Eilenberg-MacLane Spaces in Homotopy Type Theory

Dan LicataEric FinsterWesleyan UniversityInria Paris Rocquencourt

Three senses of constructivity:

Three senses of constructivity:

* Non-affirmation of certain classical principles provides axiomatic freedom

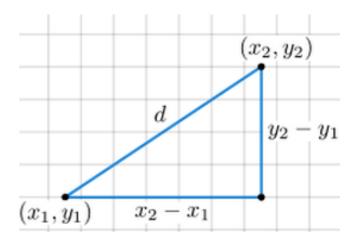
Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

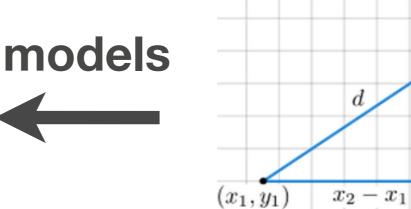
Cartesian



Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Given a line and a point not on it, there is exactly one line through the point that does not intersect the line

Cartesian



(x_2, y_2) d $y_2 - y_1$

Euclid's postulates

- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.

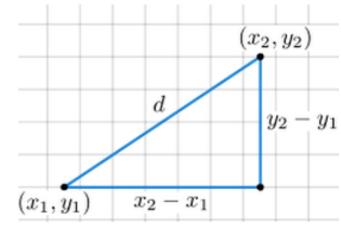
models (x_1, y_1) $x_2 - x_1$

Euclid's postulates

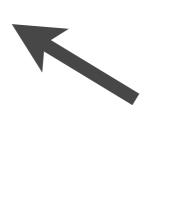
- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.

models

Cartesian



Spherical

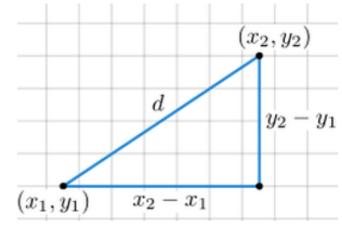


Euclid's postulates

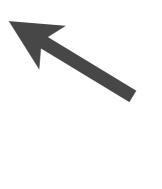
- 1. To draw a straight line from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to one another.
- 5. Two distinct lines meet at two antipodal points.

models

Cartesian

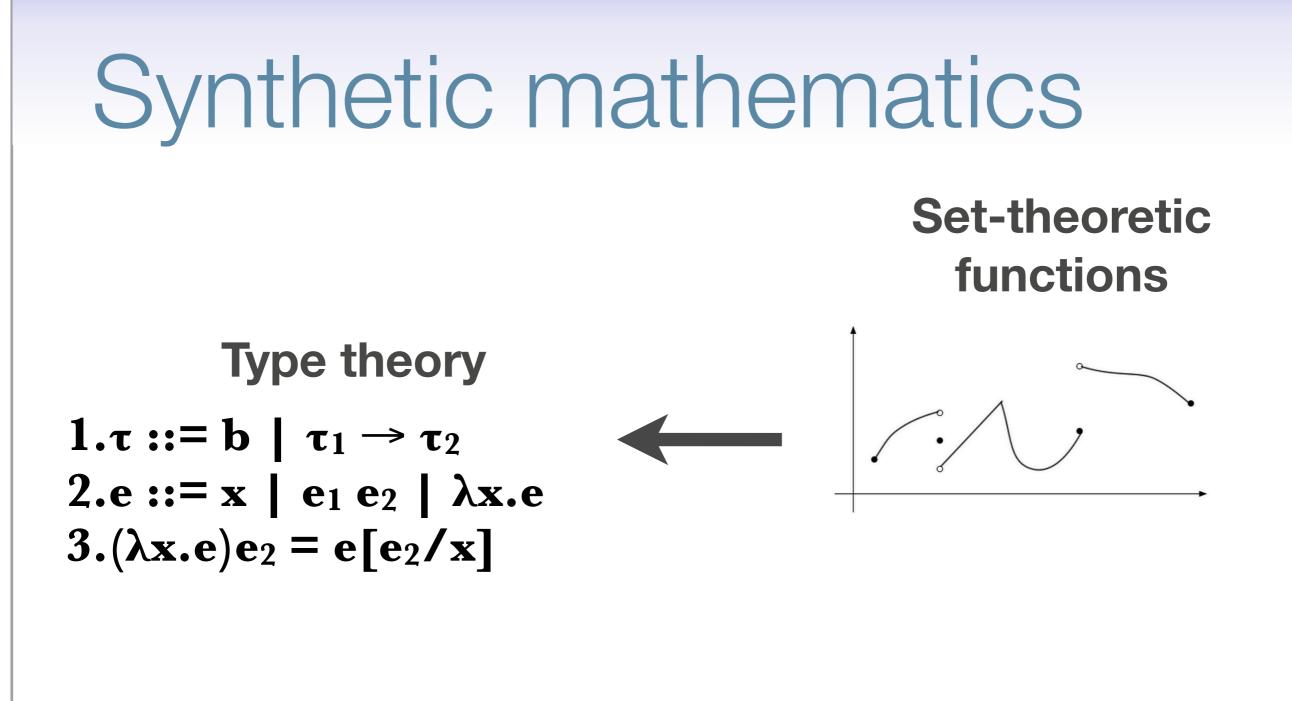


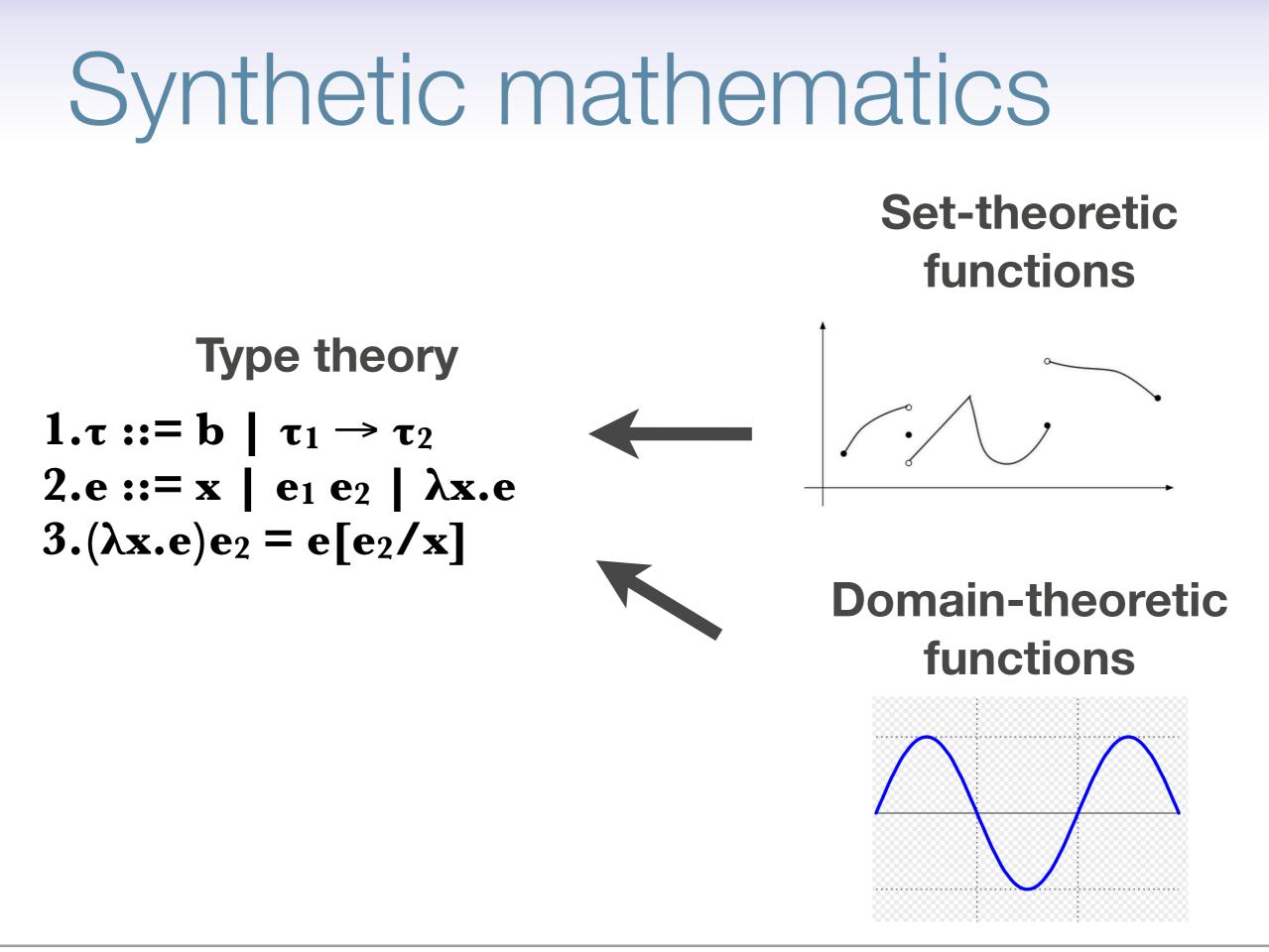
Spherical

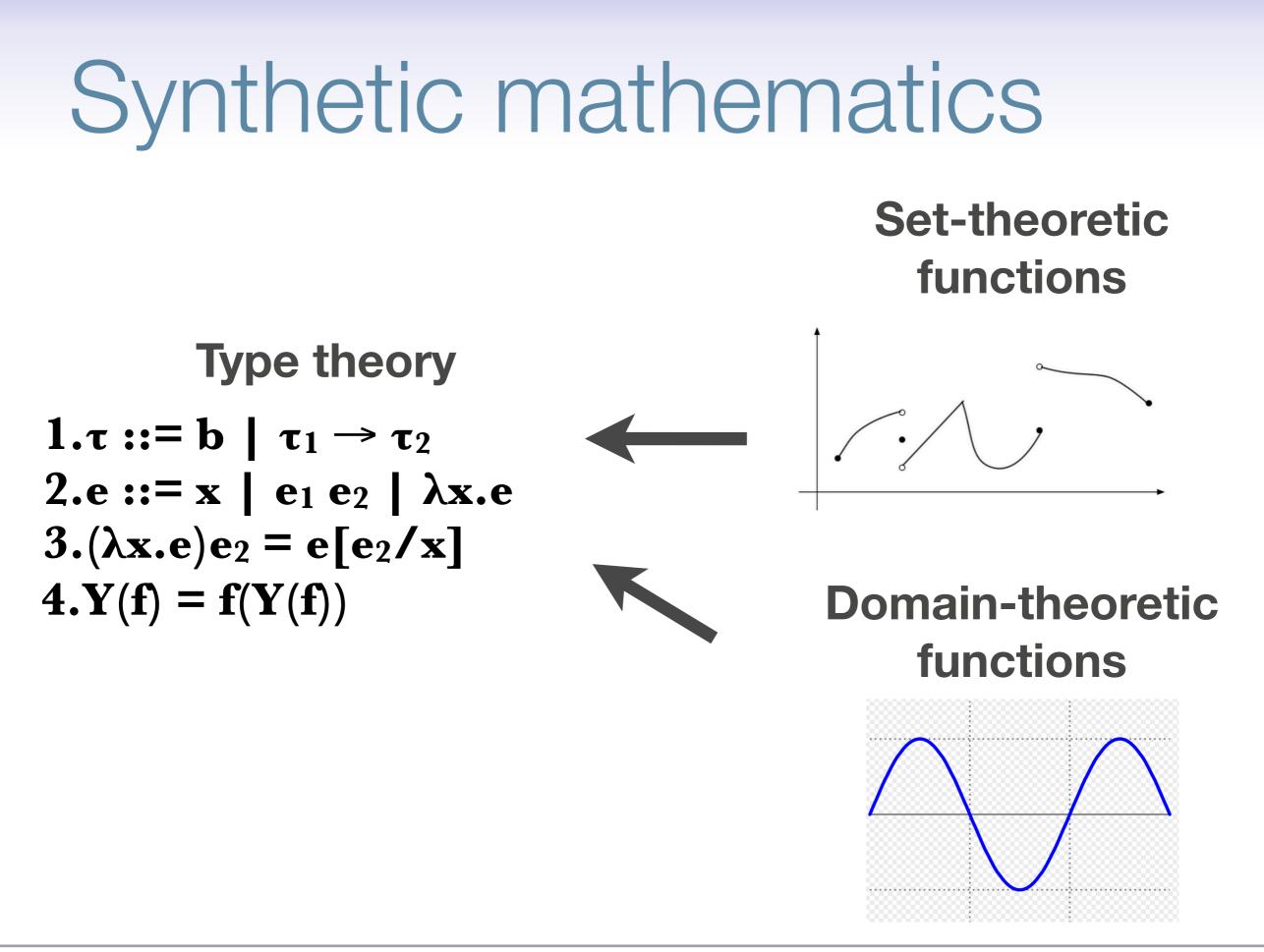


Synthetic mathematics

Type theory $1.\tau ::= b \mid \tau_1 \rightarrow \tau_2$ $2.e ::= x \mid e_1 e_2 \mid \lambda x.e$ $3.(\lambda x.e)e_2 = e[e_2/x]$







Three senses of constructivity:

Three senses of constructivity:

* Non-affirmation of certain classical principles provides axiomatic freedom

Three senses of constructivity:

* Non-affirmation of certain classical principles provides axiomatic freedom

Computational interpretation supports software verification and proof automation

Computational Interpretation

There is an algorithm that, given a closed term e : bool, computes either an equality e = true, or an equality e = false.

