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Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.
. Given a line and a point not on it, there is exactly

one line through the point that does not intersect
the line
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Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.
. Two distinct lines meet at two antipodal points.

models

—

~

Cartesian

(z1,11) To — T

Spherical




Synthetic mathematics

Type theory

lx::=b | T1 = 1
2. ::=x | e1e2 | Ax.e
3.(Ax.e)e2 = e[e2/x]
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Synthetic mathematics

Set-theoretic
functions

Type theory | —
lxs:=b | T1— N — /A/

2. ::=x | e1e2 | Ax.e

3.(Ax.e)e2 = e[e2/x]
\ Domain-theoretic
functions

1.Y(f) = £(Y (1))
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Computational Interpretation

There is an algorithm that,
given a closed term e : bool,
computes either

an equality e
an equality e

true, or
false.
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Constructive Type Theory

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

* Computational interpretation supports software
verification and proof automation

* Allows proof-relevant mathematics
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Proof relevance

X : A

P : X =AY equality type

Any structure or property C can be

transported along an equality < _ Leibniz’s
indiscernability
of identicals

transportc(p) : C(x) » C(y)

by a function: can it do real work?
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Proof relevance

X A
P : X =AY equality type
q : P1 =x=y P2

' . g1 =pi=p2 Q2

higher equalities radically expand the kind of
math that can be done synthetically...
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Homotopy lype [heory

type theory

higher
category theory homotopy theory

[Awodey,Warren,Voevodsky,,Streicher,Hofmann
Lumsdaine,Gambino,Garner,van den Berg]
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Types as spaces

type A is a space path operations
| ‘ 1d : M =M (refl)
1 : N =M (sym)

Boao:M=P (trans)

programs

M:A | .
are noints proofs of equality
- X : M=z N

are paths
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HoMmotopy

Deformation of one path into another

L

= 2-dimensional path between paths
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HoMmotopy

Deformation of one path into another

L

= 2-dimensional path between paths

DO =xzy B
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lypes as spaces

type A is a space path operations

G 1d : M =M (refl)
ot : N =M (sym)
Boao :M=P (trans)

Id

homotopies

ul : 1d 0 & =mN &
pr(;/glj.raAms | 1l : oo &« =uw 1d
are points proofs of equality asc : vy o (B o &)

x : M= N

=M= O O
are paths = (Y 2
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Homotopy lype [heory

type theory

category theory homotopy theory




lypes as «~-groupoids

type A is an c«-groupoid

* Infinite-dimensional
algebraic structure,
with morphisms,
morphisms between
morphisms, ...

* each level has a
groupoid structure,
and they interact

morphisms
1d : M =M (refl)
o1 : N =M (sym)

Boaoa : M=P (trans)

morphisms between morphisms
ul : 1d 0 ¢ =mN &
1l : ol o o =wm 1d
asc : vy o (B o &)

=v=p (Y 0 B) O «
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FPath induction

Type of paths is inductively

from a to somewhere generated by
2

y
p1 p3 2

a
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FPath Induction

Type of paths is inductively
from a to somewhere generated by

y2
d
p2 |
p1 - p3 a

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of

C(y,p) forall y and p:a=y,
suffices to give an element of

C(a,1d)

16




lype theory Is a
synthetic theory of
Spaces/co-groupoids




Homotopy lype [heory

type theory

new programs
and types

category theory homotopy theory
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Univalence

* Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

* Univalence axiom:
equality of types (A =t1ype B) is (equivalent to)
equivalence of types (Equiv A B)

* .. all structures/properties respect equivalence

* Not by collapsing equivalence,
but by exploiting proof-relevant equality:
transport does real work

19




Higher Inductive types

[Bauer,Lumsdaine,Shulman,Warren]

New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

20




Homotopy lype [heory

type theory
new possibilities
new programs for computer-
and types checked proofs
category theory homotopy theory
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Basis for this formalization

