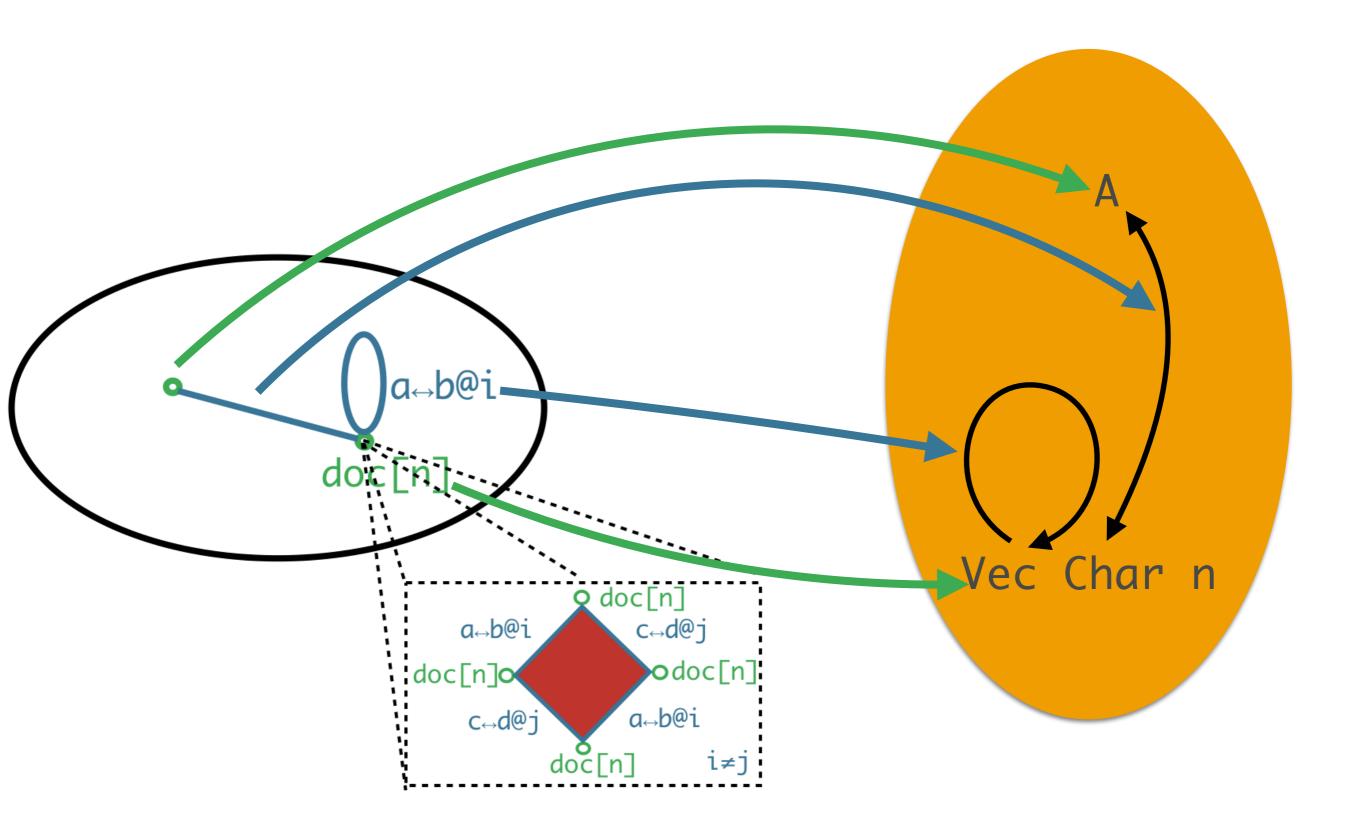
Higher inductive type

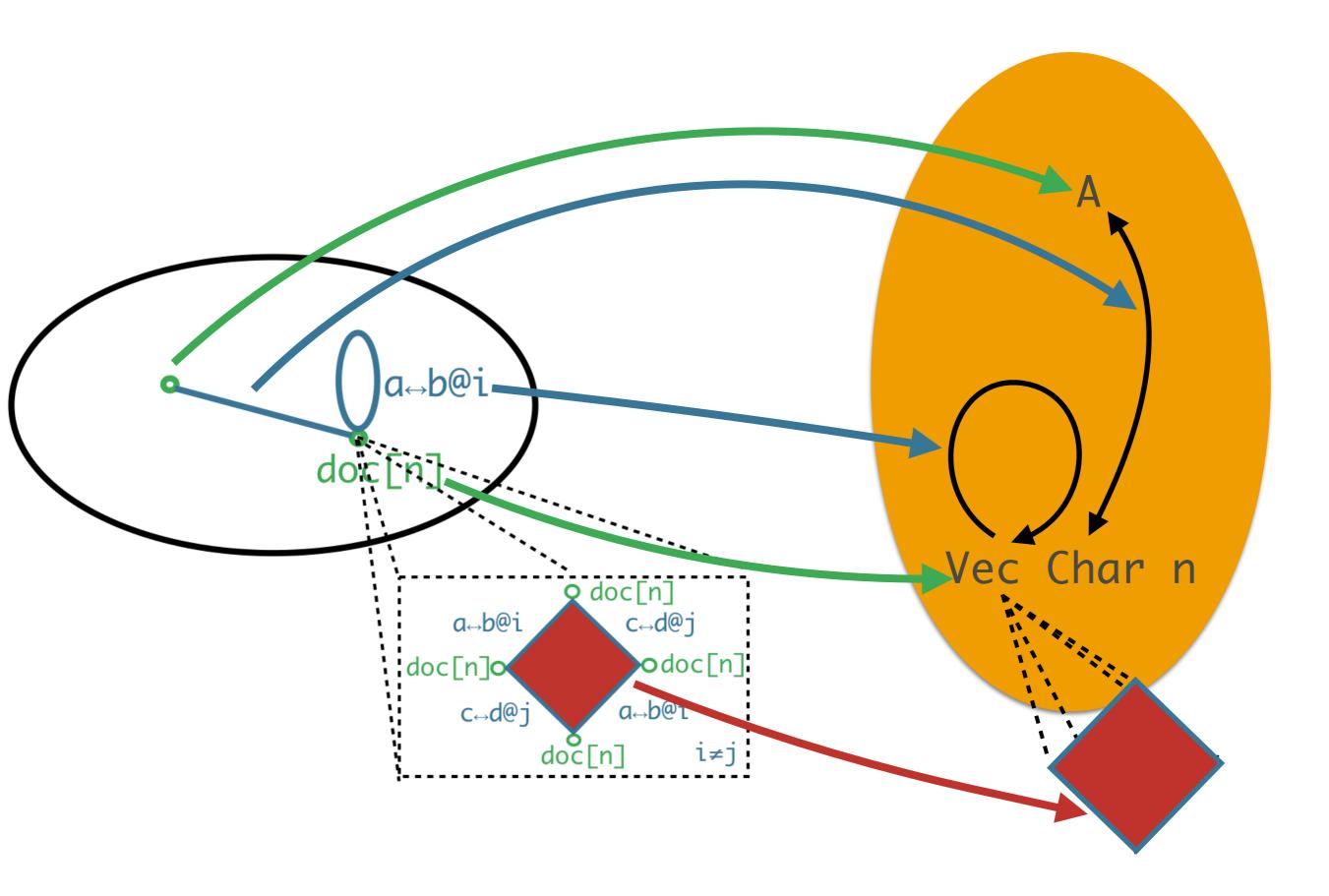
space Repos where
 doc[n:Nat] : Repos
 a↔b@i : Path doc[n] doc[n]
 commute : (i<n, j<n, i≠j) →
 Square (a↔b@i) (c↔d@j) (c↔d@j) (a↔b@i)</pre>





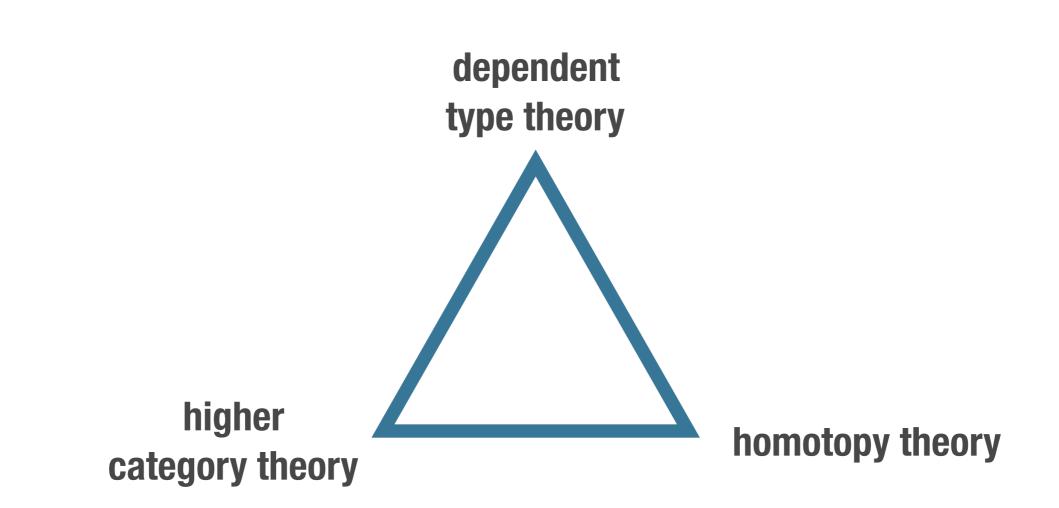






Interpreter

interp : Repos → Type
interp(doc[n]) = Vec Char n
interp(a↔b@i) = ua(... actual swap code ...)
interp(commute) = ... proof about above ...



In a world where all functions secretly **are** something...

In a world where all functions secretly **do** something...