Security-Typed Programming
within
Dependently-Typed Programming

Dan Licata
Joint work with Jamie Morgenstern

Carnegie Mellon University

Supported by NSF CCF-0702381 and CNS-0716469

Security- Typed
Programming

% Access control: who gets access to what?
read a file
play a song
make an FFl call

* Information flow: what can they do with it?
post the file contents on a blog
copy the mp3
save the result in a database

Security-Typed Programming within DTP 2 Dan Licata and Jamie Morgenstern

Security-Typed
Programming

* Access control: who gets access to what?
read a file
play a song
make an FFl call

* Information flow: what can they do with it?
post the file contents on a blog
copy the mp3
save the result in a database

Security-Typed Programming within DTP 3 Dan Licata and Jamie Morgenstern

Access Control

ﬂ Read secret.txt

Alice

Server

Access control list (ACL)
for secret.txt

(slide by Kumar Avijit)

Security-Typed Programming within DTP 4

Dan Licata and Jamie Morgenstern

Access Control

Access control list (ACL)
for secret.txt

Read secret.txt
—)

Alice

Server

Enforcement: Authentication + ACL lookup

(slide by Kumar Avijit)

Security-Typed Programming within DTP 4 Dan Licata and Jamie Morgenstern

Decentralized Access Control

*CMU is a member

Alice

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 5 Dan Licata and Jamie Morgenstern

Decentralized Access Control

ﬂ ot e &

*CMU is a member
Alice

*Alice is a student

Need a mechanism to [S ey
specify and enforce [UL .
decentralized policies...

(slide by Kumar Avijit)

Security-Typed Programming within DTP 5 Dan Licata and Jamie Morgenstern

Decentralized Access Control

ACM says v s:principal,
v I:principal, |
YRR papers

(member(i) A i says student(s)) "CMU s & member
> MayRead(s, p)

*Alice is a student

CMU says StUdent(AI ice) \ _ . ; :(.D.FTarlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 6 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

[Appel+Felten]

Read “paper.pdf”

*CMU is a member

Alice

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 7 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

[Appel+Felten]

Read “paper.pdf”

papers |
*CMU is a member

Alice

p : mayread(Alice,paper.pdf)

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 7 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

‘ Read ﬂpa per.pdf"
& X

Access granted Runtime error

Security-Typed Programming within DTP 8 Dan Licata and Jamie Morgenstern

Proof Garrying Authorization

Access granted Runtime error

Security-Typed Programming within DTP 8 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

‘ Read upaper.pdf"

Access granted Runtime error

Security-Typed Programming within DTP 8 Dan Licata and Jamie Morgenstern

An API| for PCA

Read “paper.pdf”
—)

ol n: mayread(Allce,paper.pdf)

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

An API| for PCA

read : prin — file = proof — contents

Read “paper pdf”

Alice p : mayread(Alice,paper. pdf)

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

An API| for PCA

read : prin — file = proof — contents

“t Dlgltal |Ibrary e

Read “paper.pdf”

ol 0 : mayread(Alice,paper.pdf) 1B

Sl el

read(Alice,paper.pdf,p)

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

An API| for PCA

read : prin — file = proof — contents

e.g. read(Alice, paper.pdf,p)

Problems:

* p might not be a well-formed proof

* p might not be a proof of the right theorem!

Security-Typed Programming within DTP 10 Dan Licata and Jamie Morgenstern

Dependent lypes!

read : prin— file = proof
— contents

v

read : (k : prin) (f : file) (p : proof(mayread(k,f))
— contents

Security-Typed Programming within DTP 11 Dan Licata and Jamie Morgenstern

Dependent lypes!

read : prin— file = proof
— contents

v

read : (k : prin) (f : file) (p : proof(mayread(k,f))
— contents

* typing ensures p is a well-formed proof

*theorem Is explicit in p’s type

Security-Typed Programming within DTP 11 Dan Licata and Jamie Morgenstern

Verification Spectrum

static dynamic

* Predict the policy
* Prove consequences statically * Do all proving at run-time

* Failures only if prediction
was wrong

Security-Typed Programming within DTP 12 Dan Licata and Jamie Morgenstern

Verification Spectrum

_ Reuse proofs :
static for several APl calls dynamic

l

* Predict the policy
* Prove consequences statically * Do all proving at run-time

* Failures only if prediction
was wrong

Security-Typed Programming within DTP 12 Dan Licata and Jamie Morgenstern

Dependent PCA

Several new languages:
* PCMLS5 [Avijit,Datta,Harper, TLDI’10]

* Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08]
* Fine [Swamy,Chen,Chugh, ESOP’10]

* F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,

CSF’08]

Security-Typed Programming within DTP 13

Dan Licata and Jamie Morgenstern

This paper:

We can do
security-typed programming
within an existing
dependently-typed language

Our library

CSF’08]

Supports programming as in
* PCMLS5 [Avijit,Datta,Harper, TLDI’10]

* Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08]
* Fine [Swamy,Chen,Chugh, ESOP’10]

* F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,

Security-Typed Programming within DTP

153

Dan Licata and Jamie Morgenstern

Aglet: Security-typed
Programming in Agda

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 16 Dan Licata and Jamie Morgenstern