Three senses of constructivity:

* Non-affirmation of certain classical principles provides axiomatic freedom

Computational interpretation supports software verification and proof automation

Three senses of constructivity:

* Non-affirmation of certain classical principles provides axiomatic freedom

Computational interpretation supports software verification and proof automation

Allows proof-relevant mathematics

x : A

x : A

$x =_A y$ equality type

x : A

$p : x =_A y$ equality type

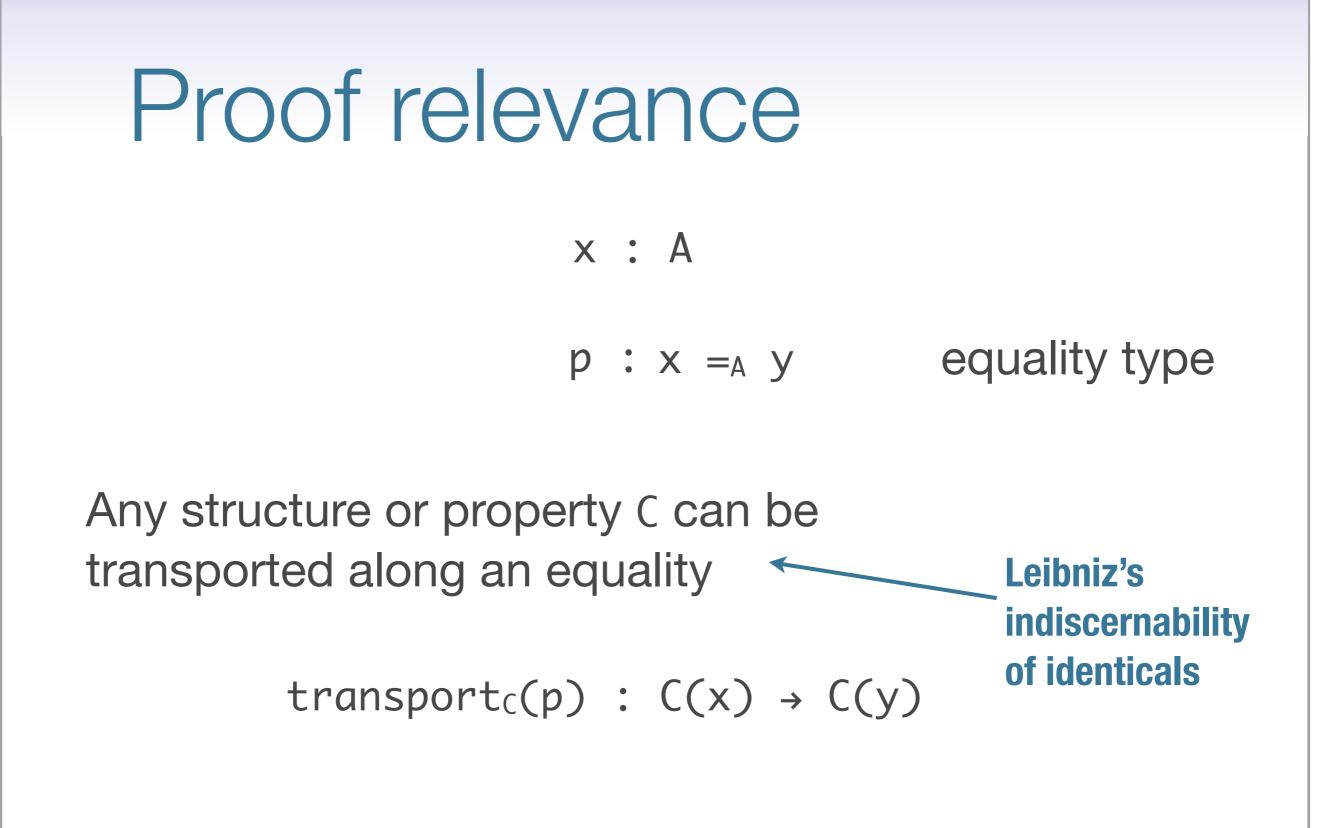
Proof relevancex : A $p : x =_A y$ equality type

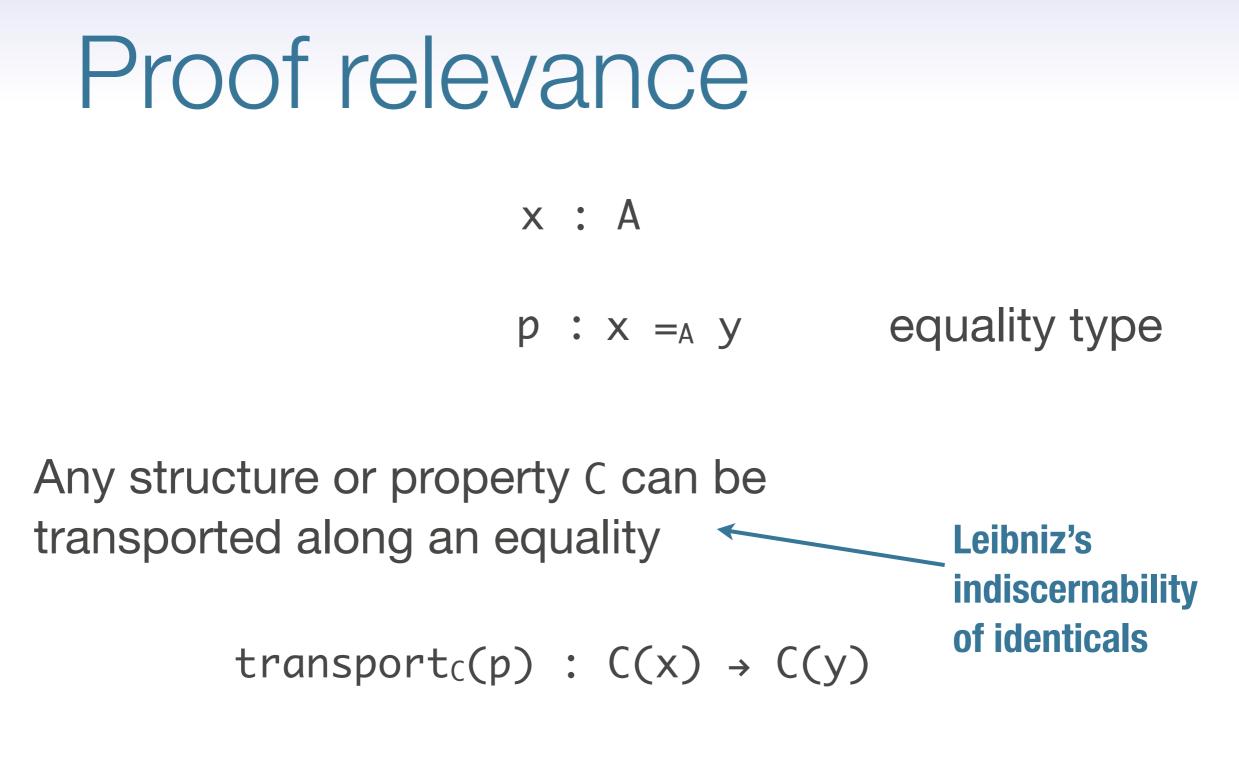
Any structure or property C can be transported along an equality

Proof relevancex : Ap : x = A yequality type

Any structure or property C can be transported along an equality

transport_C(p) : C(x) \rightarrow C(y)





by a function: can it do real work?

