
A Functional Programmer’s Guide 
to Homotopy Type Theory

Dan Licata

Wesleyan University

1

2

Homotopy type theory

higher 
category theory homotopy theory

dependent
type theory

4

Semantics

higher 
category theory homotopy theory

dependent
type theory

Awodey,van den Berg,Gambino,Garner,Hofmann, 
Lumsdaine,Streicher,Voevodsky,Warren 1994-2010

4

Semantics

higher 
category theory homotopy theory

dependent
type theory

Awodey,van den Berg,Gambino,Garner,Hofmann, 
Lumsdaine,Streicher,Voevodsky,Warren 1994-2010

5

Principles

higher 
category theory homotopy theory

dependent
type theory

Univalence [Voevodsky, 2006] 
Higher inductive types [Bauer,Lumsdaine,Shulman,Warren, 2011]

5

Principles

higher 
category theory homotopy theory

dependent
type theory

Univalence [Voevodsky, 2006] 
Higher inductive types [Bauer,Lumsdaine,Shulman,Warren, 2011]

6

FP as a language for objects of
higher homotopy type

6

FP as a language for objects of
higher homotopy type

Mechanized proofs
π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ

Hopf fibrations

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead 
for n-types

Cohomology 
 axioms

[Brunerie,Buchholtz,Cavallo,Finster, 
 Hou,Licata,Lumsdaine,Rilke,Shulman]

T2 = S1 × S1

Mayer-VietorisProjective Spaces

8

higher 
category theory homotopy theory

dependent
type theory

9

What does this all mean in
programming terms?

11

11

11

11

In a world 
that’s powered 
by violence...

11

In a world 
that’s powered 
by violence...

In a world 
where owning a 
radio was strictly 

forbidden…

11

In a world 
where freedom 

is history…

In a world 
that’s powered 
by violence...

In a world 
where owning a 
radio was strictly 

forbidden…

12

In a world where all functions are monotone 
and preserve least upper bounds…

12

In a world where all functions are monotone 
and preserve least upper bounds…

13

In a world where 
all functions are continuous…

λ-terms

CPOs

13

In a world where 
all functions are continuous…

λf.λx.λy.f x yλ-terms

CPOs

13

In a world where 
all functions are continuous…

λf.λx.λy.f x yλ-terms

CPOs function with the property 
of being continuous

14

In a world where 
all functions are continuous…

Y(f) = f(Y(f))λ-terms

CPOs something that 
only exists in that world

15

In a world where all functions 
secretly something… are

15

In a world where all functions 
secretly something… do

15

In a world where all functions 
secretly something… do

get “code for free” / generic programs

15

In a world where all functions 
secretly something… do

get “code for free” / generic programs

can add new principles that depend on them

16

Homotopy type theory

higher 
category theory homotopy theory

dependent
type theory

17

In a world where 
types are spaces

17

In a world where 
types are spaces

each type is a space,
with points and paths

17

programs are points

In a world where 
types are spaces

each type is a space,
with points and paths

17

programs are points

points can be
“literally the same” or 
connected by a path

In a world where 
types are spaces

each type is a space,
with points and paths

18

Many types are discrete (Nat)

0 1 2

3 4 5

18

Many types are discrete (Nat)

0 1 2

3 4 5
2+2

18

Many types are discrete (Nat)

0 1 2

3 4 5
2+2
6-2

19

NM

α

Paths look like equality

19

N
id

M
id : Path M M

α

Paths look like equality
reflexivity

19

N
id

M
id : Path M M

α-1 : Path N M

α
α-1

Paths look like equality
reflexivity

symmetry

19

N

P

β

id

M
id : Path M M

α-1 : Path N M

β ◦ α : Path M P

α
α-1

Paths look like equality
reflexivity

symmetry

transitivity

20

N

P

β

M β ◦ α : Path M P
α

But are data

β ◦ α

γ

20

N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

β ◦ α

γ

20

N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

(β ◦ α) ≠ γβ ◦ α

γ

20

N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

(β ◦ α) ≠ γ

¬ PathPath M P (β ◦ α) γ

β ◦ α

γ

20

N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

(β ◦ α) ≠ γ

¬ PathPath M P (β ◦ α) γ

β ◦ α

γ

20

N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

(β ◦ α) ≠ γ

¬ PathPath M P (β ◦ α) γ

β ◦ α

γ

21

Functions “secretly” act on paths

f

21

Functions “secretly” act on paths

f

21

Path x y  
→  

Path f(x) f(y)