* Agda proof assistant [Norell, Abel, Danielsson]
% 10,000 line HoTT library

* essentially no automation
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1.Eilenberg-MacLane spaces
2.K(G,1)
3.K(G,n)
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lypes as spaces

loop operations

1d : M =M (refl)
ot : M =M (sym)
Boax : M=M (trans)

homotopies
ul : 1d 0 o0 = «
1l : alo ax = 1d

asc : Yy o (P o @)
= (y 0 B) 0o «




Homotopy Groups

Homotopy groups of a space X:

* 111(X) Is fundamental group (group of loops)

* 112(X) Is group of homotopies (2-dimensional loops)
* 113(X) is group of 3-dimensional loops

26




lelling spaces apart




lelling spaces apart

fundamental group fundamental group
IS non-trivial (Z x Z) is trivial
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Q2(A,x) 1
1d

G2(A,X)
Q2(A,X)

Q3(A,X)
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Q2(A,x) 1
1d

T
n(A,X
X) =
|Q"(A,X
X)|lo

Q2(A,X)
Q2(A,X)

Q3(A,X)




Homotopy Groups

A
X =A X Q2(A,X)
1d =xx 1d Q2(A,X)
1d =q2ax 1d Q3(A,X)

O-truncation =

/ set of connected

Tn(A,X) = [[Q"(A,X)]|o components =
all paths are equal




Ellenberg-Maclane Space

For a group G

K(G,1) is a space such that
1(K(G,1)) = G and
«(K(G,1)) = 1 otherwise

1 (K(G,
Tik(K(G,

(

K(G,n) is a space such that (G abelian)
mn(K(G,n)) = G and
nk(K(G,n)) = 1 otherwise




Spaces with specified groups
Find X with m1(X) = G and rm2(X) = H
Define X = K(G,1) x K(H,2)

m1(X) = mi(K(G,1))xmt1(K(H,2)) 112(X) =
=G x 1 —
= 5 —




Cohomology

Homotopy groups aren’t the only invariant:
homology groups, conomology groups

Define ordinary cohomology with coefficients in G by
H(A) = ||A = K(G,n)llo

31




Cohomology

Homotopy groups aren’t the only invariant:
homology groups, conomology groups

Define ordinary cohomology with coefficients in G by
H(A) = ||A = K(G,n)llo

satisfies (constructive) Eilenberg-Steenrod axioms

31




cllenberg-MaclLane space

Can we build Eilenberg-MacLane spaces
from higher inductive types?




Outline

1.Eillenberg-MaclLane spaces
2.K(G,1)
3.K(G,n)

4.Proofs
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Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?
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the circle, up to homotopy?
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Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0




Fundamental group of circle

The circle ST is a space such that
rm(S") = Z and
mk(S') = 1 otherwise

The circle is K(Z,1)




The Circle

Circle St is a higher inductive type

generated by

<::;;::> loop

base
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Circle St is a higher inductive type

generated by
base : St

loop : base = base

<::;;::> loop

base
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The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
loop : base = base
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The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
path  loop : base = base

36




The Circle

Circle S1 is a higher inductive type
generated by

Ioop_1 loop

point base : Si
path  loop : base = base

base

Free type: equipped with structure
1d inv : loop o loop?t = 1id
loop-?
loop o loop

36




The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’




The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

37




K(G,1)

K(G,1) is a higher inductive type
generated by base

loop(Xx)

loop(y)

K(G,1) : type

base : K(G,1)

loop : G » base=base

loop-1dent : loop(lg) = 1d

Lloop-comp : loop(x-gy) = loop(x)-loop(y)




K(G,1)

K(G,1) is a higher inductive type
generated by base

loop(Xx)

loop(y)

K(G,1) : type

base : K(G,1)

loop : G » base=base

loop-1dent : loop(lg) = 1d

Lloop-comp : loop(x-gy) = loop(x)-loop(y)

\ group homomorphism

from G to Q(K(G,1))
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K(G,1)