x : A

$p : x =_A y$ equality type

x : A

 $p : x =_A y$ equality type

 $p_1 =_{x=y} p_2$

x : A

 $p : x =_A y$ equality type

 $q : p_1 =_{x=y} p_2$

x : A

 $p : x =_A y$ equality type

 $q : p_1 =_{x=y} p_2$

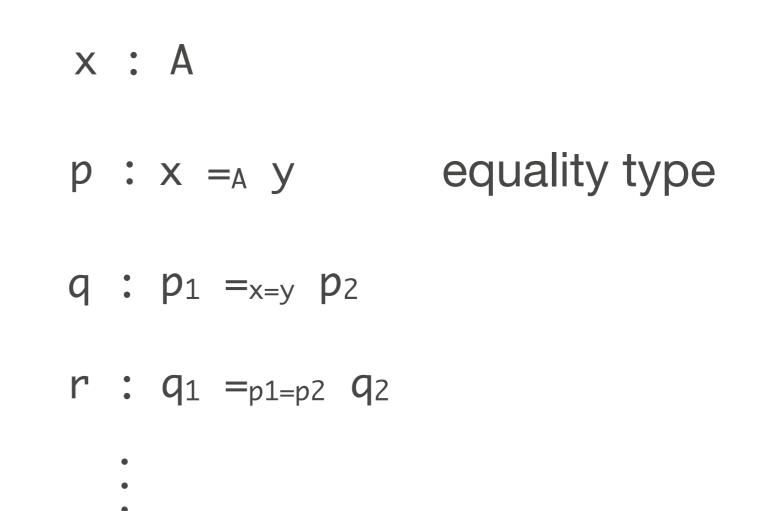
q₁ =_{p1=p2} **q**₂

x : A

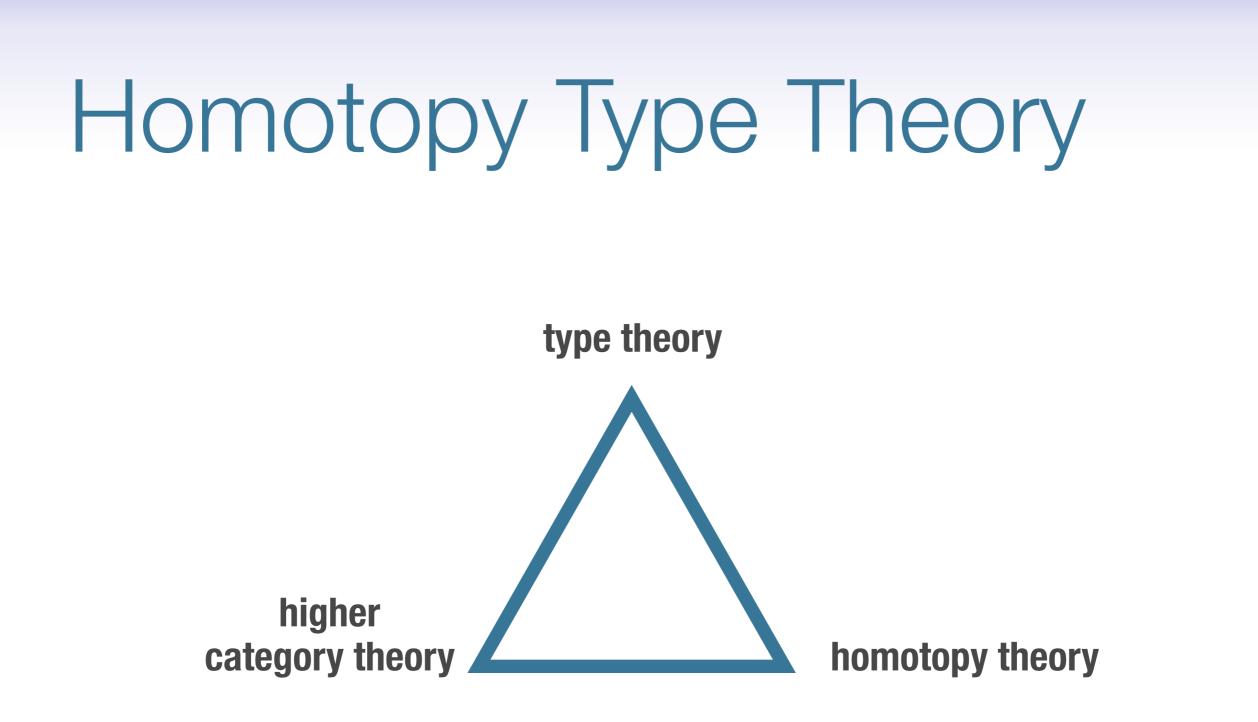
 $p : x =_A y$ equality type

 $q : p_1 =_{x=y} p_2$

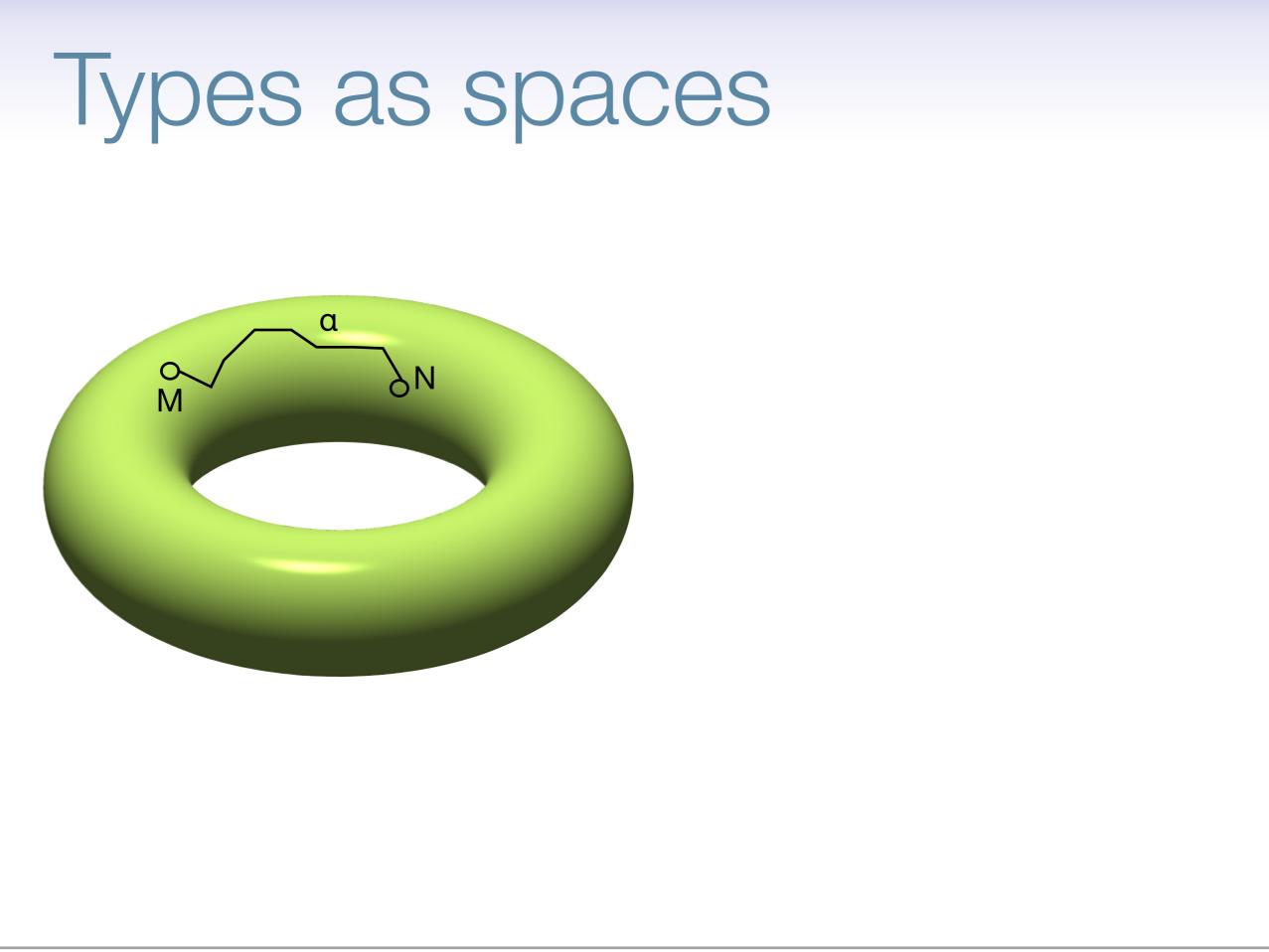
 $r: q_1 =_{p_1=p_2} q_2$

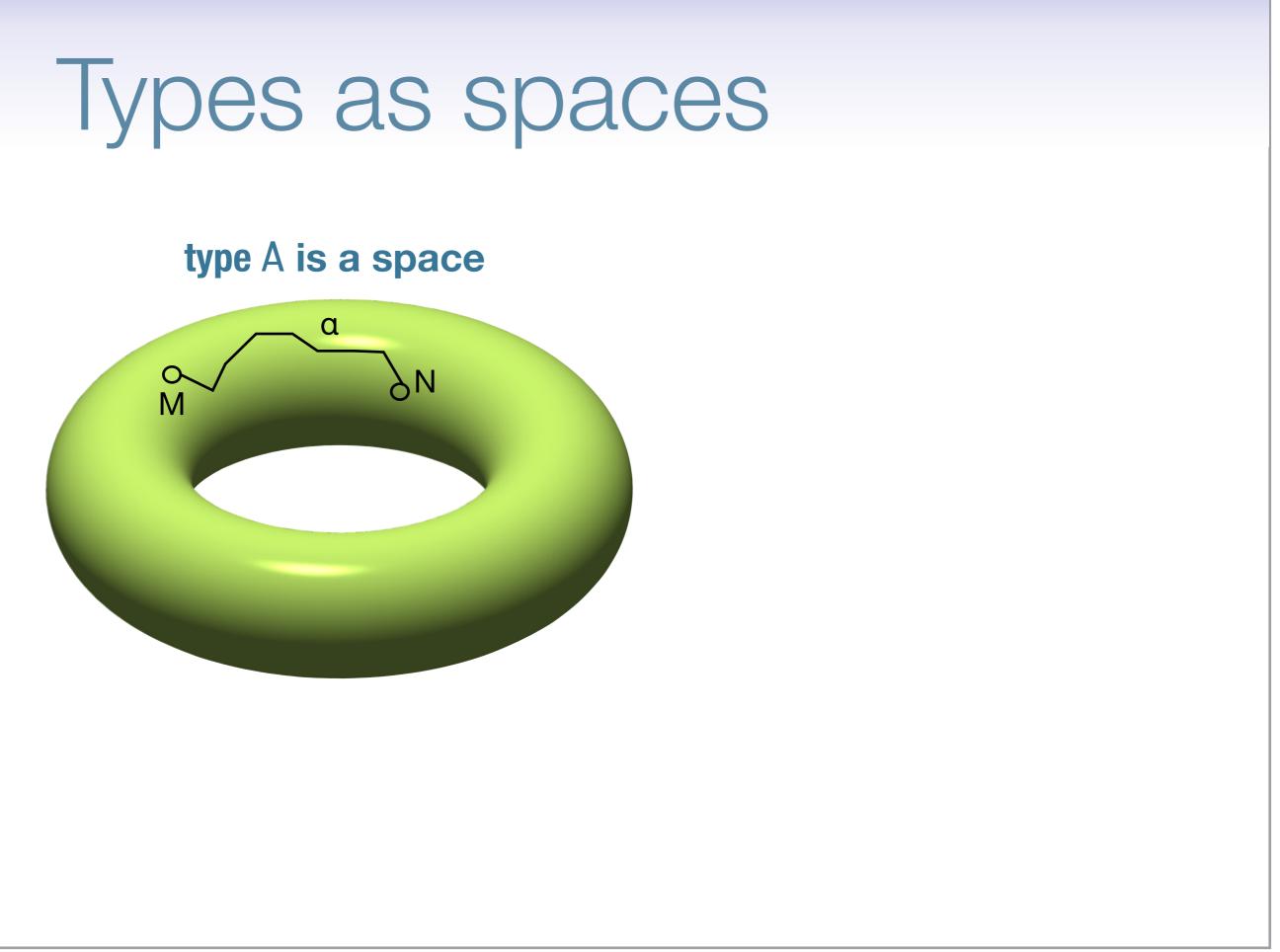


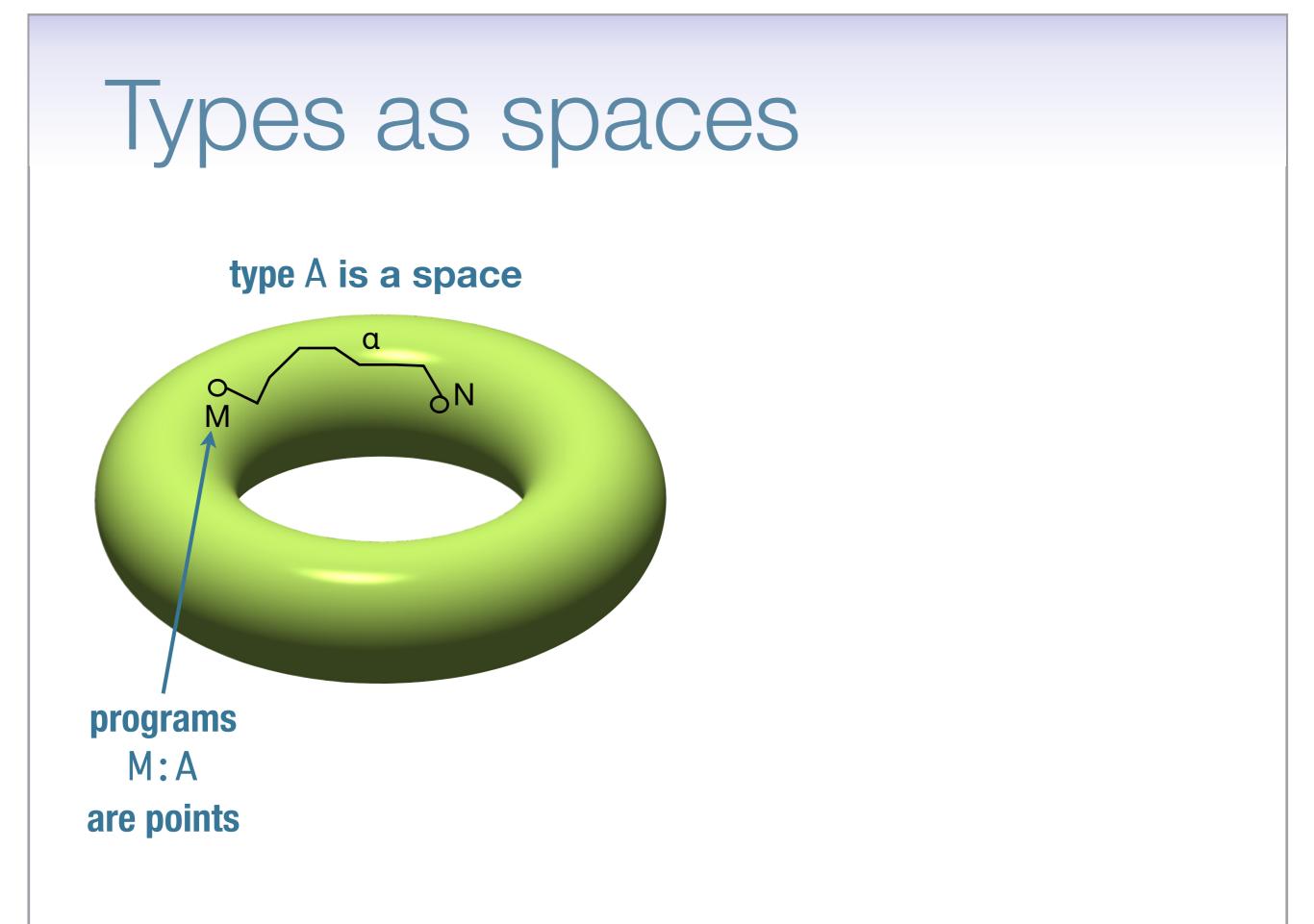
higher equalities radically expand the kind of math that can be done synthetically...

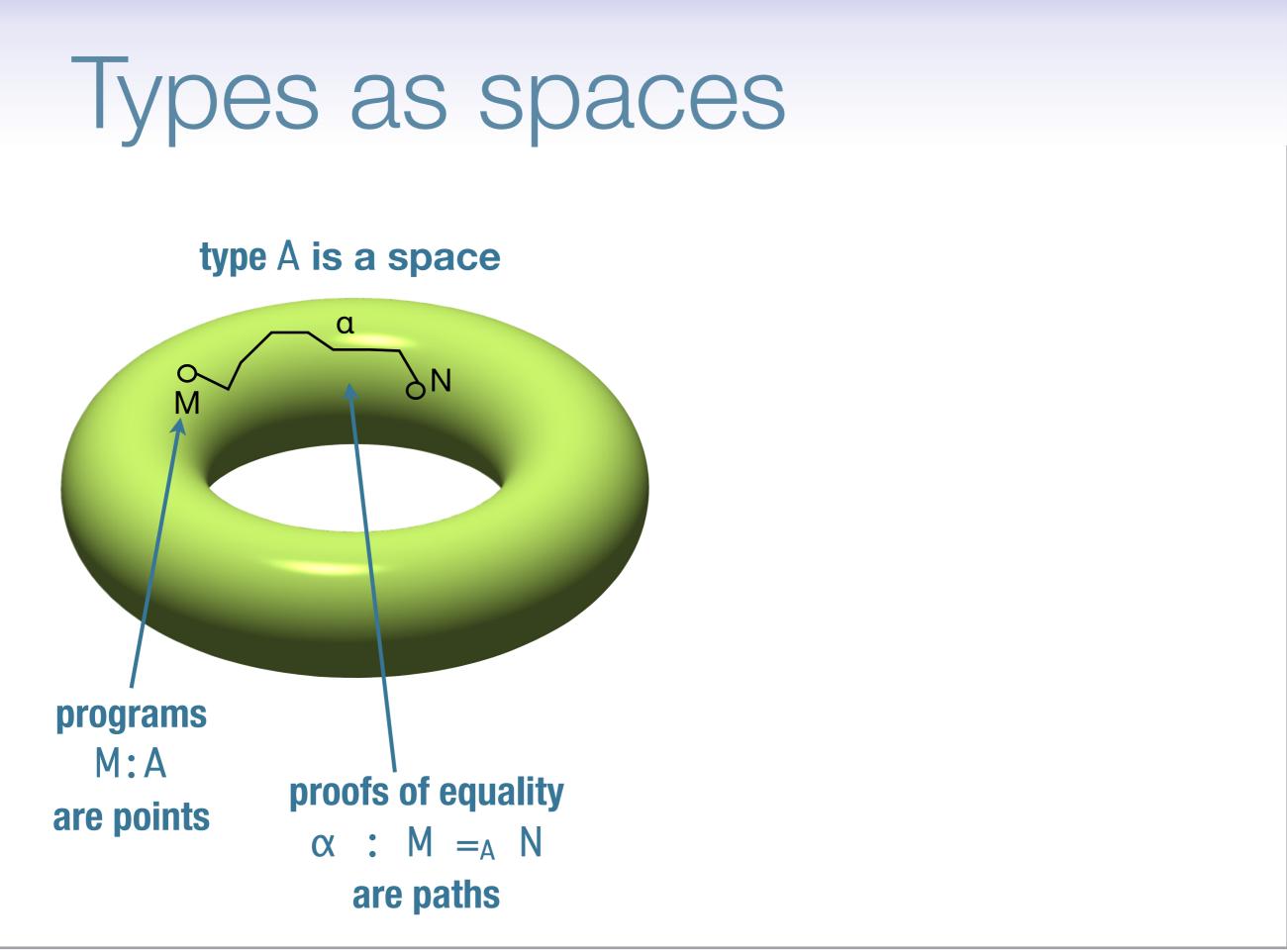


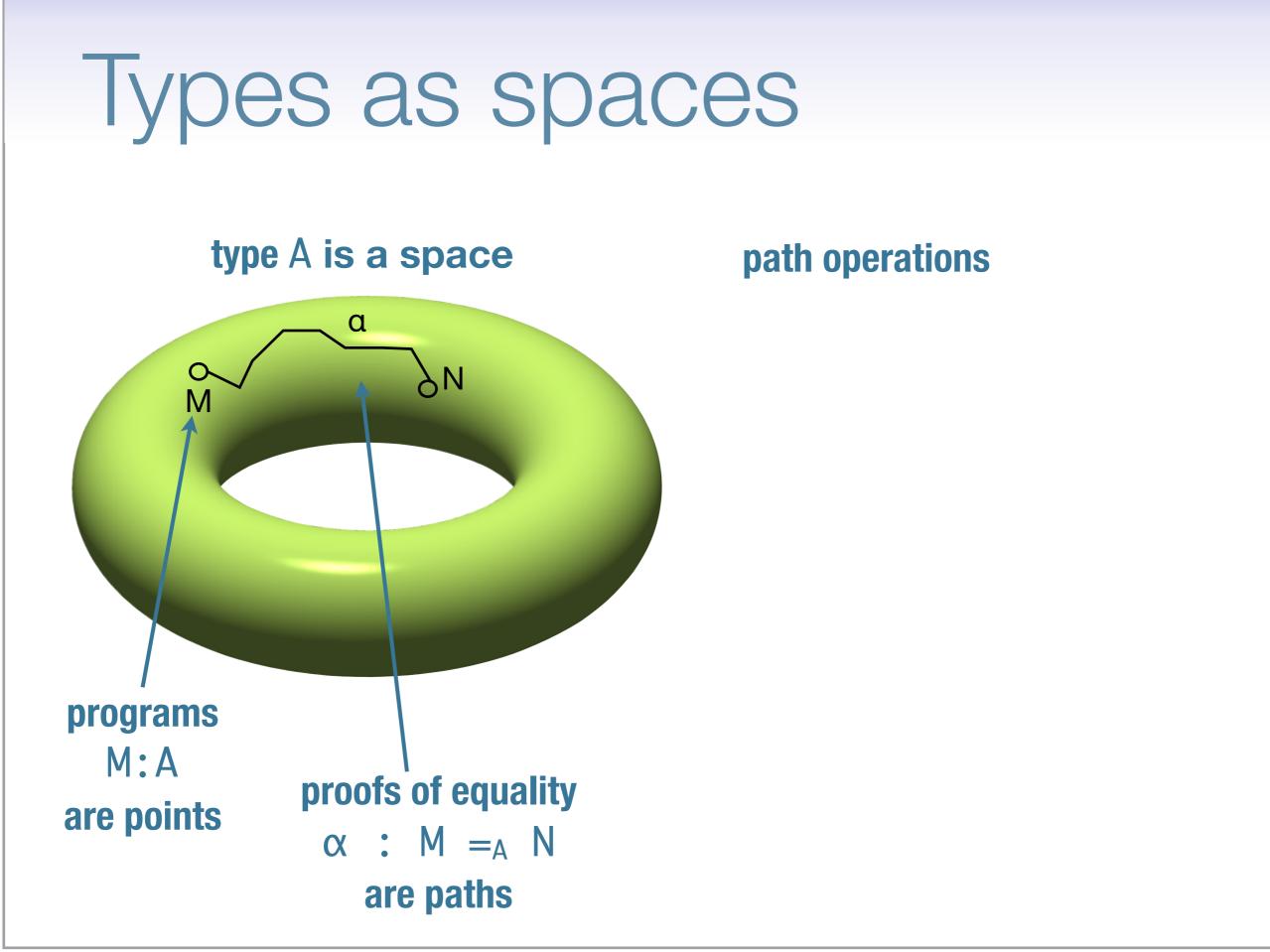
[Awodey,Warren,Voevodsky,,Streicher,Hofmann Lumsdaine,Gambino,Garner,van den Berg]

