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Synthetic geometry

3

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Two distinct lines meet at two antipodal points.



Synthetic mathematics

4

Type theory
1.τ ::= b | τ1 → τ2 
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]



Synthetic mathematics

4

Type theory

Set-theoretic
functions

1.τ ::= b | τ1 → τ2 
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]



Synthetic mathematics

4

Type theory

Set-theoretic
functions

Domain-theoretic
functions

1.τ ::= b | τ1 → τ2 
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]



Synthetic mathematics
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Type theory

Set-theoretic
functions

Domain-theoretic
functions

1.τ ::= b | τ1 → τ2 
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]
4.Y(f) = f(Y(f))
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Computational Interpretation

6

There is an algorithm that,
given a closed term e : bool,
computes either
an equality e = true, or
an equality e = false.
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Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Allows proof-relevant mathematics

Computational interpretation supports software 
verification and proof automation
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Proof relevance

8

equality typex =A yp : 

transportC(p) : C(x) ! C(y)

x : A

Any structure or property C can be 
transported along an equality 

by a function: can it do real work?

Leibniz’s 
indiscernability
of identicals



Proof relevance

9

equality typex =A yp : 

x : A



Proof relevance

9

equality typex =A yp : 

p1 =x=y p2

x : A



Proof relevance

9

equality typex =A yp : 

p1 =x=y p2q :

x : A



Proof relevance

9

equality typex =A yp : 

p1 =x=y p2q :

x : A

q1 =p1=p2 q2



Proof relevance

9

equality typex =A yp : 

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :



Proof relevance
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equality typex =A yp : 

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...

higher equalities radically expand the kind of 
math that can be done synthetically…  
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[Awodey,Warren,Voevodsky,,Streicher,Hofmann 
Lumsdaine,Gambino,Garner,van den Berg]

higher
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1
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Deformation of one path into another

α

β

= 2-dimensional path between paths

α =x=y βδ : 



Types as spaces
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α) 
      =M=P (γ o β) o α 



category theory homotopy theory

type theory

Homotopy Type Theory
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Types as ∞-groupoids
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type A is an ∞-groupoid morphisms
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

morphisms between morphisms

infinite-dimensional 
algebraic structure, 
with morphisms, 
morphisms between 
morphisms, ...

each level has a 
groupoid structure,
and they interact

ul : id o α  =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α) 
      =M=P (γ o β) o α 
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generated by 
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p1 p3
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Path induction

16

Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2



Type theory is a 
synthetic theory of 
spaces/∞-groupoids
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category theory homotopy theory

type theory

Homotopy Type Theory

18

new programs
and types
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Univalence

19

Equivalence of types is a generalization to 
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to) 
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

Not by collapsing equivalence,
but by exploiting proof-relevant equality:
transport does real work

[Voevodsky]



Higher inductive types
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New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

[Bauer,Lumsdaine,Shulman,Warren]



category theory homotopy theory

type theory

Homotopy Type Theory

21

new possibilities
for computer-
checked proofs

new programs
and types
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Basis for this formalization

22

Agda proof assistant [Norell, Abel, Danielsson]

10,000 line HoTT library

essentially no automation
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3.K(G,n)



Types as spaces

25

M
id

loop operations
id    : M = M (refl)
α-1     : M = M  (sym)
β o α : M = M (trans)

homotopies
ul : id o α = α
il : α-1 o α = id
asc : γ o (β o α) 
      = (γ o β) o α 



Homotopy Groups
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Homotopy groups of a space X:
π1(X) is fundamental group (group of loops)
π2(X) is group of homotopies (2-dimensional loops) 
π3(X) is group of 3-dimensional loops
… 
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=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart
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Homotopy Groups

28

Ω(A,x)x =A x

id =x=x id

A

id =Ω2(A,x) id

...

Ω2(A,x)

Ω3(A,x)

πn(A,x) = ||Ωn(A,X)||0

0-truncation =
set of connected 
components = 
all paths are equal



Eilenberg-MacLane Space
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K(G,1) is a space such that
   π1(K(G,1)) = G and
   πk(K(G,1)) = 1 otherwise

For a group G

(G abelian)K(G,n) is a space such that
   πn(K(G,n)) = G and
   πk(K(G,n)) = 1 otherwise



Spaces with specified groups
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Define X = K(G,1) × K(H,2)

π1(X) = π1(K(G,1))×π1(K(H,2))
         = G × 1
         = G

π2(X) = π2(K(G,1))×π2(K(H,2))
         = 1 × H
         = H

Find X with π1(X) = G and π2(X) = H 
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Define ordinary cohomology with coefficients in G by

Homotopy groups aren’t the only invariant: 
homology groups, cohomology groups 

Hn(A) = ||A → K(G,n)||0 



Cohomology

31

Define ordinary cohomology with coefficients in G by

Homotopy groups aren’t the only invariant: 
homology groups, cohomology groups 

satisfies (constructive) Eilenberg-Steenrod axioms

Hn(A) = ||A → K(G,n)||0 



Eilenberg-MacLane space

32

Can we build Eilenberg-MacLane spaces 
from higher inductive types?



Outline
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1.Eilenberg-MacLane spaces

2.K(G,1)

3.K(G,n)

4.Proofs
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Fundamental group of circle

34

How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base
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The circle S1 is a space such that
   π1(S1) = ℤ and
   πk(S1) = 1 otherwise

The circle is K(ℤ,1)
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The Circle

36

Circle S1 is a higher inductive type 
generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...