K(G,1) is a higher inductive type
generated by base

loop(Xx)

loop(y)

K(G,1) : 1-type

base : K(G,1)

loop : G » base=base

loop-1dent : loop(lg) = 1d

Lloop-comp : loop(x-gy) = loop(x)-loop(y)

\ group homomorphism

from G to Q(K(G,1))

38




K(Z,1) revisited

K(Z,1) is equivalent to previous S
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K(Z,1) revisited

K(Z,1) is equivalent to previous S

loop(0) = 1d

loop(1)

loop(-1) = !'loop(1l)
loop(2) = loop(l) - loop(l)
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K(G,1) recursion

loop(Xx)

base

To define f: K(G,1) = C

*show C is a 1-type loopy)

* give f(base) : C

* f(loop) : group homomorphism from
G to Q(C,f(base))

40




m(K(G,1))




1 (K(G,1)) = G

1. Codes : K(G,1) - 1-Type
Codes(base) = G

Codes(loop(x)) = loop(y)
“multiplication by x”

loop(x)

base




1 (K(G,1)) = G
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Codes(base) = G

Codes(loop(x)) = loop(y)
“multiplication by x”

loop(x)

base

2. encode : Q(K(G,1)) -» G
encode(p) = transportcodes(p, 1lc)




1 (K(G,1)) = G

1. Codes : K(G,1) - 1-Type
Codes(base) = G

Codes(loop(x)) = loop(y)
“multiplication by x”

loop(Xx)

base

2. encode : Q(K(G,1)) - G
encode(p) = transportcodes(p, 1lc)

3. Calculate that encode and Loop are mutually
iInverse using encode-decode method




comp-equiv : V g -> Equiv E1 El
comp-equiv a = (improve Chequiv (\ x -> comp x a)
Q\ x -> comp x (inv a))
(A x = (unitr x e ap (A y = comp x y) (invr a)) - assoc x a (inv a))

(A x = (unitr x e ap (A y = comp x y) (invl a)) - assoc x (inv a) a)))

decode' : E1 — Path{KG1} KG1l.base KG1.base
decode' = KG1.loop

module Codes where

v g - (El , El-level) ~ (E1 , El-level)
A g » coe (Path-NTypes (tl ©)) (ua (comp-equiv g))

f:
f=

abstract
pri : f ident ~ id
pri = coe (! (Path2-NTypes (t1 @) _ _))
(type~-ext (ua (comp-equiv ident)) id
(A x - unitr x . ap~ (type~p (comp-equiv ident)) {x})
o Path-NTypesp (t1 @) (ua (comp-equiv ident)))

prc : Vgl g2 -> f (comp gl g2) ~f g2 fgl
prc gl g2 = coe (! (Path2-NTypes (t1 @) _ _))
(! (ap-- fst (f g2) (f g1)) -
! (ap (A x » x « ap fst (f g1)) (Path-NTypesp (t1 @) (ua (comp-equiv g2)))) -
! (ap (0 x - ua (comp-equiv g2) - x) (Path-NTypesp (t1 @) (ua (comp-equiv g1)))) -
type~-ext (ua (comp-equiv (comp gl g2))) (ua (comp-equiv g2) - ua (comp-equiv gl))
(g - ! (ap~ (transport-. (A x - x) (ua (comp-equiv g2)) (ua (comp-equiv g1)))) -
(! (ap~ (type=~p (comp-equiv g2))) « ! (ap (A x —» fst (comp-equiv g2) x) (ap~ (type=p (comp-equiv gl1)))) -
! (assoc g gl g2)) -
ap= (type~p (comp-equiv (comp gl g2))))
o Path-NTypesp (t1 @) (ua (comp-equiv (comp gl g2))))

Codes : KG1 — NTypes (tl @)