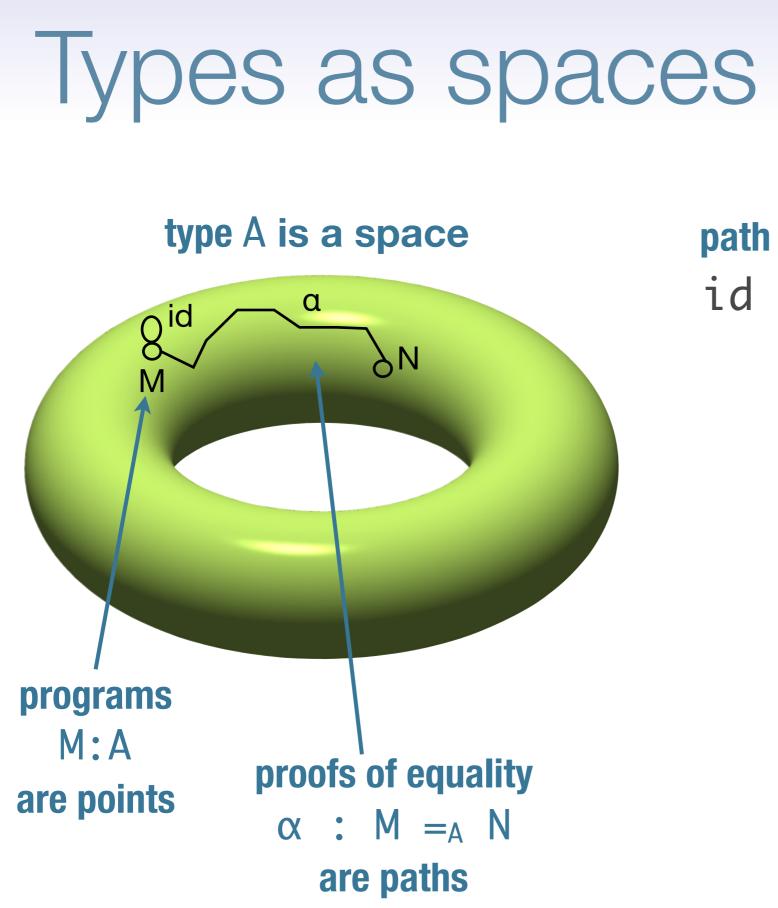








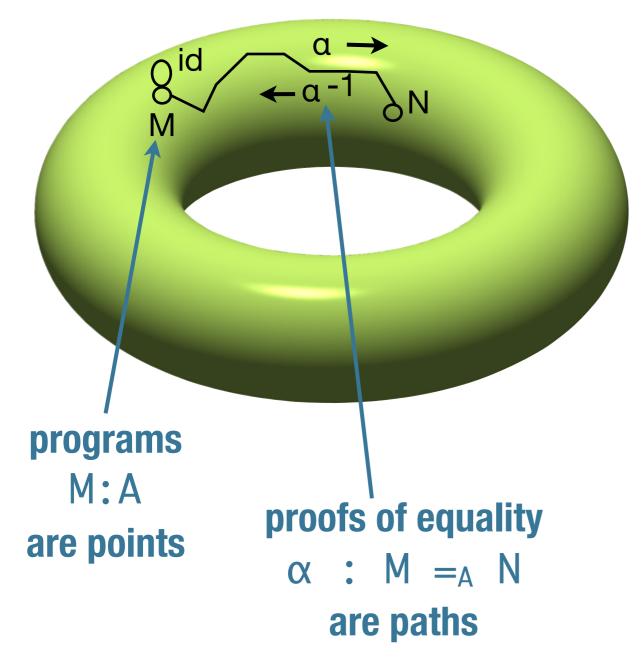




path operations id : M = M (refl)

Types as spaces

type A is a space

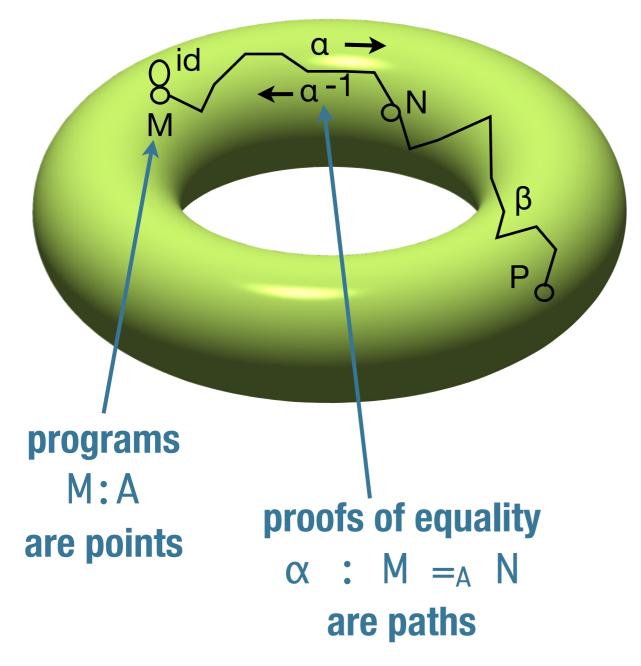


path operations id : M = M (refl)

 α^{-1} : N = M (sym)

Types as spaces

type A is a space



path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

Homotopy

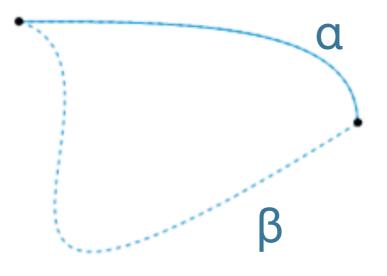
Deformation of one path into another

α

β

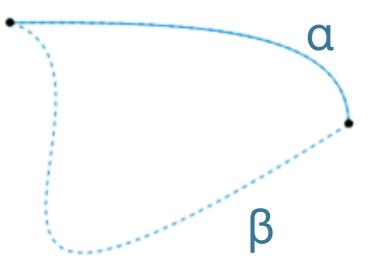
Homotopy

Deformation of one path into another



Homotopy

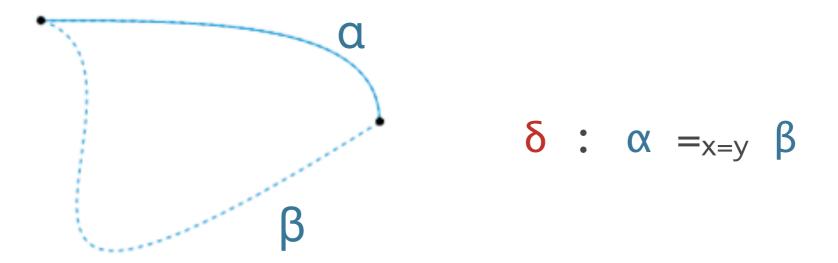
Deformation of one path into another



= 2-dimensional path between paths

Homotopy

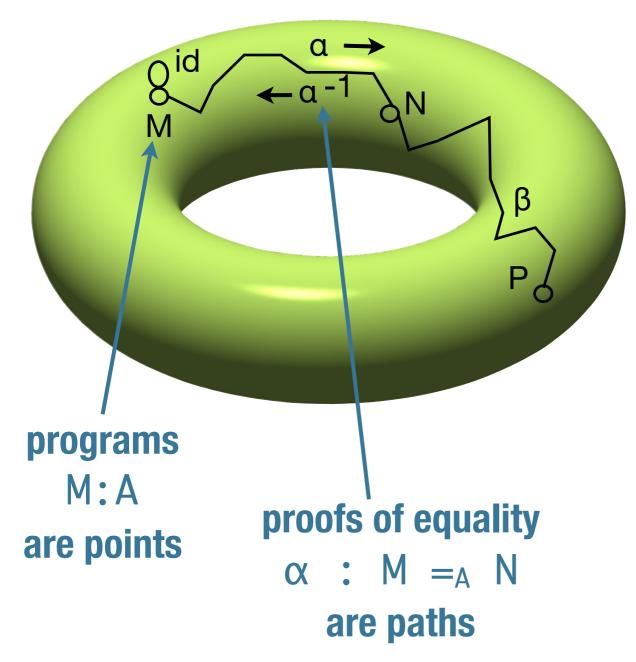
Deformation of one path into another



= 2-dimensional *path* between *paths*

Types as spaces

type A is a space



path operations

id		•	Μ	=	Μ	(refl)
α-1		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

homotopies ul : id o $\alpha =_{M=N} \alpha$ il : $\alpha^{-1} \circ \alpha =_{M=M}$ id asc : $\gamma \circ (\beta \circ \alpha)$ $=_{M=P} (\gamma \circ \beta) \circ \alpha$

Homotopy Type Theory

category theory

homotopy theory

Types as ∞-groupoids

type A is an ∞-groupoid

* infinite-dimensional algebraic structure, with morphisms, morphisms between morphisms, ...

* each level has a
groupoid structure,
and they interact

morphisms

id		•	Μ	=	Μ	(refl)
x ⁻¹		•	Ν	=	Μ	(sym)
βο	α	•	Μ	=	Ρ	(trans)

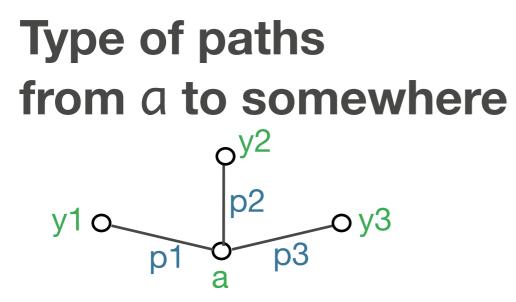
morphisms between morphisms ul : id o $\alpha =_{M=N} \alpha$ il : $\alpha^{-1} \circ \alpha =_{M=M} id$ asc : $\gamma \circ (\beta \circ \alpha)$ $=_{M=P} (\gamma \circ \beta) \circ \alpha$

Path induction

Type of paths from a to somewhere $y_{10}^{y_{2}^{$ is inductively generated by

8^{id}

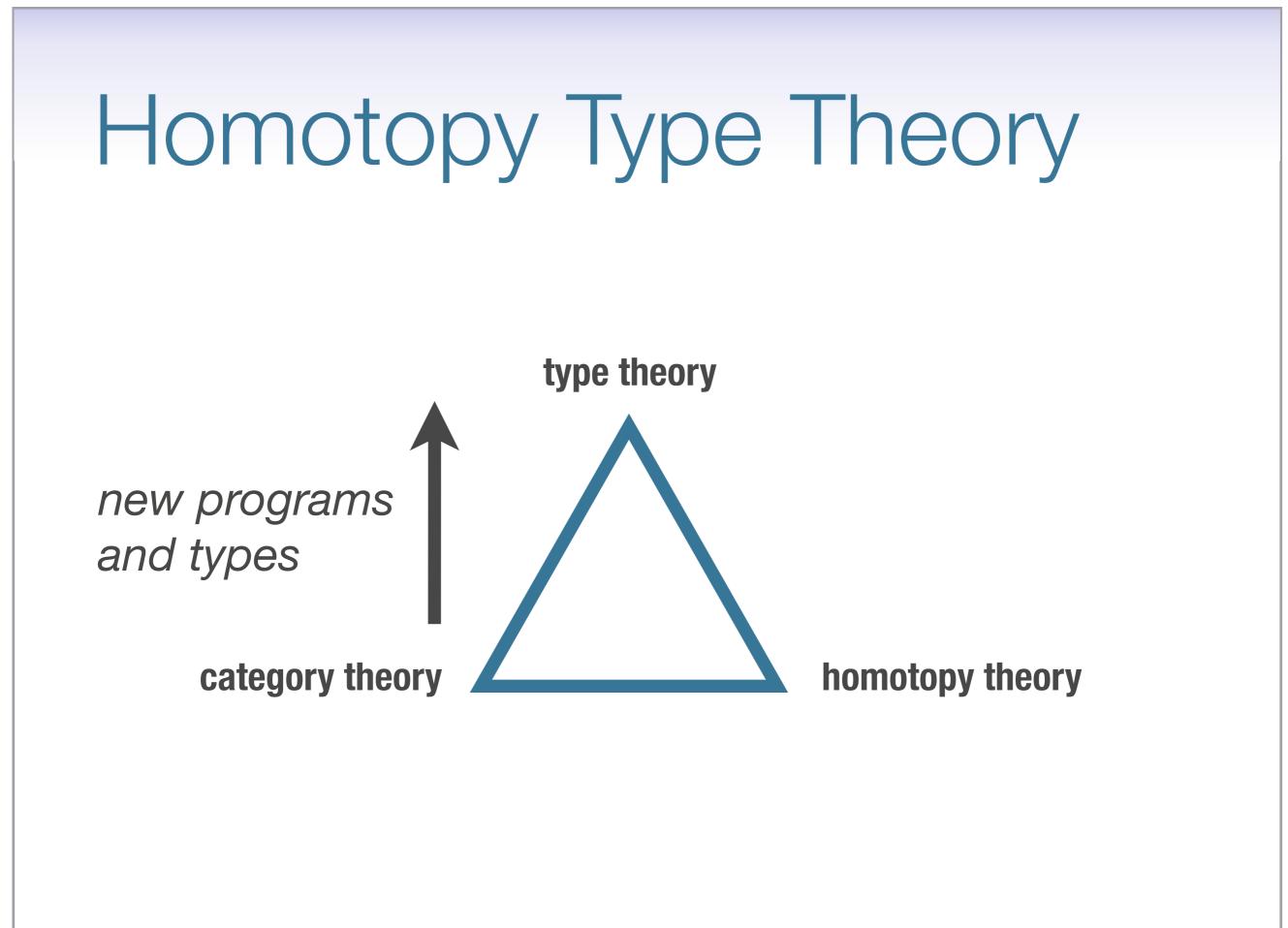
Path induction



is inductively generated by

8^{id}

Type theory is a synthetic theory of spaces/∞-groupoids



** Equivalence of types* is a generalization to spaces of bijection of sets

Equivalence of types is a generalization to spaces of bijection of sets

Univalence axiom: equality of types (A =Type B) is (equivalent to) equivalence of types (Equiv A B)

