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Security-Typed 
Programming

Access control: who gets access to what?
  read a file
  play a song
  make an FFI call

Information flow: what can they do with it?
  post the file contents on a blog
  copy the mp3
  save the result in a database
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Access Control

4

Read secret.txt

Access control list (ACL)
 for secret.txt

Alice

Server

  Alice: r
 Bob: rw

(slide by Kumar Avijit)
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Access Control

4

Read secret.txt

Access control list (ACL)
 for secret.txt

Alice

Server

Enforcement: Authentication + ACL lookup

  Alice: r
 Bob: rw

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTP



5

Decentralized Access Control

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read paper.pdf
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Decentralized Access Control

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read paper.pdf

Need a mechanism to 
specify and enforce 
decentralized policies...
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Decentralized Access Control

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU

Digital library

(slide by Kumar Avijit)
Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ACM says ∀ s:principal, 
                 ∀ i:principal, 
                 ∀ p:paper, 
  (member(i) ⋀ i says student(s)) 
  ⊃ MayRead(s, p)
...

CMU says student(Alice)
...
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Proof Carrying Authorization

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

[Appel+Felten]
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Proof Carrying Authorization

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

[Appel+Felten]
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Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error
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Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error
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• ACM 
says ...

Policy
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Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error
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State

• ACM 
says ...

Policy



An API for PCA

9Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf)



An API for PCA
read : prin → file → proof → contents
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Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf)



An API for PCA
read : prin → file → proof → contents

9

read(Alice,paper.pdf,p)
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Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf){



An API for PCA
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p might not be a well-formed proof

p might not be a proof of the right theorem!

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Problems:

e.g. read(Alice, paper.pdf,p)

read : prin → file → proof → contents



Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
        → contents
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read : prin→ file → proof 
        → contents



Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
        → contents

11

typing ensures p is a well-formed proof

theorem is explicit in p’s type

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

read : prin→ file → proof 
        → contents



Verification Spectrum

12

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Do all proving at run-time

static dynamic
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Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Do all proving at run-time

static dynamic
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Reuse proofs
for several API calls



PCML5 [Avijit,Datta,Harper, TLDI’10]

Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08 ] 

Fine [Swamy,Chen,Chugh, ESOP’10]

F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,
      CSF’08]

…
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Dependent PCA

Several new languages:
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This paper:

We can do
security-typed programming 

within an existing 
dependently-typed language
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PCML5 [Avijit,Datta,Harper, TLDI’10]

Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08 ] 

Fine [Swamy,Chen,Chugh, ESOP’10]

F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,
      CSF’08]

…
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Our library

Supports programming as in



Aglet: Security-typed 
Programming in Agda

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Aglet: Security-typed 
Programming in Agda



Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
        → contents

18

typing ensures p is a well-formed proof

theorem is explicit in p’s type
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read : file → prin → proof 
        → contents
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Representing BL0 [Garg+Pfenning]

says(Prin CMU,
        student(Prin Alice))CMU says student(Alice)



19Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0 [Garg+Pfenning]

data Propo where
   says : Principal → Propo → Propo
   ...

says(Prin CMU,
        student(Prin Alice))CMU says student(Alice)
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Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type 

[Garg+Pfenning]
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[Garg+Pfenning]

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A
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Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type 

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B} 
     → (A :: Γ) ⊢ B 
     → Γ ⊢ (A ⊃ B)

[Garg+Pfenning]
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Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type 

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B} 
     → (A :: Γ) ⊢ B 
     → Γ ⊢ (A ⊃ B)

dependent
de Bruijn
indices

[Garg+Pfenning]

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A



 BL0

21

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Logic with says modality: CMU says student(Alice)

Ω ; Δ ; Γ  →  A
k

individuals:
x : τ

claims:
k claims A

truth:
A true

principal we’re reasoning as
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Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Theorem Prover

24

We implemented a certified theorem prover:

prove :              (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern



Theorem Prover

24

We implemented a certified theorem prover:

prove :              (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)(n : nat) 

search depth

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern



Theorem Prover

24

We implemented a certified theorem prover:

prove :              (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)(n : nat) 

search depth

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

data Propo where
   says : Principal → Propo → Propo
   ...

Important that Propos are inductive!