Codes = KG1-rec (NTypes-level (tl 0))
(E1 , El-level)
(record { f = Codes.f;
pres-ident = Codes.pri ;
pres-comp = Codes.prc })

abstract
transport-Codes-loop : V g g' -> (transport (fst o Codes) (KGl.loop g) g') ~ comp g' g

transport-Codes-loop g g' = transport (fst o Codes) (KGl.loop g) g' =( ap~ (transport-ap-assoc' fst Codes (KG1.loop g)) )

transport fst (ap Codes (KGl.loop g)) g' =~ ap (A x - transport fst x g') (KG1.KG1l-rec/ploop{_}{NTypes-level (tl @)}

(record {f = Codes.f; pres-ident = Codes.pri; pres-comp = Codes.prc })) )
transport fst (coe (Path-NTypes (tl 0)) (ua (comp-equiv g))) g' = ap~ (transport-ap-assoc fst (coe (Path-NTypes (tl 0))

(ua (comp-equiv 9)))) )

coe (fstx~ (coe (Path-NTypes (t1 @)) (ua (comp-equiv g)))) g' =~ ap (A x - coe x g') (Path-NTypesp (tl @) (ua (comp-equiv g))) )
coe (ua (comp-equiv g)) g' =~( apx~ (type~p (comp-equiv g)) )
comp g' g

encode : {x : KG1} -> Path KGl.base x -> fst (Codes x)
encode a = transport (fst o Codes) o« ident

abstract
encode-decode' : V x -> encode (decode' x) =~ x

encode-decode' x = encode (decode' x) =~( id )
encode (KGl.loop x) =~( id )
transport (fst o Codes) (KG1l.loop x) ident =~( transport-Codes-loop x ident )
comp ident x =~( unitl x )
x 1

decode : {x : _} -> fst (Codes x) -> Path KGl.base x
decode {x} = KGl-elim (A x' — (fst (Codes x') — Path KGl.base x') , INlevel (A _ — path-preserves-level KGl.level))

decode’

Toop"

(L _ - HSet-UIP (mlevel (Ao _ — use-level KGl.level _ )) _ _ _ _)
(A — _ - HSet-UIP (mmlevel (A _ — use-level KGl.level _ .)) _ _ _ )
x where

abstract
loop' : V g -> transport (\x -> fst (Codes x) -> Path KGl.base x) (KG1l.loop g) decode' ~ decode'

loop' = (A g — transport-—-from-square (fst o Codes) (Path KGl.base) (KG1.loop g) decode' decode'
= (\g' >
(transport (Path KG1.base) (KG1l.loop g) (decode' g') ~( id )
transport (Path KG1.base) (KG1l.loop g) (KGl.loop g') =( transport-Path-right (KG1l.loop g) (KGl.loop g') )
(KG1.loop g) - (KG1l.loop g') =~( ! (KG1l.loop-comp g' @) )
KG1.loop (comp g' g) =~( ap KGl.loop (! (transport-Codes-loop g g')) )
KG1.loop (transport (fst o Codes) (KGl.loop g) g') = id )
decode' (transport (fst o Codes) (KG1l.loop g) g') m))))

decode-encode : V {x} (a : Path KGl.base x) -> decode (encode a) =~ «
decode-encode id = KG1.loop-ident

Q1[KG1]-Equiv-G : Equiv (Path{KG1} KGl.base KGl.base) El
Q1[KG1]-Equiv-G = improve (hequiv encode decode decode-encode encode-decode')




cllenberg-MaclLane space

So far: For a group G, can define a space
K(G,1) such that
m1(K(G,1)) = G and
k(K(G,1)) = 1 otherwise




Outline

1.Ellenberg-MacLane spaces
2.K(G,1)
3.K(G,n)
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Sphere S4




Sphere S4




Sphere S4

* 1141 IS trivial: inside of any loop can be filled

* T2 is 7. 2-paths on sphere = paths on circle

* k=2 IS ...
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Homotopy Groups of S?