Equivalence of types is a generalization to spaces of bijection of sets

Univalence axiom: equality of types (A =_{Type} B) is (equivalent to) equivalence of types (Equiv A B)

* .: all structures/properties respect equivalence

Equivalence of types is a generalization to spaces of bijection of sets

Univalence axiom: equality of types (A =_{Type} B) is (equivalent to) equivalence of types (Equiv A B)

* .: all structures/properties respect equivalence

* Not by collapsing equivalence, but by exploiting proof-relevant equality: transport does real work

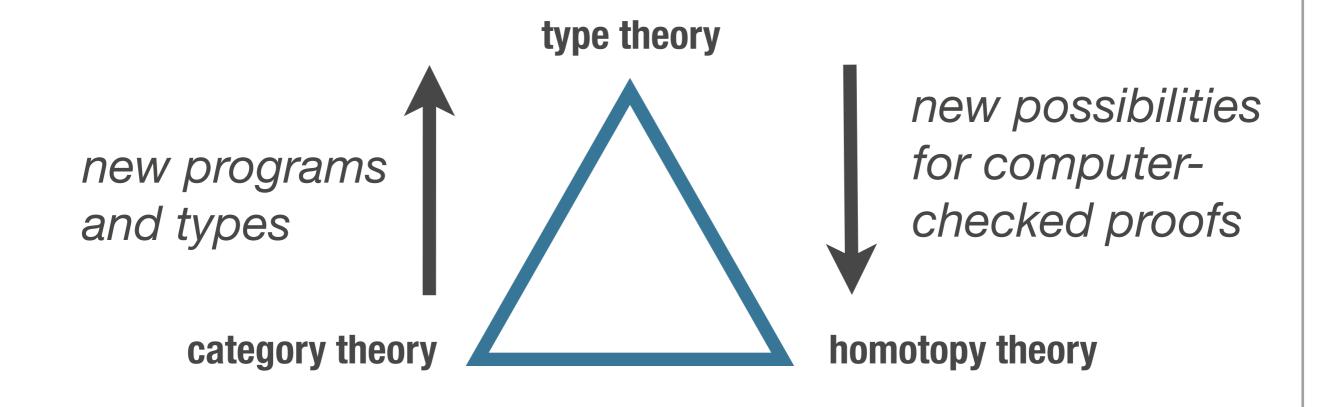
Higher inductive types

[Bauer,Lumsdaine,Shulman,Warren]

New way of forming types:

Inductive type specified by generators not only for points (elements), but also for paths

Homotopy Type Theory



* Agda proof assistant [Norell, Abel, Danielsson]

* Agda proof assistant [Norell, Abel, Danielsson]

#10,000 line HoTT library

* Agda proof assistant [Norell, Abel, Danielsson]

#10,000 line HoTT library

* essentially no automation

Outline

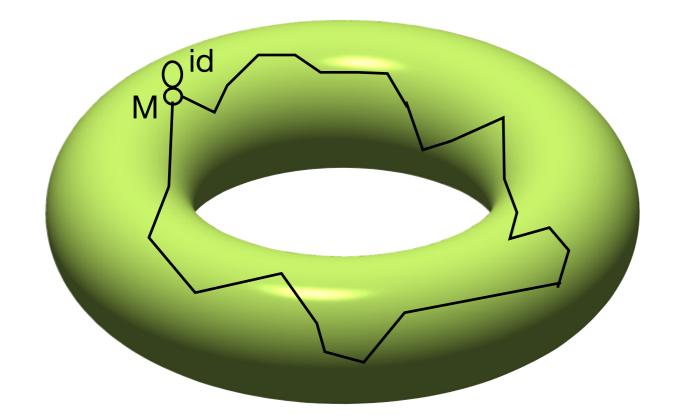
Eilenberg-MacLane spaces
 K(G,1)
 K(G,n)

Outline

1.Eilenberg-MacLane spaces

2.K(G,1) 3.K(G,n)

Types as spaces



loop operations

id		•	Μ	=	Μ	(refl)
α-1		•	Μ	=	Μ	(sym)
βο	α	•	Μ	=	Μ	(trans)

homotopies ul : id o $\alpha = \alpha$ il : α^{-1} o $\alpha = id$ asc : γ o (β o α) $= (\gamma \circ \beta) \circ \alpha$

Homotopy Groups

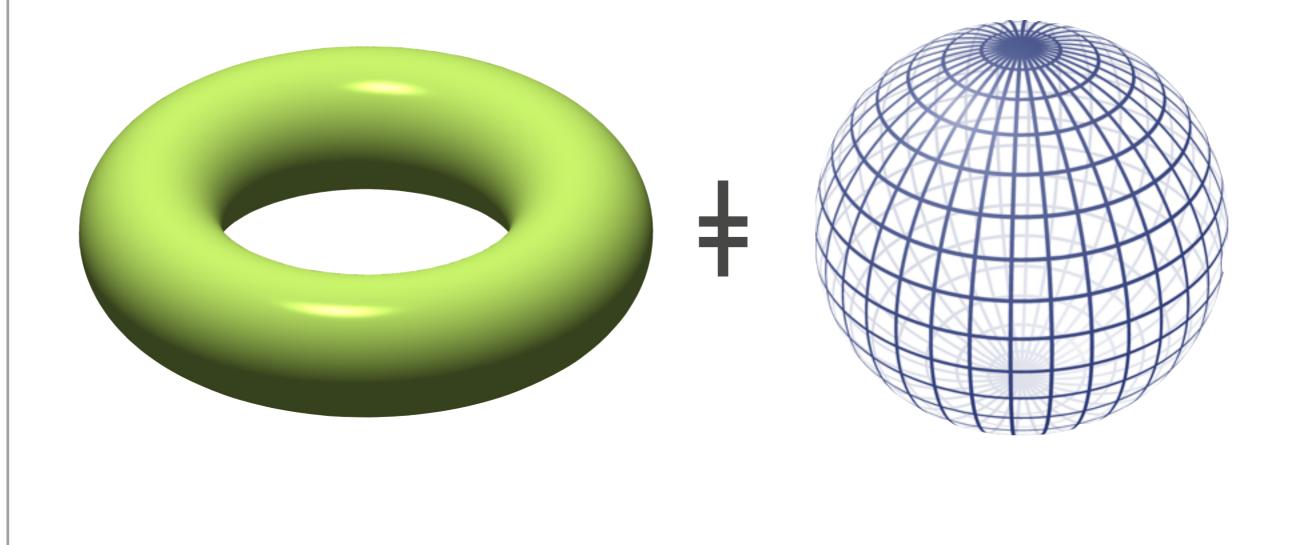
Homotopy groups of a space X:

 $\pi_1(X)$ is fundamental group (group of loops)

 $\pi_2(X)$ is group of homotopies (2-dimensional loops)

π₃(X) is group of 3-dimensional loops

Telling spaces apart



Telling spaces apart

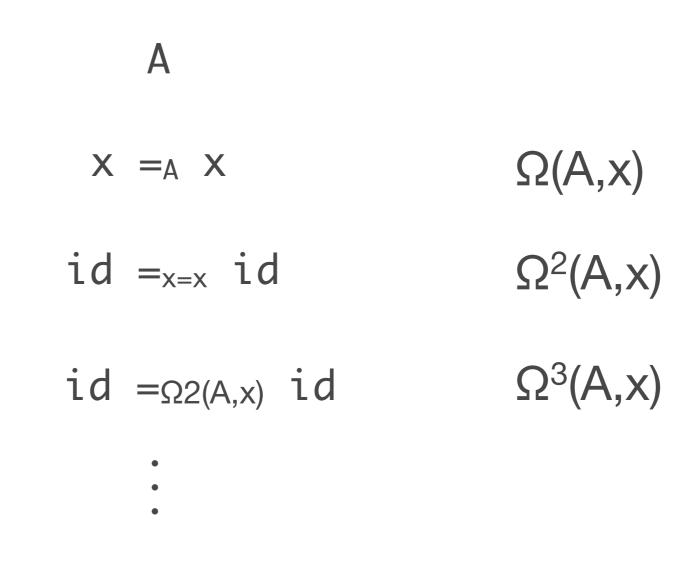
fundamental group is non-trivial ($\mathbb{Z} \times \mathbb{Z}$)

fundamental group is trivial

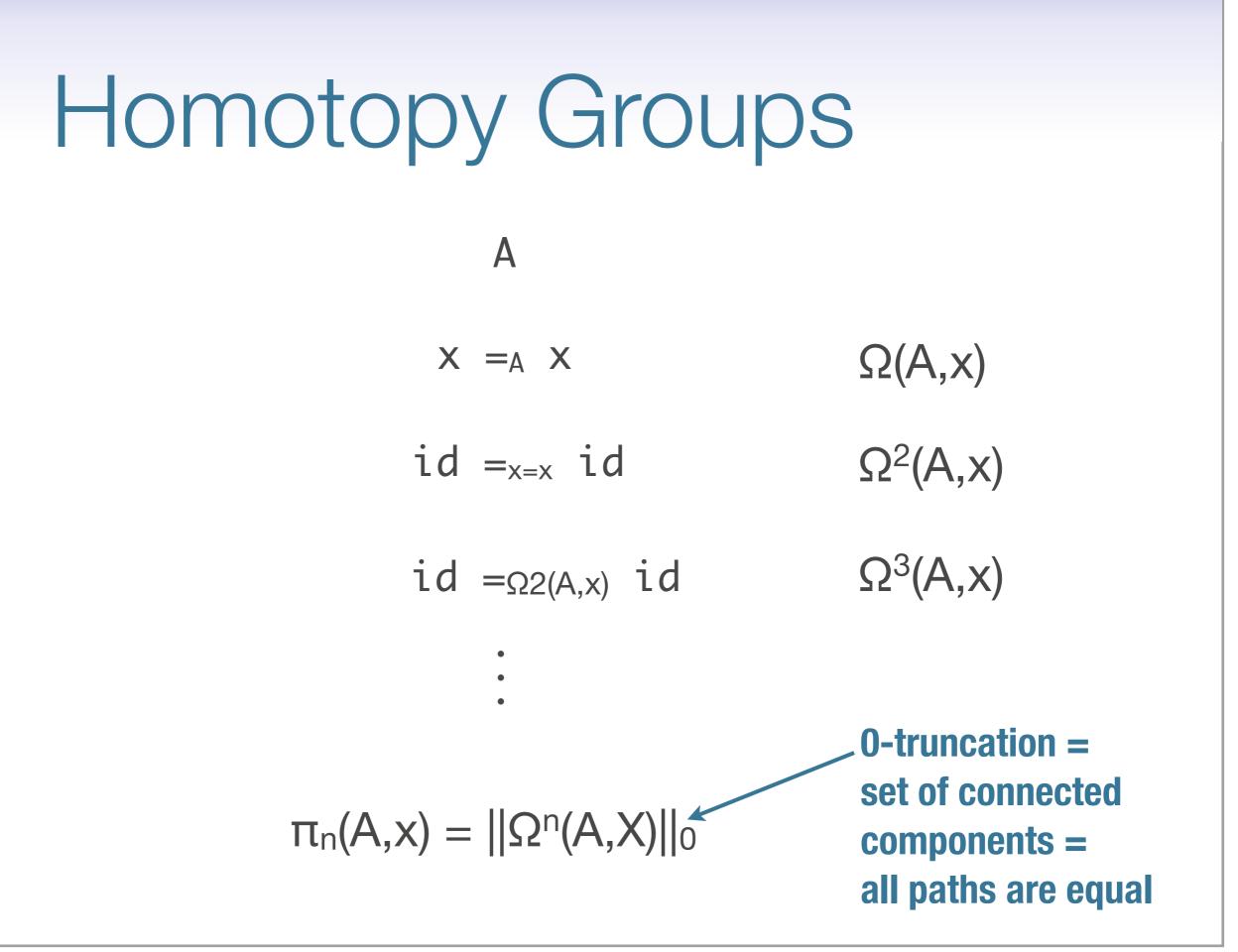
Homotopy Groups

- A $x =_A x$ $\Omega(A,x)$ id $=_{x=x}$ id $\Omega^2(A,x)$
- id = $\Omega^2(A,x)$ id $\Omega^3(A,x)$
 - •
 - •
 - •

Homotopy Groups



 $\pi_n(A,x) = ||\Omega^n(A,X)||_0$



Eilenberg-MacLane Space

For a group G

 $\begin{array}{l} K(G,1) \text{ is a space such that} \\ \pi_1(K(G,1)) = G \text{ and} \\ \pi_k(K(G,1)) = 1 \text{ otherwise} \end{array}$

 $\begin{array}{ll} K(G,n) \text{ is a space such that} & (G \text{ abelian}) \\ \pi_n(K(G,n)) = G \text{ and} \\ \pi_k(K(G,n)) = 1 \text{ otherwise} \end{array}$

Spaces with specified groups

Find X with $\pi_1(X) = G$ and $\pi_2(X) = H$

```
Define X = K(G,1) \times K(H,2)
```

$\begin{aligned} \pi_1(X) &= \pi_1(K(G,1)) \times \pi_1(K(H,2)) & \pi_2(X) = \pi_2(K(G,1)) \times \pi_2(K(H,2)) \\ &= G \times 1 & = 1 \times H \\ &= H \end{aligned}$

Cohomology

Homotopy groups aren't the only invariant: homology groups, cohomology groups

Define ordinary cohomology with coefficients in G by $H^{n}(A) = ||A \rightarrow K(G,n)||_{0}$

Cohomology

Homotopy groups aren't the only invariant: homology groups, cohomology groups

Define ordinary cohomology with coefficients in G by $H^{n}(A) = ||A \rightarrow K(G,n)||_{0}$

satisfies (constructive) Eilenberg-Steenrod axioms

Eilenberg-MacLane space

Can we build Eilenberg-MacLane spaces from higher inductive types?