Verification Spectrum

25

Do all proving at run-time

static dynamic
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Predict the policy

Prove consequences statically

Failures only if prediction
was wrong
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Predict the policy

Prove consequences statically

Failures only if prediction
was wrong



Run-time Proving

26

tryRead : Ctx → Prin → File → Maybe(String)
tryRead Γ k f = case (prove 15 Γ Mayread(f,p)) of
                            None → None
                            Some proof → Some (read k f proof)

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern



Run-time Proving

26

tryRead : Ctx → Prin → File → Maybe(String)
tryRead Γ k f = case (prove 15 Γ Mayread(f,p)) of
                            None → None
                            Some proof → Some (read k f proof)

use prove like “look up in ACL”

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)
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Verification Spectrum

27

Do all proving at run-time

static dynamic
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Predict the policy

Prove consequences statically

Failures only if prediction
was wrong
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Do all proving at run-time

static dynamic
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Predict the policy

Prove consequences statically

Failures only if prediction
was wrong



Compile-time Proving

28

For Γpol a static (known at compile-time) policy:

Γpol = CMU says student(Alice) ::
           ACM says A :: …

For a call 

                    read(Alice, paper.pdf,    )

can verify at compile-time that    can be filled in

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

?

?



proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

29

Compile-time Proving
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ACM says...Γpol =



proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

29

Compile-time Proving
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proof? computes to either None or Some(pf)

ACM says...Γpol =



proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

29

Compile-time Proving
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proof? computes to either None or Some(pf)

run at compile-time and get value out

ACM says...Γpol =
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Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ML/Haskell:

   valOf : Maybe A → A    

run-time error if it’s None
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Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ML/Haskell:

   valOf : Maybe A → A    

run-time error if it’s None

Agda:

   valOf : (s : Maybe A) →      → A    

only well-typed if s is equal to Some(pf)

?
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Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None       = Void
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Compile-time Proving
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IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None       = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None      (v                         ) = ?
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Compile-time Proving
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IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None       = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None      (v                         ) = ?: IsSome None
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Compile-time Proving
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IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None       = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None      (v                         ) = ?:         Void
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Compile-time Proving
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IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None       = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None      (v                         ) =:         Void impossibe v
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Compile-time Proving
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valOf : ∀ {A} → (s : Maybe A) → IsSome s → A

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = valOf proof? <>

Given

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
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Compile-time Proving
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valOf : ∀ {A} → (s : Maybe A) → IsSome s → A

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = valOf proof? <>

Given

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))

Agda type error if 
theorem prover fails



Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Read with policy

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
     →     string
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34
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represents the policy; where does it come from?
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Read with policy

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
     →     string

34

◯

represents the policy; where does it come from?

dynamic: not known until run-time

stateful: can change during execution (chown)

Want policies to be:
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Indexed Monad

35

Represent computations with a type

◯ Γ A Γ’
policy before policy after

[cf. HTT]
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Indexed Monad

35

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→  ◯ Γ string Γ

chown : (f : file) (k1 k2 : prin) 
             (p : (Γ,owns(k1,f)) ⊢ maychown(k1,f))
       →  ◯ (Γ,owns(k1,f)) string (Γ,owns(k2,f)) 

[cf. HTT]
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Indexed Monad

36

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
    →  ◯ Γ string Γ
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Indexed Monad

36

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
    →  ◯ Γ string Γ

need to track who 
you’re running as [AH07]
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Indexed Monad

37

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f) & as(k))
    →  ◯ Γ string Γ

running as k
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Indexed Monad

37

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f) & as(k))
    →  ◯ Γ string Γ

running as k

sudo : (f : file) (k1 k2 : prin) 
       →  Γ,as(k1) ⊢ maysu(k1,k2)
       →  ◯ (Γ,as(k2)) C (Γ’,as(k2))

       →  ◯ (Γ,as(k1)) C (Γ’,as(k1)) 
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More examples

file access control (more details)

located computation

combination with information flow

conference management server with several 
phases (submission, reviewing, notification, …)
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Summary

Can do security-typed programming within DTP

39

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run 
at compile-time and run-time 

Indexed monad to manage stateful+dynamic 
policies
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Feature Requests

How could a DTPL better support this application?

40

Speed         or            interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)
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Feature Requests

How could a DTPL better support this application?

40

Speed         or            interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)
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term repr. / [Brady et al.] [Kariso]

quoteGoal

Dan’s thesis, coming next month



Thanks for listening!
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code at http://www.cs.cmu.edu/~drl
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http://www.cs.cmu.edu/~drl
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Summary

Can do security-typed programming within DTP

42

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run 
at compile-time and run-time 

Indexed monad to manage stateful+dynamic 
policies
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