ki homotopy group

q) ™ m n3 Ty L1 Mg ny g Mg 0 M1 M2 m3 M4 M5

GL) f o o o | o 0o o | 0o 0o | o0 0 o | o 0 0 0

i -
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(7p] 2 2 2

= L o z |z zo 2z 2w 2o Zn | 2z Zys | Zp | 22 zxz, Z84X22 Z2
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- 9 r 2 2% Z,°% ZgsxZo°

D st o 0 0 Z Z, | 2o |Zxzyo Zoax2Z3 215 @ 2o Z100XZ12XZ2

c 223

QO s o0 0 0 0 Z 2, 2 Zos | 2o r 2 Z, | 23 | 2o Z7o%Zo

'—

— 3

< 8l o | o | o | o | o | 2 |2 |2 |2Z4] O zZ | 2 | Zgy | Zoaxz, | 22

O 3

é sl o | o | o | o | o | o 2 |2 |2 | 24| 0| 0| 2 Z120 Z>
$8 0 0 0 0 0 0 0 Z Zs Zo 2o4 O 0 Zs ZxZ120

[image from wikipedia]
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Homotopy Groups of S?

ki homotopy group

q) ‘ m m n3 Ty ni5 Mg ny g g 0 M1 m2 m3 M4 ms

GL) o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£Q s1 Z 0 | . . " ol . ____n P e - 0 N ‘M | »0

LA o 22 | 252

M. S0 Z | Z 2 2 Ziz 22 22 Zz Zis | Zp | P ZipZp CBYR 2

C 8 0 | 0 |z L : ; foxZy  ovee | %2
9 Z; 2 2 84"2254

D st o 0 0 Z Z, | 2o |Zxzyo Zoax2Z3 215 @ 2o Z100XZ12XZ2

- Z

QO s o0 0 0 0 Z 2, 2 Zos | 2o r 2 Z, | 23y | 2o Z7o%Zo

'—

— 3
C Sl o | o | 0o | o o | 2z |2 | 2 | 24| 0 Z | 2, | Zgo | ZoaxZp 22
-clj sl o | o | o | o | o | o | 2|2 |2|2 o o | z z z°

C 2 2 24 2 120

$8 0 0 0 0 0 0 0 Z Zs Zo 2o4 O 0 Zs ZxZ120

[image from wikipedia]
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K(7.,2)




K(7.,2)




K(7.,2)

Define K(Z,2) = ||S?||




K(7.,2)

Define K(Z,2) = ||S?||

™~

2-truncation = kill all paths
at level higher than 2
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K(7.,2)

Define K(Z,2) = ||S?]|2

™~

2-truncation = kill all paths
at level higher than 2

* 114 is trivial: same as S?
* 1o is Z: same as S?

* T2 IS trivial
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=

)

D
)

ki homotopy group

™ m n3 g N5 g nz Tig g ™o M1

M2

m3 M4 M5

()]
GL) o o | o o | o 0o o o o 0 o | o 0 0 0
i - -
o sz o o 0o 0o 0o 0 0o o0 0 o | o 0 0 0
(7p] | 2 2 2
= L o z |z zo 2z 2w 2o Zn | 2z Zys | Zp | 22 zxz, Z84X22 Z2
© | 2 2 2
- S 0 0z | Zo| 2y 2z 2o 2o 2y | 245 | Zp | %20 |zioxzp, 284722 22
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c | 223
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[image from wikipedia]
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K(Z,N)

Define K(Z,n) = ||S"|n

% Tlk<n IS trivial
% Th 1S 7.

% T>n IS trivial

49




K(Z,N)

Define K(Z,n) = ||S"|n

% Tlk<n IS trivial
% Th 1S 7.

* Tk>n IS trivial

[HoTT proofs: L.,Brunerie,Lumsdaine]
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K(Z,N)

Define K(Z,n) = ||S"|n

% Tlk<n IS trivial
% Th 1S 7.

* Tk>n IS trivial

Generalize to other groups G?