Outline

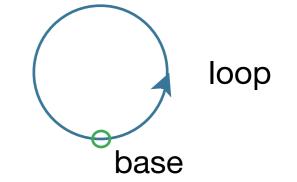
1. Eilenberg-MacLane spaces

2.K(G,1)

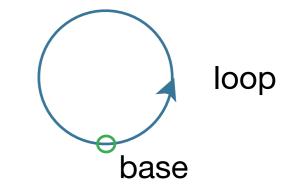
3.K(G,n)

4.Proofs

How many different loops are there on the circle, up to homotopy?

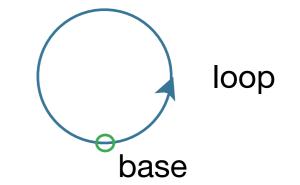


How many different loops are there on the circle, up to homotopy?



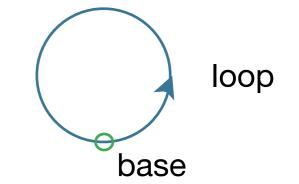
id

How many different loops are there on the circle, up to homotopy?



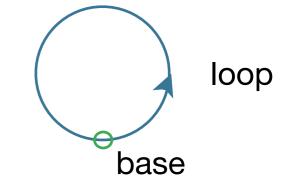
id loop

How many different loops are there on the circle, up to homotopy?



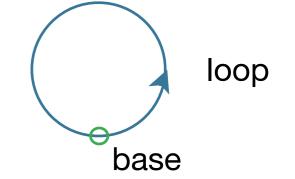
id loop loop⁻¹

How many different loops are there on the circle, up to homotopy?



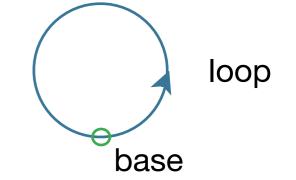
id loop loop⁻¹ loop o loop

How many different loops are there on the circle, up to homotopy?



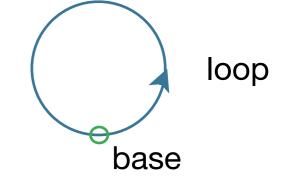
id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

How many different loops are there on the circle, up to homotopy?

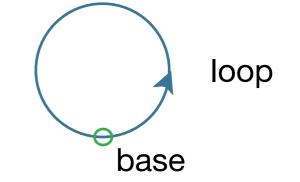


id loop loop⁻¹ loop o loop loop⁻¹ o loop⁻¹

How many different loops are there on the circle, up to homotopy?

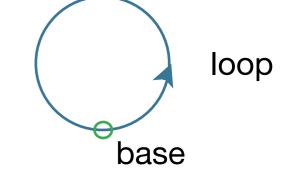


How many different loops are there on the circle, up to homotopy?



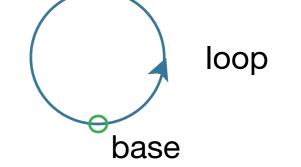
0

How many different loops are there on the circle, up to homotopy?

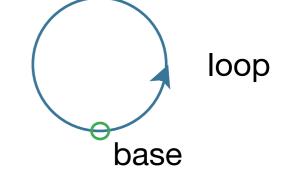


Ω

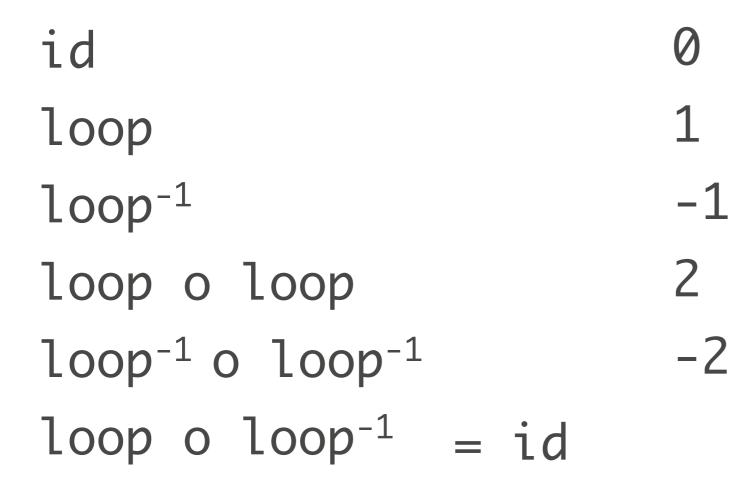
How many different loops are there on the circle, up to homotopy?

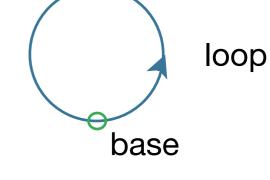


How many different loops are there on the circle, up to homotopy?

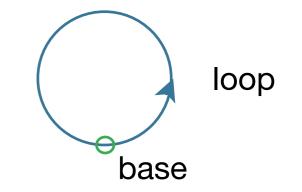


How many different loops are there on the circle, up to homotopy?





How many different loops are there on the circle, up to homotopy?

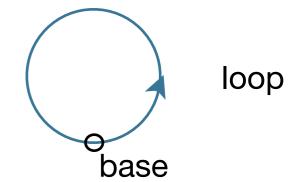


0
1
-1
2
-2
0

The circle S¹ is a space such that $\pi_1(S^1) = \mathbb{Z}$ and $\pi_k(S^1) = 1$ otherwise

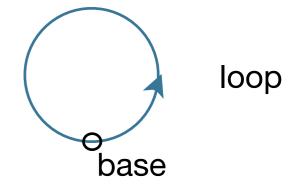
The circle is $K(\mathbb{Z},1)$

Circle S¹ is a **higher inductive type** generated by



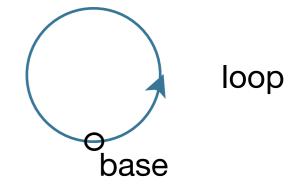
Circle S¹ is a **higher inductive type** generated by

base : S¹
loop : base = base



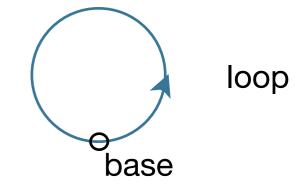
Circle S¹ is a **higher inductive type** generated by

point base : S¹
loop : base = base



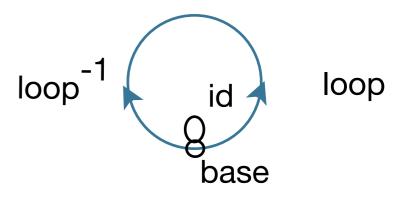
Circle S¹ is a **higher inductive type** generated by

point base : S¹
path loop : base = base



Circle S¹ is a **higher inductive type** generated by

point base : S¹
path loop : base = base

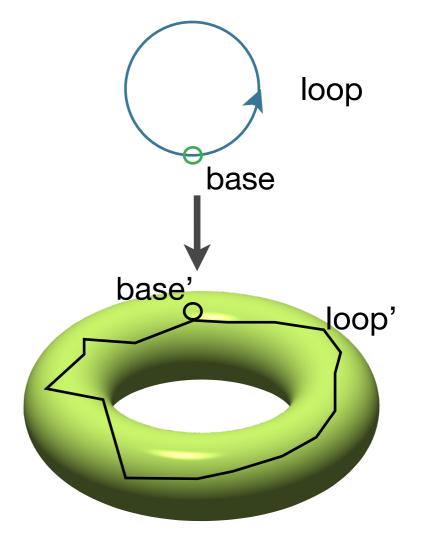


Free type: equipped with structure

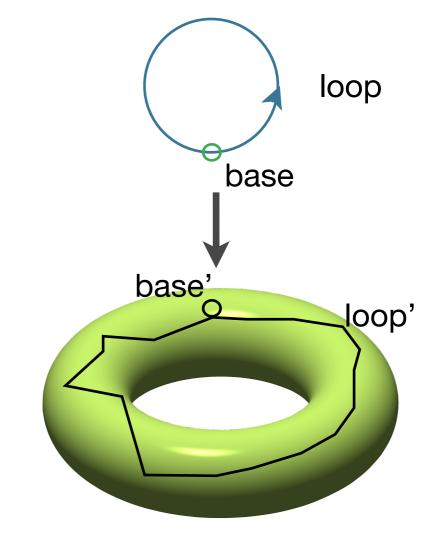
id inv : loop o loop⁻¹ = id loop⁻¹ ... loop o loop

Circle recursion: function $S^1 \rightarrow X$ determined by

base' : X
loop' : base' = base'



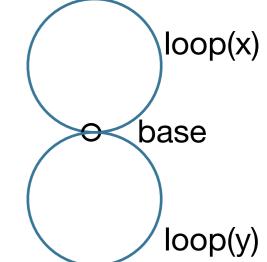
Circle recursion: function $S^1 \rightarrow X$ determined by



Circle induction: To prove a predicate P for all points on the circle, suffices to prove P(base), continuously in the loop

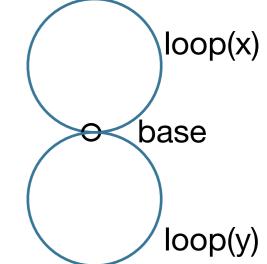
K(G, 1)

K(G,1) is a **higher inductive type** generated by



K(G,1) : typebase : K(G,1)loop : $G \rightarrow base=base$ loop-ident : $loop(1_G) = id$ loop-comp : $loop(x \cdot Gy) = loop(x) \cdot loop(y)$ K(G, 1)

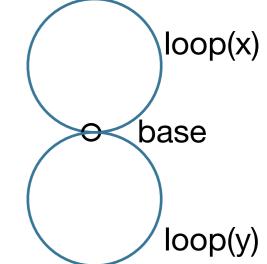
K(G,1) is a **higher inductive type** generated by



K(G,1) : type base : K(G,1)loop : $G \rightarrow base=base$ $loop-ident : loop(1_G) = id$ $loop-comp : loop(x \cdot Gy) = loop(x) \cdot loop(y)$ group homomorphism from G to $\Omega(K(G,1))$

K(G, 1)

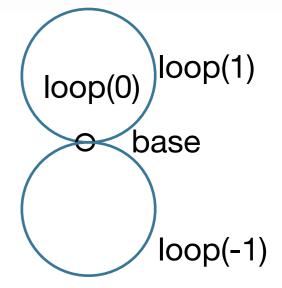
K(G,1) is a **higher inductive type** generated by



K(G,1) : 1-type base : K(G,1)loop : $G \rightarrow base=base$ $loop-ident : loop(1_G) = id$ $loop-comp : loop(x \cdot Gy) = loop(x) \cdot loop(y)$ group homomorphism from G to $\Omega(K(G,1))$

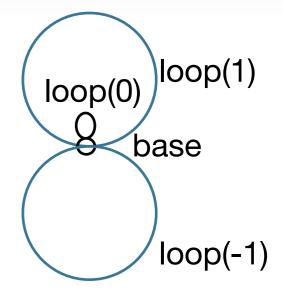
$K(\mathbb{Z},1)$ revisited

 $K(\mathbb{Z},1)$ is equivalent to previous S^1



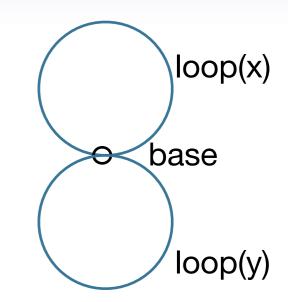
 $K(\mathbb{Z},1)$ revisited

 $K(\mathbb{Z},1)$ is equivalent to previous S^1



loop(0) = id loop(1) loop(-1) = !loop(1) loop(2) = loop(1) · loop(1)

K(G,1) recursion



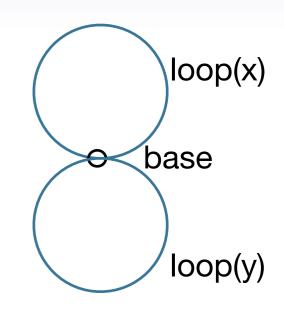
K(G,1) recursion

```
To define f : K(G,1) \rightarrow C
```

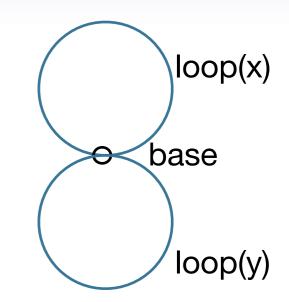
* show C is a 1-type

give f(base) : C

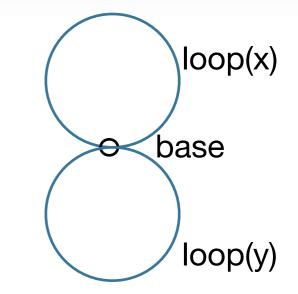
* f(loop) : group homomorphism from G to $\Omega(C,f(base))$



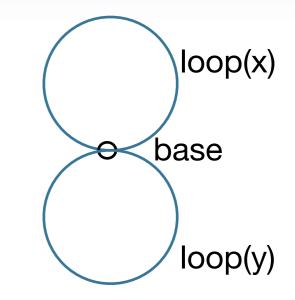
$\pi_1(K(G, 1)) = G$



$\pi_1(K(G,1)) = G$ 1. Codes : K(G,1) \rightarrow 1-Type Codes(base) = G Codes(loop(x)) = "multiplication by x"



```
\pi_1(K(G,1)) = G
1. Codes : K(G,1) \rightarrow 1-Type
Codes(base) = G
Codes(loop(x)) =
"multiplication by x"
```



2. encode : $\Omega(K(G,1)) \rightarrow G$ encode(p) = transport_{Codes}(p,1_G)

$$\pi_{1}(K(G,1)) = G$$
1. Codes : K(G,1) \rightarrow 1-Type
Codes(base) = G
Codes(loop(x)) =
"multiplication by x"
2. encode : O(K(G,1)) \rightarrow G