Functions “secretly” act on paths

f

22

A

B

ua(f,g,…)
A B

f

g

Voevodsky’s univalence axiom

bijections induce paths between types

23

Monad interface (classic)
[Godemont,Moggi,Wadler]

23

Monad interface (classic)
[Godemont,Moggi,Wadler]

24

Applicative interface
[McBride,Patterson]

24

Applicative interface

effects influence value but not structure

[McBride,Patterson]

24

Applicative interface

effects influence value but not structure

[McBride,Patterson]

25

Monad interface (new)

26

Monad interface (new)

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)
 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = return a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 pure a = return a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)
 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = return a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)
 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = return a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

30

Instance of classic → instance of new

31

Instance of new → instance of classic

32

f
g

32

f
g

h = f … g

extend interface with an operation that is
determined by the others (convenience, efficiency)

f
g

32

f
g

h = f … g

extend interface with an operation that is
determined by the others (convenience, efficiency)

the (default implementation, forget)-bijection 
can be used to dynamically convert between them

f
g

32

f
g

h = f … g

extend interface with an operation that is
determined by the others (convenience, efficiency)

the (default implementation, forget)-bijection 
can be used to dynamically convert between them

it’s “obvious” how to apply this in context

f
g

32

f
g

h = f … g

extend interface with an operation that is
determined by the others (convenience, efficiency)

the (default implementation, forget)-bijection 
can be used to dynamically convert between them

it’s “obvious” how to apply this in context

partially evaluate to modify source code

f
g

33

Paths between types

Monad T

App⇒Monad T

33

Paths between types

Monad T

App⇒Monad T

34

Path-related types do not have same elements

A

B

p

34

Path-related types do not have same elements

A

B

p

but paths between types induce bijections

34

Path-related types do not have same elements

A

B

coe p : A # B
p

but paths between types induce bijections

34

Path-related types do not have same elements

A

B

coe p : A # B
p

coe p-1 : B # A

but paths between types induce bijections

34

Path-related types do not have same elements

A

B

coe p : A # B
p

coe p-1 : B # A

(mutually inverse)

but paths between types induce bijections

34

Path-related types do not have same elements

A

B

coe p : A # B
p

coe p-1 : B # A

(mutually inverse)

moving along a path might do some work

but paths between types induce bijections

35

Voevodsky’s univalence axiom

bijections induce paths between types*

Monad T

App⇒Monad T

Nat × String

String × Nat

36

Coercing along univalence

A B
f

g

36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1

36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1

36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1

A type B type
A # B type

37

Type constructors 
act on points

α : Path A A’  
β : Path B B’
α # β : Path (A # B) (A’ # B’)

38

And “secretly” act  
on paths

α : Path A A’  
β : Path B B’
α # β : Path (A # B) (A’ # B’)

38

coe (α # β) (h :A # B) =  
 coe β ◦ h ◦ coe α-1

And “secretly” act  
on paths

39

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

40

ua(d)

40

C : ((Type # Type) # Type) # Type  
C Mon = {instance : Mon Maybe,  
 sequenceM : ∀ {T A} {Mon T}  
 # List (T A) # T(List A)}  

ua(d)

40

C : ((Type # Type) # Type) # Type  
C Mon = {instance : Mon Maybe,  
 sequenceM : ∀ {T A} {Mon T}  
 # List (T A) # T(List A)}  

C

 C[Monad]