[HoTT proofs: L.,Brunerie,Lumsdaine]
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Suspension

2 A Is a higher inductive type
generated by




Suspension

2 A Is a higher inductive type
generated by

N : 2
S : 2
merid

A
A
A s 2 A




Spheres

S2=3 8
>(SDH
Sl ; ,
q 5 merid(a) merid(b)
— : b



Spheres

S2=3 8
>(SDH
Sl ;
q 5 merid(a) merid(b)
— a b
S

Sn — Zn-‘l 81



K(G,N)
Define K(G,n) = ||2™1 K(G,1)||n

Theorem: % Tik<n is trivial
* TTnh IS G

* Tk>n IS trivial
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T[n(K(G , ﬂ)) = (5

Define K(G,n) = ||Z™" K(G,1)||n




T[n(K(GI , ﬂ)) = (5

Define K(G,n) = ||Z™" K(G,1)||n

T[n+1(K(G,n+1)) = Tlh+1 HZ” K(G,1)Hn+1




Mn(K(G,N)) = G

Define K(G,n) = ||Z™" K(G,1)||n

Mt (K(G,N+1)) = Tiner [|E0 K(G, 1)
= Tlh+1 zn K(G!1)




Mn(K(G,N)) = G

Define K(G,n) = ||Z™" K(G,1)||n

Mt (K(G,n+1)) = Ttnet [|20 K(G, 1) |1
= Tlh+1 zn K(G!1)
= Tln Z”'1 K(G,1)




T[n(K(GI , ﬂ)) = (5

Define K(G,n) = ||Z™" K(G,1)||n

M 1(K(G,n+1)) = Ttnet [|Z7 K(G, 1) 41
= Tlh+1 Z” K(G,1)
= Tlh Z”'1 K(G,1)

Freudenthal suspension theorem;
use HoTT proof by Lumsdaine
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T[n(K(GI , ﬂ)) = (5

Define K(G,n) = ||Z™" K(G,1)||n

T[n+1(K(G,n+1)) = Tnh+1 HZ” K(G,1)Hn+1
= Tin+1 2" K(G,1)
=Tlh 2" K(G,1)
= Tln H >n-1 K(G,1)

Freudenthal suspension theorem;
use HoTT proof by Lumsdaine
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T[n(K(GI , ﬂ)) = (5

Define K(G,n) = ||Z™" K(G,1)||n

T[n+1(K(G,n+1)) = Tnh+1 HZ” K(G,1)Hn+1
= Tin+1 2" K(G,1)
=Tlh 2" K(G,1)
= Tln H >n-1 K(G,1)

= Ttih K(G,n)

Freudenthal suspension theorem;
use HoTT proof by Lumsdaine
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stable2 : n (k +1) (KG (n +1)) (baseAr (n +1)) ~ n k (KG n) (baseA n)
stable2 = n (k +1) (KG (n +1)) (baseAr (n +1)) ~( (a<=Trunc (k +1) (n +1) (<=SCong 1te) (FS.base'A (n +1))) )

n (k +1) (SuspAr (S n -1pn) KG1) (FS.base'A (n +1)) =~( ! (FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing)) )
n k (SuspAr (n -1pn) KG1) (FS.base'A n) ~( ! (a<=Trunc k n 1te (FS.base'A n)) )
n k (KG n) (baseA n)

Define K(G,n) = ||Z" K(G,1)||n

T[n+1(K(G,n+1)) = Tlh+1 HZ” K(G,1)Hn+1
= Tin+1 2" K(G, 1)
=Tin 2" K(G,1)
= Tln H > n-1 K(G,1)
= Ttin K(G,Nn)

Freudenthal suspension theorem;
use HoTT proof by Lumsdaine
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stable2 : n (k +1) (KG (n +1)) (baseAr (n +1)) ~ n k (KG n) (baseA n)
stable2 = n (k +1) (KG (n +1)) (baseAr (n +1)) ~( (a<=Trunc (k +1) (n +1) (<=SCong 1te) (FS.base'A (n +1))) )

n (k +1) (SuspAr (S n -1pn) KG1) (FS.base'A (n +1)) =~( ! (FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing)) )
n k (SuspAr (n -1pn) KG1) (FS.base'A n) ~( ! (a<=Trunc k n 1te (FS.base'A n)) )
n k (KG n) (baseA n)