 $encode(p) = transport_{Codes}(p, 1_G)$

3. Calculate that encode and loop are mutually inverse using encode-decode method

```
comp-equiv : ∀ g -> Equiv El El
  comp-equiv a = (improve (hequiv (\ x -> comp x a)
                                             (\land x \rightarrow comp x (inv a))
                                             (\lambda x \rightarrow (unitr x \circ ap (\lambda y \rightarrow comp x y) (invr a)) \circ assoc x a (inv a))
                                             (\lambda x \rightarrow (unitr x \circ ap (\lambda y \rightarrow comp x y) (invl a)) \circ assoc x (inv a) a)))
  decode' : El \rightarrow Path{KG1} KG1.base KG1.base
  decode' = KG1.loop
   module Codes where
     f : \forall g \rightarrow (El , El-level) \simeq (El , El-level)
    f = \lambda g \rightarrow coe (Path-NTypes (tl 0)) (ua (comp-equiv g))
          pri : f ident \simeq id
          pri = coe (! (Path2-NTypes (tl 0) _ _))
                       (type≃-ext (ua (comp-equiv ident)) id
                                      (\lambda x \rightarrow \text{unitr } x \circ ap \simeq (type \simeq \beta (comp-equiv ident)) \{x\})

    Path-NTypesβ (tl Ø) (ua (comp-equiv ident)))

          prc : \forall g1 g2 -> f (comp g1 g2) \simeq f g2 \circ f g1
          prc g1 g2 = coe (! (Path2-NTypes (tl 0) _ _))
                               (! (ap-• fst (f g2) (f g1)) •
                                ! (ap (\lambda \times \rightarrow \times \circ ap fst (f g1)) (Path-NTypes\beta (tl 0) (ua (comp-equiv g2)))) \circ
                                ! (ap (\lambda x \rightarrow ua (comp-equiv g2) \circ x) (Path-NTypes\beta (tl 0) (ua (comp-equiv g1)))) \circ
                                type≃-ext (ua (comp-equiv (comp g1 g2))) (ua (comp-equiv g2) ∘ ua (comp-equiv g1))
                                              (\lambda g \rightarrow ! (ap \simeq (transport - (\lambda x \rightarrow x) (ua (comp-equiv g2)) (ua (comp-equiv g1)))) 
                                                        (! (ap \simeq (type \simeq \beta (comp-equiv g2))) \cdot ! (ap (\lambda x \rightarrow fst (comp-equiv g2) x) (ap \simeq (type \simeq \beta (comp-equiv g1)))) \cdot 
                                                       ! (assoc g g1 g2)) •
                                                       ap\simeq (type\simeq\beta (comp-equiv (comp g1 g2))))

    Path-NTypesβ (tl 0) (ua (comp-equiv (comp g1 g2))))

Codes : KG1 \rightarrow NTypes (tl 0)
Codes = KG1-rec (NTypes-level (tl 0))
                    (El, El-level)
                          prd { f = Codes.f;
    pres-ident = Codes.pri ;
    pres-comp = Codes.prc })
  transport-Codes-loop : \forall g g' -> (transport (fst o Codes) (KG1.loop g) g') \simeq comp g' g
  transport-Codes-loop g g' = transport (fst o Codes) (KG1.loop g) g' \simeq (ap\simeq (transport-ap-assoc' fst Codes (KG1.loop g)) )
                                     transport fst (ap Codes (KG1.loop g)) g' \simeq( ap (\lambda \times \rightarrow transport fst x g') (KG1.KG1-rec/\betaloop{_}{NTypes-level (tl 0)}
                                                                                                (record {f = Codes.f; pres-ident = Codes.pri; pres-comp = Codes.prc })) )
                                     transport fst (coe (Path-NTypes (tl 0)) (ua (comp-equiv g))) g' ≃( ap≃ (transport-ap-assoc fst (coe (Path-NTypes (tl 0))
                                                                                                                                                      (ua (comp-equiv g))) >
                                     coe (fst\simeq (coe (Path-NTypes (tl 0)) (ua (comp-equiv g)))) g' \simeq (ap (\lambda x \rightarrow coe x g') (Path-NTypes (tl 0) (ua (comp-equiv g))) )
                                     coe (ua (comp-equiv g)) g' \simeq (ap\simeq (type\simeq\beta (comp-equiv g)) )
                                     comp g'g∎
encode : {x : KG1} -> Path KG1.base x -> fst (Codes x)
encode \alpha = transport (fst o Codes) \alpha ident
  encode-decode' : \forall x \rightarrow encode (decode' x) \simeq x
  encode-decode' x = encode (decode' x) \simeq (id)
                        encode (KG1.loop x) \simeq \langle \text{ id } \rangle
                        transport (fst o Codes) (KG1.loop x) ident \simeq( transport-Codes-loop x ident )
                        comp ident x \simeq \langle unitl x \rangle
                        x
decode : {x : _} -> fst (Codes x) -> Path KG1.base x
decode {x} = KG1-elim (\lambda x' \rightarrow (fst (Codes x') \rightarrow Path KG1.base x') , \Pilevel (\lambda _ \rightarrow path-preserves-level KG1.level))
                         decode
                          1000
                         (\lambda \_ \rightarrow \text{HSet-UIP} (\Pi \text{level} (\lambda \_ \rightarrow \text{use-level KG1.level} \_ )) \_ \_ \_ )
                         (\lambda \_ \_ \rightarrow HSet-UIP (\Pi level (\lambda \_ \rightarrow use-level KG1.level \_ _)) \_ \_ \_ _)
                         v who
      loop' : \forall g \rightarrow transport (\x -> fst (Codes x) -> Path KG1.base x) (KG1.loop g) decode' \simeq decode'
      loop' = (\lambda g \rightarrow transport \rightarrow -from - square (fst o Codes) (Path KG1.base) (KG1.loop g) decode' decode'
                                       (λ≃ (\ g' ->
                                         (transport (Path KG1.base) (KG1.loop g) (decode' g') \simeq \langle id \rangle
                                          transport (Path KG1.base) (KG1.loop g) (KG1.loop g') \simeq (transport-Path-right (KG1.loop g) (KG1.loop g') )
                                          (KG1.loop g) \circ (KG1.loop g') \simeq (KG1.loop-comp g' g) \rangle
                                          KG1.loop (comp g' g) \simeq (ap KG1.loop (! (transport-Codes-loop g g')) )
                                          KG1.loop (transport (fst o Codes) (KG1.loop g) g') \simeq ( id )
                                          decode' (transport (fst o Codes) (KG1.loop g) g') ∎))))
decode-encode : \forall \{x\} (\alpha : Path KG1.base x) \rightarrow decode (encode <math>\alpha) \simeq \alpha
decode-encode id = KG1.loop-ident
```

Eilenberg-MacLane space

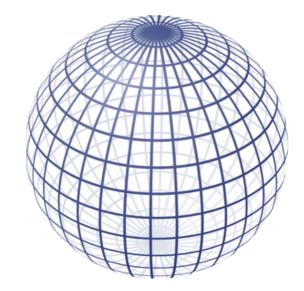
So far: For a group G, can define a space K(G,1) such that $\pi_1(K(G,1)) = G$ and $\pi_k(K(G,1)) = 1$ otherwise

Outline

Eilenberg-MacLane spaces
 K(G,1)
 K(G,n)

Sphere S²

Sphere S²



* π_1 is trivial: inside of any loop can be filled * π_2 is \mathbb{Z} : 2-paths on sphere = paths on circle * $\pi_{k>2}$ is ...

Homotopy Groups of S²

n-dimensional sphere

kth homotopy group

	π1	Π2	п3	π4	π ₅	π ₆	Π7	π ₈	Π9	π ₁₀	π11	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	z 2	Z 2	Z ₁₂	Z 2	z 2	Z 3	Z 15	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	z 2	z 2	Z ₁₂	Z 2	Z 2	Z 3	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	z 2	z 2	z×z ₁₂	Z 2 ²	Z 2 ²	Z 24× Z 3	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ ×Z ₂
S ⁵	0	0	0	0	z	Z 2	z 2	Z 24	z 2	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z 72× Z
5 6	0	0	0	0	0	z	Z 2	z 2	Z 24	0	z	Z 2	Z ₆₀	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	Z 2	Z×Z ₁₂

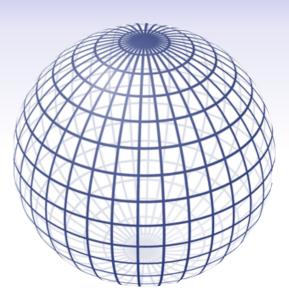
[image from wikipedia]

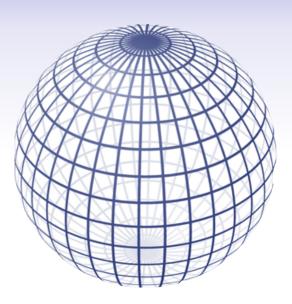
Homotopy Groups of S²

kth homotopy group

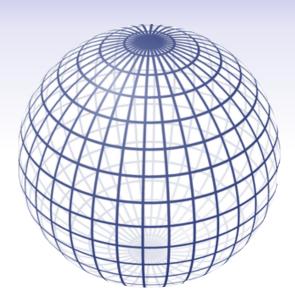
(1)		π ₁	π2	п 3	π4	π ₅	π ₆	Π7	π ₈	п9	π ₁₀	π11	π ₁₂	π ₁₃	π ₁₄	π ₁₅	
ere	S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	
phere	S 1	Z	0	0			A	A		The second second		A	^ -	0	0	0	
O	S²	0	z	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	z ₃	Z 15	Z 2	Z 2 ²	z ₁₂ × z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²	
Isiona	S ³	0	0	Z	Z ₂	42	4 12	42	-2	- 3	4 15	⁵ 42		Z 12× Z 2	≤ 84× ≤ 2 [−]	Z 2 ²	
Sig	S ⁴	0	0	0	z	z 2	z 2	z×z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z 15	z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ⁵	
imen	S ⁵	0	0	0	0	z	z 2	z 2	Z 24	z 2	Z 2	z 2	Z 30	z 2	Z 2 ³	Z ₇₂ × Z ₂	
<u> </u>	S ⁶	0	0	0	0	0	z	z 2	z ₂	Z 24	0	z	z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³	
n-d	S 7	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	z 2	Z ₁₂₀	Z 2 ³	
_	S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z 24	0	0	Z 2	z×z ₁₂₀	

[image from wikipedia]



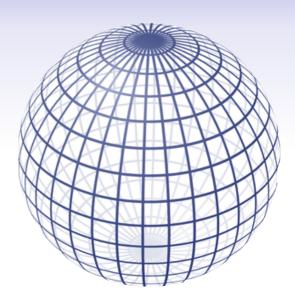


Define $K(\mathbb{Z}, 2) = ||S^2||_2$



Define $K(\mathbb{Z}, 2) = ||S^2||_2$

2-truncation = kill all paths at level higher than 2



Define $K(\mathbb{Z}, 2) = ||S^2||_2$

2-truncation = kill all paths at level higher than 2

* π_1 is trivial: same as S² * π_2 is \mathbb{Z} : same as S² * $\pi_{k>2}$ is trivial

$\pi_n(S^n)$

n-dimensional sphere

	Π1	Π2	п3	π4	π ₅	π ₆	π ₇	π ₈	п9	π ₁₀	Π11	π ₁₂	π ₁₃	π ₁₄	π ₁₅
5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 2	0	z	z	Z 2	z ₂	Z ₁₂	z ₂	Z 2	z ₃	Z 15	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	z ₃	Z 15	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S 4	0	0	0	z	z 2	z 2	Z×Z ₁₂	Z 2 ²	Z 2 ²	Z ₂₄ × Z ₃	Z 15	z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ⁵
S ⁵	0	0	0	0	z	z 2	z 2	Z ₂₄	z 2	Z 2	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	z 2	z ₂	Z 24	0	z	Z 2	Z ₆₀	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z ₂	z 2	Z 24	0	0	z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	Z 2	Z×Z 120

kth homotopy group

[image from wikipedia]

K(Z,n)

Define $K(\mathbb{Z},n) = ||S^n||_n$

* $\pi_{k < n}$ is trivial * π_n is \mathbb{Z} * $\pi_{k > n}$ is trivial

 $K(\mathbb{Z},n)$

Define $K(\mathbb{Z},n) = ||S^n||_n$

* $\pi_{k < n}$ is trivial * π_n is \mathbb{Z} * $\pi_{k > n}$ is trivial

[HoTT proofs: L.,Brunerie,Lumsdaine]

 $K(\mathbb{Z},n)$

Define $K(\mathbb{Z},n) = ||S^n||_n$

* $\pi_{k < n}$ is trivial * π_n is \mathbb{Z} * $\pi_{k > n}$ is trivial

Generalize to other groups G?

[HoTT proofs: L.,Brunerie,Lumsdaine]

Suspension

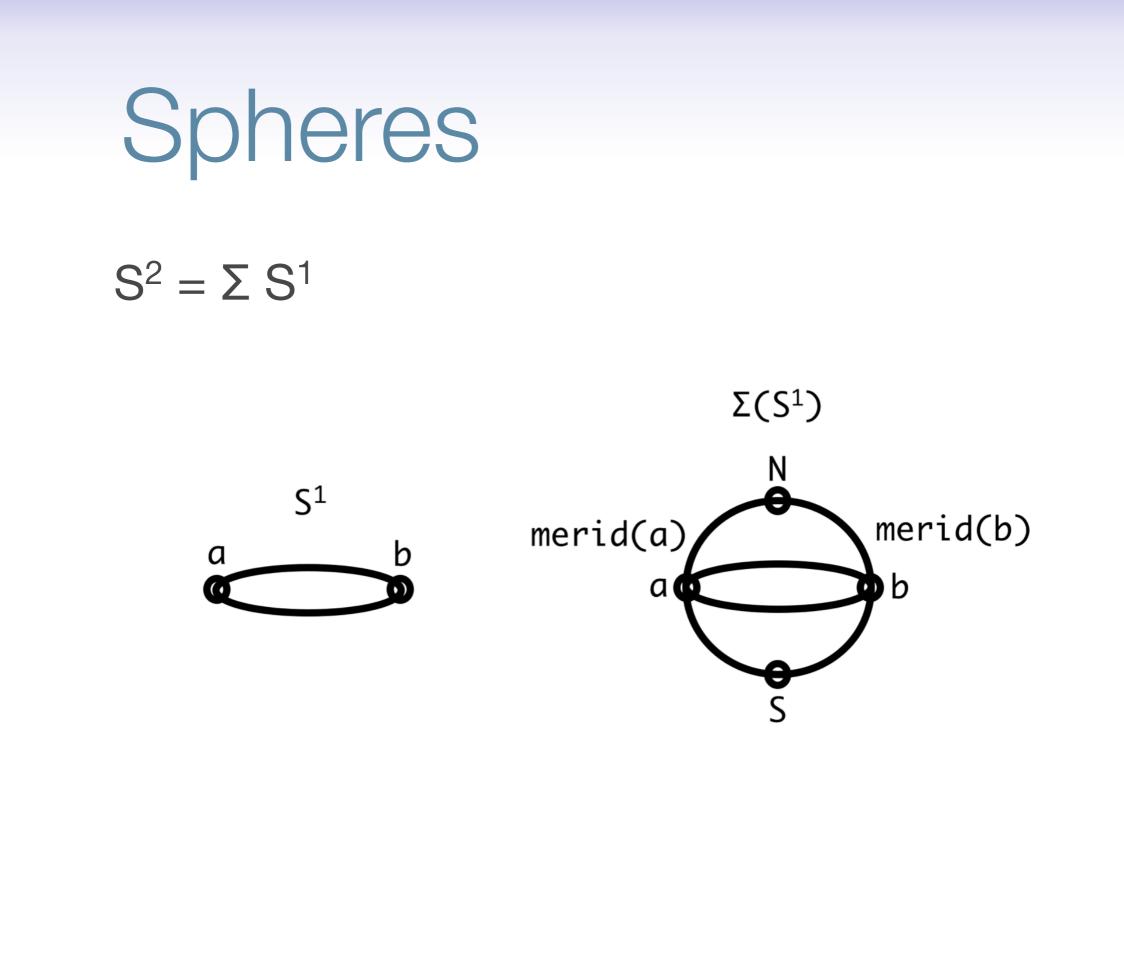
Σ A is a higher inductive type generated by