 C[App⇒Monad]

ua(d) C[ua(d)]

40

C : ((Type # Type) # Type) # Type  
C Mon = {instance : Mon Maybe,  
 sequenceM : ∀ {T A} {Mon T}  
 # List (T A) # T(List A)}  

C

 C[Monad]

 C[App⇒Monad]

ua(d) C[ua(d)]

40

C : ((Type # Type) # Type) # Type  
C Mon = {instance : Mon Maybe,  
 sequenceM : ∀ {T A} {Mon T}  
 # List (T A) # T(List A)}  

C

 C[Monad]

 C[App⇒Monad]

ua(d) C[ua(d)]

41

 C[Monad]

 C[App⇒Monad]

coe C[ua(d)]

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

41

 C[Monad]

 C[App⇒Monad]

coe C[ua(d)]

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = Some a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

41

 C[Monad]

 C[App⇒Monad]

coe C[ua(d)]

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = Some a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

coe ua(d)

42

 C[Monad]

 C[App⇒Monad]

coe C[ua(d)]

 instance Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some a) >>= k = k a  
 
sequenceM : ∀ {T A} {Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

 instance App⇒Monad Maybe where  
 return a = Some a  
 None >>= k = None  
 (Some x) >>= k = k x  
 pure a = Some a  
 f <*> a = f >>= λf’ # a >>= λ a’ # return (f’ a’)  
 
sequenceM : ∀ {T A} {App⇒Monad T} # List (T A) # T(List A)  
sequenceM [] = return []  
sequenceM (x :: xs) = x >>= λ xv #  
 (sequenceM xs) >>= λ xsv #  
 return (xv :: xsv)

coe ua(d)-1

43

In a world where all functions 
secretly something… do

get “code for free” / generic programs

can add new principles that depend on them

44

in a world where all functions act on paths, 
… and paths between types induce bijections 
you can allow bijections to induce paths 
… and ∴ lift any bijection by a generic program

Univalence

45

Π,Σ,+,Path,(co)inductives

Which types act on paths?
Works for:

45

intersection types A ∩ B  

intensional type analysis case A of  
 B × C ⇒ …

made explicit as × of predicates

can define non-univalent 
inductive codes for types

Π,Σ,+,Path,(co)inductives

Doesn’t work for:

Which types act on paths?
Works for:

46

Other sources of bijections
List A ≃ Tree/{assoc,unit} A

List and Tree/{assoc,unit} implementations of
ordered collections, if coercion of operations agree: 
treemap f = fromlist ◦ listmap f ◦ tolist  
(parametricity for graphs of bijections)

(Σ n:Nat.Vec A n) ≃ List A

Everywhere P xs ≃ (x : A) # x ∊ xs # P x

Lots more in libraries/formalizations

47

Paths are data

β

α

47

Paths are data

β

α

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg;
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata;

Angiuli,Harper,Wilson; Pitts,Orton

49

Datatypes with paths

50

Patches as Paths
Repos:Type

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

doc[n]

points describe
repository contents

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

doc[n]

doc[n]

doc[n]

doc[n]

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

[Angiuli,Morehouse, 
L.,Harper]

50

Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
i≠jpaths between paths are

equations between patches

[Angiuli,Morehouse, 
L.,Harper]

51

space Repos where  
 doc[n:Nat] : Repos  
 a↔b@i : Path doc[n] doc[n]  
 commute : (i<n, j<n, i≠j) #  
 Square (a↔b@i) (c↔d@j) (c↔d@j) (a↔b@i)

Higher inductive type

52

A

Vec Char n

52

A

Vec Char n

52

A

Vec Char n

52

A

Vec Char n

53

interp : Repos # Type  
interp(doc[n]) = Vec Char n  
interp(a↔b@i) = ua(… actual swap code …)  
interp(commute) = … proof about above …

Interpreter

54

higher 
category theory homotopy theory

dependent
type theory

55

In a world where all functions 
secretly something… are

55

In a world where all functions 
secretly something… do