Define K(G,n) = ||Z" K(G,1)||n

Mn+1(K(G,Nn+1)) = Th+1 HZ” K(G,1)Hn+1
= Tin+1 2" K(G, 1)
=Tin 2" K(G,1)
= Tln H > -1 K(G,1)
= Ttin K(G,Nn)

merid :A > Q (2 A) is Freudenthal suspension theorem;
an equivalence? use HoTT proof by Lumsdaine
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Freudenthal Suspension Thm

ki homotopy group

q) ™ m n3 Ty L1 Mg ny g Mg 0 M1 M2 m3 M4 M5

GL) f o o o | o 0o o | 0o 0o | o0 0 o | o 0 0 0

i -

o Sz o 0o 0o 0o o]0 0 o0 0 o | o 0 0 0

(7p] 2 2 2

= L o z |z zo 2z 2w 2o Zn | 2z Zys | Zp | 22 zxz, Z84X22 Z2

m 2 2 2

- S 0 0z | Zo| 2y 2z 2o 2o 2y | 245 | Zp | %20 |zioxzp, 284722 22

- 9 r 2 2% Z,°% ZgsxZo°

D st o 0 0 Z Z, | 2o |Zxzyo Zoax2Z3 215 @ 2o Z100XZ12XZ2

c 223

QO s o0 0 0 0 Z 2, 2 Zos | 2o r 2 Z, | 23 | 2o Z7o%Zo

'—

— 3

< 8l o | o | o | o | o | 2 |2 |2 |2Z4] O zZ | 2 | Zgy | Zoaxz, | 22

O 3

é sl o | o | o | o | o | o 2 |2 |2 | 24| 0| 0| 2 Z120 Z>
$8 0 0 0 0 0 0 0 Z Zs Zo 2o4 O 0 Zs ZxZ120

[image from wikipedia]
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Freudenthal

Theorem: If A is n-connected (trivial up to level n),
then ||Allan = || (Z A)||on

HoTT Proof [Lumsdaine]: generalization of
encode-decode method
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Freudenthal

Theorem: If A is n-connected (trivial up to level n),
then ||Allan = || (Z A)||on

HoTT Proof [Lumsdaine]: generalization of
encode-decode method

Corollary:
... = TU(K(G,4)) = T3(K(G,3)) = m2(K(G,2))

55




T[n(K(GI , ﬂ)) = (5

By Freudenthal:
... = Tu(K(G,4)) = m3(K(G,3) = m2(K(G,2))




T[n(K(GI , ﬂ)) = (5

By Freudenthal:
... = Tu(K(G,4)) = m3(K(G,3) = m2(K(G,2))

By above:
mi(K(G,1)) =G




T[n(K(GI , ﬂ)) = (5

By Freudenthal:
... = Tu(K(G,4)) = m3(K(G,3) = m2(K(G,2))

By another encode-decode proof:
m2(K(G,2)) = T1(K(G,1))

By above:
mi(K(G,1)) =G




Formalization




Formalization

% 10,000 line HoTT library




Formalization

% 10,000 line HoTT library

* + 250 lines for Freudenthal Suspension Theorem




Formalization

% 10,000 line HoTT library
* + 250 lines for Freudenthal Suspension Theorem

* + 750 lines for K(G,n)




Reading list Type Theory

d M

1.The HoT T Book

2.Homotopy theory in Agda:
Fundamental group of the circle [LICS’13]
mn(S") = Z [CPP’13]
K(G,n) [LICS’14]
github.com/dlicata335/
github.com/hott/hott-agda

3.Blog: homotopytypetheory.org
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