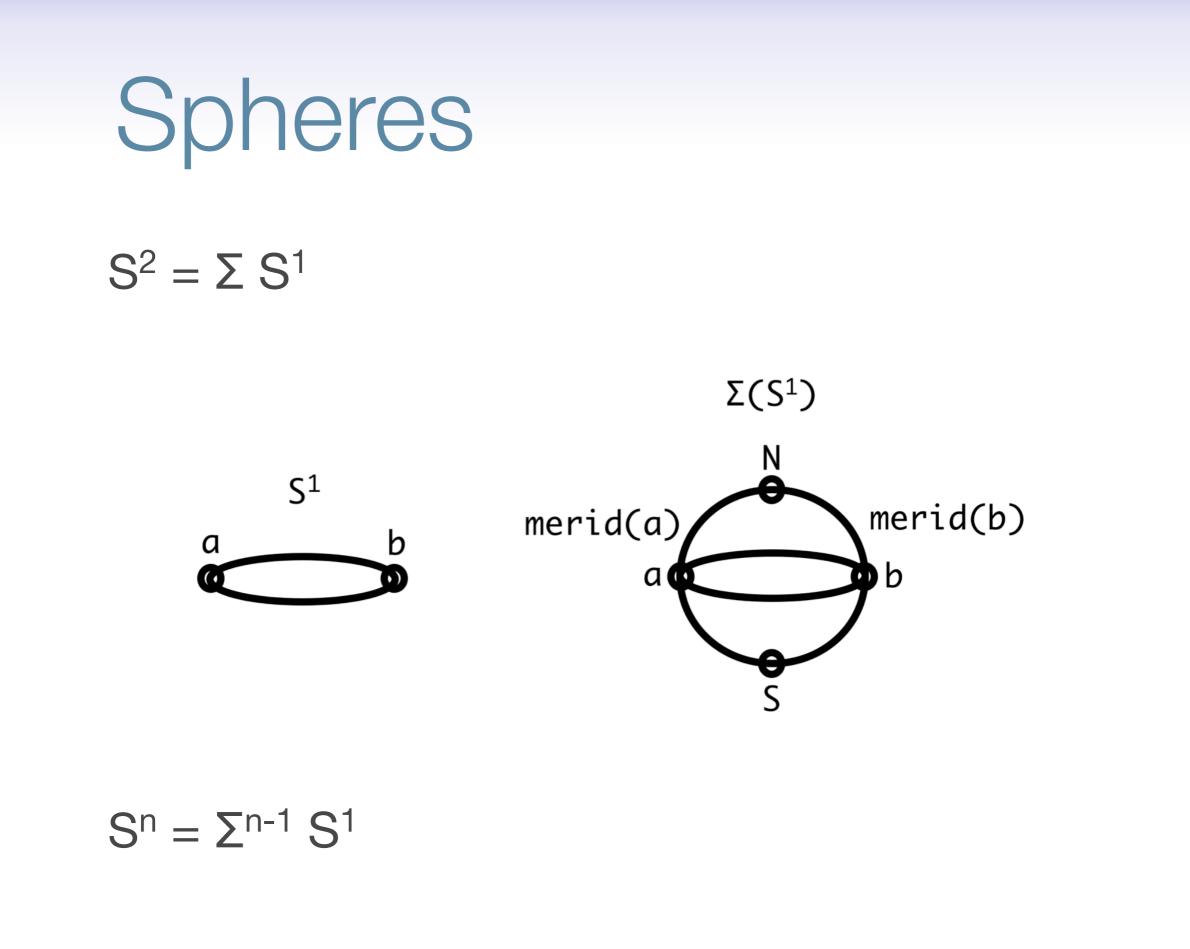
Suspension

 Σ A is a higher inductive type generated by

$$N : \Sigma A$$

S : ΣA
merid : $A \rightarrow \Sigma A$





 $\begin{array}{ll} \textbf{Theorem:} & \mbox{$\#$} \pi_{k < n} \text{ is trivial} \\ & \mbox{$\#$} \pi_n \text{ is G} \\ & \mbox{$\#$} \pi_{k > n} \text{ is trivial} \end{array}$

 $\pi_n(K(G,n)) = G$

 $\pi_n(K(G,n)) = G$

 $\pi_{n+1}(K(G,n+1)) = \pi_{n+1} \|\Sigma^n K(G,1)\|_{n+1}$

 $\pi_n(K(G,n)) = G$

$\begin{aligned} \pi_{n+1}(K(G,n+1)) &= \pi_{n+1} \| \Sigma^n \ K(G,1) \|_{n+1} \\ &= \pi_{n+1} \ \Sigma^n \ K(G,1) \end{aligned}$

 $\pi_n(K(G,n)) = G$

$\begin{aligned} \pi_{n+1}(K(G,n+1)) &= \pi_{n+1} \| \Sigma^n K(G,1) \|_{n+1} \\ &= \pi_{n+1} \ \Sigma^n K(G,1) \\ &= \pi_n \ \Sigma^{n-1} K(G,1) \end{aligned}$

 $\pi_n(K(G,n)) = G$

$\begin{aligned} \pi_{n+1}(K(G,n+1)) &= \pi_{n+1} \|\Sigma^n K(G,1)\|_{n+1} \\ &= \pi_{n+1} \ \Sigma^n K(G,1) \\ &= \pi_n \ \Sigma^{n-1} K(G,1) \end{aligned}$

Freudenthal suspension theorem; use HoTT proof by Lumsdaine

 $\pi_n(K(G,n)) = G$

$\pi_{n+1}(K(G,n+1)) = \pi_{n+1} ||\Sigma^n K(G,1)||_{n+1}$ $= \pi_{n+1} \Sigma^n K(G,1)$ $= \pi_n \ \Sigma^{n-1} K(G,1) = \pi_n \ \| \Sigma^{n-1} K(G,1) \|_{h}$ **Freudenthal suspension theorem;** use HoTT proof by Lumsdaine

 $\pi_n(K(G,n)) = G$

$\pi_{n+1}(K(G,n+1)) = \pi_{n+1} ||\Sigma^n K(G,1)||_{n+1}$ $= \pi_{n+1} \Sigma^n K(G,1)$ $= \pi_n \Sigma^{n-1} K(G,1)$ $= \pi_n \parallel \Sigma^{n-1} K(G,1)$ $= \pi_n K(G,n)$ **Freudenthal suspension theorem;** use HoTT proof by Lumsdaine

 $stable2 : \pi (k +1) (KG (n +1)) (base^{n} (n +1)) \simeq \pi k (KG n) (base^{n} n)$ $stable2 = \pi (k +1) (KG (n +1)) (base^{n} (n +1)) \qquad \simeq \langle (\pi <= \text{Trunc } (k +1) (n +1) (<= \text{SCong lte}) (FS.base^{n} (n +1))) \rangle$ $\pi (k +1) (Susp^{n} (S n -1pn) KG1) (FS.base^{n} (n +1)) \simeq \langle ! (FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing)) \rangle$ $\pi k (Susp^{n} (n -1pn) KG1) (FS.base^{n} n) \qquad \simeq \langle ! (\pi <= \text{Trunc } k n \text{ lte } (FS.base^{n} n)) \rangle$ $\pi k (KG n) (base^{n} n) \blacksquare$

Define
$$K(G,n) = ||\Sigma^{n-1} K(G,1)||_n$$

$$\begin{aligned} \pi_{n+1}(K(G,n+1)) &= \pi_{n+1} \|\Sigma^n \ K(G,1)\|_{n+1} \\ &= \pi_{n+1} \ \Sigma^n \ K(G,1) \\ &= \pi_n \ \Sigma^{n-1} \ K(G,1) \\ &= \pi_n \ \|\Sigma^{n-1} \ K(G,1)\|_{n+1} \\ &= \pi_n \ K(G,n) \end{aligned}$$
Freudenthal suspension theorem; use HoTT proof by Lumsdaine

 $stable2 : \pi (k +1) (KG (n +1)) (base^{n} (n +1)) \simeq \pi k (KG n) (base^{n} n)$ $stable2 = \pi (k +1) (KG (n +1)) (base^{n} (n +1)) \qquad \simeq \langle (\pi <= Trunc (k +1) (n +1) (<= SCong lte) (FS.base^{n} (n +1))) \rangle$ $\pi (k +1) (Susp^{n} (S n -1pn) KG1) (FS.base^{n} (n +1)) \simeq \langle ! (FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing)) \rangle$ $\pi k (Susp^{n} (n -1pn) KG1) (FS.base^{n} n) \qquad \simeq \langle ! (\pi <= Trunc k n lte (FS.base^{n} n)) \rangle$ $\pi k (KG n) (base^{n} n) \blacksquare$

$$\begin{split} \text{Define } \mathsf{K}(\mathsf{G},\mathsf{n}) &= \|\Sigma^{\mathsf{n}-1} \; \mathsf{K}(\mathsf{G},\mathsf{1})\|_{\mathsf{n}} \\ \pi_{\mathsf{n}+1}(\mathsf{K}(\mathsf{G},\mathsf{n}+\mathsf{1})) &= \pi_{\mathsf{n}+1} \; \|\Sigma^{\mathsf{n}} \; \mathsf{K}(\mathsf{G},\mathsf{1})\|_{\mathsf{n}+1} \\ &= \pi_{\mathsf{n}+1} \; \; \Sigma^{\mathsf{n}} \; \mathsf{K}(\mathsf{G},\mathsf{1}) \\ &= \pi_{\mathsf{n}} \; \; \Sigma^{\mathsf{n}-1} \; \mathsf{K}(\mathsf{G},\mathsf{1}) \\ &= \pi_{\mathsf{n}} \; \| \; \Sigma^{\mathsf{n}-1} \; \mathsf{K}(\mathsf{G},\mathsf{1}) \|_{\mathsf{n}} \\ &= \pi_{\mathsf{n}} \; \| \; \mathsf{K}(\mathsf{G},\mathsf{n}) \end{split}$$

merid : $A \rightarrow \Omega$ (ΣA) is an equivalence?

Freudenthal suspension theorem; use HoTT proof by Lumsdaine

Freudenthal Suspension Thm

kth homotopy group

	π ₁	Π2	Π3	π4	π ₅	π ₆	Π7	π ₈	п9	π ₁₀	π11	π ₁₂	π ₁₃	π ₁₄	Π15
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 2	0	z	z	z 2	z 2	Z ₁₂	Z 2	z 2	z ₃	Z 15	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S 3	0	0	z	Z 2	z 2	Z ₁₂	Z 2	Z 2	z ₃	Z 15	z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S 4	0	0	0	z	z 2	z 2	Z×Z 12	Z 2 ²	Z 2 ²	Z 24× Z 3	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ × Z ₂
5 5	0	0	0	0	z	z 2	z 2	Z 24	z 2	Z 2	z 2	Z 30	Z 2	Z 2 ³	Z 72× Z 2
5 6	0	0	0	0	0	z	Z 2	z 2	Z 24	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	z 2	z 2	Z 24	0	0	z ₂	Z×Z 120

n-dimensional sphere

[image from wikipedia]

Freudenthal

Theorem: If A is n-connected (trivial up to level n), then $||A||_{2n} = ||\Omega (\Sigma A)||_{2n}$

HoTT Proof [Lumsdaine]: generalization of encode-decode method

Freudenthal

Theorem: If A is n-connected (trivial up to level n), then $||A||_{2n} = ||\Omega (\Sigma A)||_{2n}$

HoTT Proof [Lumsdaine]: generalization of encode-decode method

Corollary: ... = $\pi_4(K(G,4)) = \pi_3(K(G,3)) = \pi_2(K(G,2))$

$\pi_n(K(G,n)) = G$

By Freudenthal:

 $\ldots = \pi_4(K(G,4)) = \pi_3(K(G,3) = \pi_2(K(G,2))$

 $\pi_n(K(G,n)) = G$

By Freudenthal:

 $\dots = \pi_4(K(G,4)) = \pi_3(K(G,3) = \pi_2(K(G,2)))$

By above: $\pi_1(K(G,1)) = G$

 $\pi_n(K(G,n)) = G$

By Freudenthal:

 $\ldots = \pi_4(K(G,4)) = \pi_3(K(G,3) = \pi_2(K(G,2))$

By another encode-decode proof: $\pi_2(K(G,2)) = \pi_1(K(G,1))$

By above: $\pi_1(K(G,1)) = G$

#10,000 line HoTT library

#10,000 line HoTT library

+ 250 lines for Freudenthal Suspension Theorem

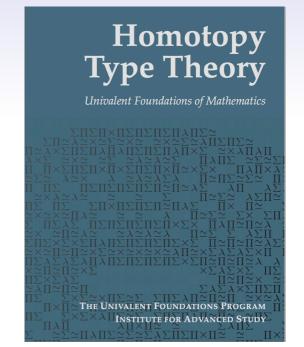
#10,000 line HoTT library

+ 250 lines for Freudenthal Suspension Theorem

+ 750 lines for K(G,n)

Reading list

1.The HoTT Book



2.Homotopy theory in Agda: Fundamental group of the circle [LICS'13] $\pi_n(S^n) = \mathbb{Z}$ [CPP'13] K(G,n) [LICS'14] github.com/dlicata335/ github.com/hott/hott-agda

3.Blog: homotopytypetheory.org