The Circle

37

Circle recursion:
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loop’ : base’ = base’ 

loop
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loop’
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The Circle

37

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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K(G,1) is a higher inductive type 
generated by 

K(G,1) :   type

base : K(G,1)
loop : G ! base=base
loop-ident : loop(1G) = id
loop-comp : loop(x⋅Gy) = loop(x)⋅loop(y)

loop(x)

base

loop(y)
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K(G,1) is a higher inductive type 
generated by 

K(G,1) :   type

base : K(G,1)
loop : G ! base=base
loop-ident : loop(1G) = id
loop-comp : loop(x⋅Gy) = loop(x)⋅loop(y)

loop(x)

base

loop(y)
1-

group homomorphism 
from G to Ω(K(G,1))
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K(ℤ,1) revisited

39

K(ℤ,1) is equivalent to previous S1

loop(0) = id

loop(1)

loop(-1) = !loop(1)

loop(2) = loop(1) ⋅ loop(1)

loop(1)

base

loop(-1)

loop(0)



K(G,1) recursion

40

loop(x)

base

loop(y)



K(G,1) recursion

40

To define f : K(G,1) → C

show C is a 1-type
give f(base) : C
f(loop) : group homomorphism from
             G to Ω(C,f(base))

loop(x)

base

loop(y)
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loop(x)

base

loop(y)
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1. Codes : K(G,1) ! 1-Type
  Codes(base) = G
  Codes(loop(x)) = 
    “multiplication by x”

loop(x)

base

loop(y)
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π1(K(G,1)) = G

41

1. Codes : K(G,1) ! 1-Type
  Codes(base) = G
  Codes(loop(x)) = 
    “multiplication by x”

loop(x)

base

loop(y)

2. encode : Ω(K(G,1)) ! G
  encode(p) = transportCodes(p,1G)

3.  Calculate that encode and loop are mutually
     inverse using encode-decode method



42



Eilenberg-MacLane space
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K(G,1) such that
   π1(K(G,1)) = G and
   πk(K(G,1)) = 1 otherwise

For a group G, can define a spaceSo far:
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1.Eilenberg-MacLane spaces

2.K(G,1)

3.K(G,n)
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Sphere S2
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π1 is trivial: inside of any loop can be filled 
π2 is ℤ: 2-paths on sphere = paths on circle
πk>2 is … 
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kth homotopy group
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K(ℤ,2)

47

Define K(ℤ,2) = ||S2||2

2-truncation = kill all paths 
at level higher than 2

π1 is trivial: same as S2 
π2 is ℤ: same as S2

πk>2 is trivial 
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kth homotopy group

n-
di

m
en
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er
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[image from wikipedia]



K(ℤ,n)

49

πk<n is trivial
πn is ℤ
πk>n is trivial 

Define K(ℤ,n) = ||Sn||n



K(ℤ,n)

49

πk<n is trivial
πn is ℤ
πk>n is trivial 

Define K(ℤ,n) = ||Sn||n

[HoTT proofs: L.,Brunerie,Lumsdaine]



K(ℤ,n)

49

πk<n is trivial
πn is ℤ
πk>n is trivial 

Define K(ℤ,n) = ||Sn||n

Generalize to other groups G?

[HoTT proofs: L.,Brunerie,Lumsdaine]
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Σ A is a higher inductive type 
generated by

N : Σ A
S : Σ A
merid : A ! Σ A
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S2 = Σ S1



Spheres

51

S2 = Σ S1

Sn = Σn-1 S1



K(G,n)
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πk<n is trivial
πn is G
πk>n is trivial 

Define K(G,n) = ||Σn-1 K(G,1)||n

Theorem:
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Define K(G,n) = ||Σn-1 K(G,1)||n

πn+1(K(G,n+1)) = πn+1 ||Σn K(G,1)||n+1
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use HoTT proof by Lumsdaine

= πn+1   Σn K(G,1)
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merid : A → Ω (Σ A) is 
an equivalence?
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Theorem: If A is n-connected (trivial up to level n), 
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Theorem: If A is n-connected (trivial up to level n), 
then ||A||2n = ||Ω (Σ A)||2n

HoTT Proof [Lumsdaine]: generalization of 
encode-decode method

… = π4(K(G,4)) = π3(K(G,3)) = π2(K(G,2))
Corollary:
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… = π4(K(G,4)) = π3(K(G,3) = π2(K(G,2))
By Freudenthal:
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… = π4(K(G,4)) = π3(K(G,3) = π2(K(G,2))
By Freudenthal:

π1(K(G,1)) = G
By above:



πn(K(G,n)) = G

56

… = π4(K(G,4)) = π3(K(G,3) = π2(K(G,2))
By Freudenthal:

π1(K(G,1)) = G
By above:

π2(K(G,2)) = π1(K(G,1)) 
By another encode-decode proof:
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10,000 line HoTT library

+ 250 lines for Freudenthal Suspension Theorem 



Formalization
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10,000 line HoTT library

+ 250 lines for Freudenthal Suspension Theorem 

+ 750 lines for K(G,n)



Reading list
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1.The HoTT Book

2.Homotopy theory in Agda:
    Fundamental group of the circle [LICS’13]
    πn(Sn) = ℤ [CPP’13]
    K(G,n) [LICS’14]
    github.com/dlicata335/
  github.com/hott/hott-agda

3.Blog: homotopytypetheory.org


