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Mechanized proofs
π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 

Hopf fibrations

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead 
for n-types

Cohomology 
 axioms

[Brunerie,Buchholtz,Cavallo,Finster, 
 Hou,Licata,Lumsdaine,Rilke,Shulman] 

T2 = S1 × S1 

Mayer-VietorisProjective Spaces
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What does this all mean in 
programming terms?
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In a world 
where freedom 

is history…

In a world 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by violence...
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radio was strictly 

forbidden…
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In a world where all functions are monotone 
and preserve least upper bounds… 
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In a world where 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In a world where 
all functions are continuous…

λf.λx.λy.f x yλ-terms

CPOs function with the property 
of being continuous
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In a world where 
all functions are continuous…

Y(f) = f(Y(f))λ-terms

CPOs something that 
only exists in that world
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In a world where all functions 
secretly       something… do

get “code for free” / generic programs 

can add new principles that depend on them
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Homotopy type theory

higher 
category theory homotopy theory

dependent 
type theory
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programs are points

points can be 
“literally the same” or 
connected by a path 

In a world where 
types are spaces

each type is a space, 
with points and paths
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Many types are discrete (Nat)

0 1 2

3 4 5
2+2
6-2
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N
id

M
id : Path M M

α-1  : Path N M 

α
α-1

Paths look like equality
reflexivity

symmetry
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N

P

β

id

M
id : Path M M

α-1  : Path N M 

β ◦ α : Path M P

α
α-1

Paths look like equality
reflexivity

symmetry

transitivity
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N

P

β

M β ◦ α : Path M P
α

But are data

γ
γ : Path M P

(β ◦ α) ≠ γ

¬ PathPath M P (β ◦ α) γ

β ◦ α

γ
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Path x y  
→  

Path f(x) f(y)

Functions “secretly” act on paths

f
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A

B

ua(f,g,…)
A B

f

g

Voevodsky’s univalence axiom

bijections induce paths between types
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Monad interface (classic)
[Godemont,Moggi,Wadler]
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Monad interface (classic)
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Applicative interface
[McBride,Patterson]
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f
g

h = f … g

extend interface with an operation that is 
determined by the others (convenience, efficiency)

the (default implementation, forget)-bijection 
can be used to dynamically convert between them

it’s “obvious” how to apply this in context

partially evaluate to modify source code

f
g
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App⇒Monad T
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Paths between types

Monad T

App⇒Monad T



34

Path-related types do not have same elements 

A

B

p



34

Path-related types do not have same elements 

A

B

p

but paths between types induce bijections



34

Path-related types do not have same elements 

A

B

coe p : A # B
p

but paths between types induce bijections



34

Path-related types do not have same elements 

A

B

coe p : A # B
p

coe p-1 : B # A

but paths between types induce bijections



34

Path-related types do not have same elements 

A

B

coe p : A # B
p

coe p-1 : B # A

(mutually inverse)

but paths between types induce bijections



34

Path-related types do not have same elements 

A

B

coe p : A # B
p

coe p-1 : B # A

(mutually inverse)

moving along a path might do some work

but paths between types induce bijections
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Voevodsky’s univalence axiom

bijections induce paths between types*

Monad T

App⇒Monad T

Nat × String

String × Nat



36

Coercing along univalence

A B
f

g



36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g



36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)



36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1



36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1



36

A

B

ua(f,g,…)

Coercing along univalence

A B
f

g

coe ua(f,g,…)

coe ua(f,g,…)-1



A type  B type
A # B type

37

Type constructors 
act on points 



α : Path A A’  
β : Path B B’
α # β : Path (A # B) (A’ # B’)

38

And “secretly” act  
on paths 



α : Path A A’  
β : Path B B’
α # β : Path (A # B) (A’ # B’)

38

coe (α # β) (h :A # B) =  
   coe β ◦ h  ◦ coe α-1

And “secretly” act  
on paths 
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 instance Monad Maybe where  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In a world where all functions 
secretly       something… do

get “code for free” / generic programs 


can add new principles that depend on them
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in a world where all functions act on paths, 
… and paths between types induce bijections 
you can allow bijections to induce paths 
… and ∴ lift any bijection by a generic program 

Univalence
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Π,Σ,+,Path,(co)inductives

Which types act on paths? 
Works for:
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intersection types        A ∩ B  

intensional type analysis      case A of  
                       B × C ⇒ … 

made explicit as ×  of predicates

can define non-univalent 
inductive codes for types

Π,Σ,+,Path,(co)inductives

Doesn’t work for: 

Which types act on paths? 
Works for:
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Other sources of bijections
List A ≃ Tree/{assoc,unit} A


List and Tree/{assoc,unit} implementations of 
ordered collections, if coercion of operations agree: 
treemap f = fromlist ◦ listmap f ◦ tolist  
(parametricity for graphs of bijections)


(Σ n:Nat.Vec A n) ≃ List A 

Everywhere P xs ≃ (x : A) # x ∊ xs # P x

Lots more in libraries/formalizations



47

Paths are data

β

α



47

Paths are data

β

α



48

Cubical type theories

Bezem,Coquand,Huber; Cohen,Coquand,Huber,Mörtberg; 
Polonsky; Altenkirch,Kaposi; Isaev; Brunerie,Licata; 

Angiuli,Harper,Wilson; Pitts,Orton 
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Datatypes with paths
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Patches as Paths
Repos:Type

[Angiuli,Morehouse, 
L.,Harper]
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Patches as Paths
Repos:Type

a↔b@i

doc[n]

points describe 
repository contents

paths are patches

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
i≠jpaths between paths are 

equations between patches

[Angiuli,Morehouse, 
L.,Harper]
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space Repos where  
   doc[n:Nat] : Repos  
   a↔b@i      : Path doc[n] doc[n]  
   commute    : (i<n, j<n, i≠j) #  
     Square (a↔b@i) (c↔d@j) (c↔d@j) (a↔b@i)

Higher inductive type
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A

Vec Char n
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A

Vec Char n
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interp : Repos # Type  
interp(doc[n]) = Vec Char n  
interp(a↔b@i) = ua(… actual swap code …)  
interp(commute) = … proof about above …

Interpreter 
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higher 
category theory homotopy theory

dependent 
type theory
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