Aglet: Security-typed
Programming in Agda

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 17 Dan Licata and Jamie Morgenstern

Dependent lypes!

read : file = prin = proof
— contents

v

read : (k : prin) (f : file) (p : proof(mayread(k,f))
— contents

* typing ensures p is a well-formed proof

* theorem Is explicit in p’s type

Security-Typed Programming within DTP 18 Dan Licata and Jamie Morgenstern

Re p rese nt I n g B LO [Garg+Pfenning]

. says(Prin CMU,
CMU says student(Alice) === student(Prin Alice))

Security-Typed Programming within DTP 19 Dan Licata and Jamie Morgenstern

Re p rese nt I n g B LO [Garg+Pfenning]

. says(Prin CMU,
CMU says student(Alice) === student(Prin Alice))

data Propo where
says : Principal =@ Propo — Propo

Security-Typed Programming within DTP 19 Dan Licata and Jamie Morgenstern

Re p rese nt I n g B LO [Garg+Pfenning]

Seqguent as indexed inductive definition:

oA

data _+—_: Ctx = Propo — Type

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Re p rese nt I n g B LO [Garg+Pfenning]

Seqguent as indexed inductive definition:

[A= el

Classifying only well-formed derivations:

e me

data _+_: Ctx = Propo — Type

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Re p rese nt I n g B LO [Garg+Pfenning]

Sequent as indexed inductive definition:

—

Classifying only well-formed derivations:
D |
FC A gD A

Inference rules as datatype constructors:

A =R >R : v {l AB}
[-A>B > Azl FB
= [~ (A > B)

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

[- A

data _+_: Ctx = Propo — Type

Re p rese nt I n g B LO [Garg+Pfenning]

Sequent as indexed inductive definition:

[~A =y

Classifying only well-formed derivations:
D |
FC A gD A

Inference rules as datatype constructors:

data _+_: Ctx = Propo — Type

LArg oy D e
[-AD>B S S indices
= [~ (A > B)

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

B LO [Garg+Pfenning]

Q;AA

-

Individuals:
G

claims:
k claims A

Logic with says modality: CMU says student(Alice)

k
S e

principal we’re reasoning as

s
e

truth:
A true

Security-Typed Programming within DTP

2+

Dan Licata and Jamie Morgenstern

[§ = [all as "Jamie"

jread : O i string (A - [9)
“reac - read (P Prin "Jamie") (P File "secret-txt") ?

jreadprint : O I'j unit (A _ » [3j)
jreadprint = jread >>= A x -
print ("the secret is: "

A

X)

O (lFall as "pan") Unit (A _ » lall as "Dan")
sudo (» Prin "Dan") (» Prin "Jamie")

(solve proveReplace)

(A _ » solve proveReplace)

(solve (prove 15))

jreadprint

9§ = [all as "Jamie"
jread (O T4 string (A > [9) .“-..'0‘
‘read - read (» Prin "Jamie") (P File "secret-txt's) ? :
"l Sl o*
jreadprint : O j unit (A » [5)
jreadprint = jread >>= A x -
print ("the secret i1is: " 7 X)

drdprnt : O (lall as "Dan") Unit (A - lall as "Dan")
drdprnt = sudo (» Prin "Dan”) (» Prin "Jamie')

(solve proveReplace)

(A - solve proveReplace)

(solve (prove 15))

jreadprint

Security-Typed Programming within DTP 22 Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 23 Dan Licata and Jamie Morgenstern

Theorem Prover

We implemented a certified theorem prover:

prove : (© : Ctx) (A : Propo) = Maybe (O — A)

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Theorem Prover

We implemented a certified theorem prover:

prove :(n : nat) (O : Ctx) (A : Propo) @ Maybe (O + A)

T

search depth

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Theorem Prover

We implemented a certified theorem prover:

prove :(n : nat) (O : Ctx) (A : Propo) @ Maybe (O + A)

T

search depth

Important that Propos are inductive!

data Propo where
says . Principal =@ Propo — Propo

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Verification Spectrum

static dynamic

* Predict the policy

: o ' i ¥
* Prove consequences statically Do all proving at run-time

* Failures only if prediction
was wrong

Security-Typed Programming within DTP 25 Dan Licata and Jamie Morgenstern

Verification Spectrum.

’ .
static & dvnamic
/ y \
/ \

i

i
I !
i I
% Predict the policy 0 0
f

* Prove conseguences statically “ * Do all:proving et run—tlme,

\ /

* Failures only if prediction \ J
was wrong \ 4
\ = A
W i iy

Security-Typed Programming within DTP 25 Dan Licata and Jamie Morgenstern

Run-time Proving

prove : (n:nat) (O : Ctx) (A : Prop) = Maybe (O — A)

tryRead : Ctx = Prin — File = Maybe(String)

tryRead I k f = case (prove 15 [Mayread(f,p)) of
None — None
Some proof =+ Some (read k f proof)

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

Run-time Proving

prove : (n:nat) (O : Ctx) (A : Prop) = Maybe (O — A)

tryRead : Ctx = Prin — File = Maybe(String)

tryRead I k f = case (prove 15 [Mayread(f,p)) of
None — None
Some proof =+ Some (read k f proof)

use prove like “look up in ACL”

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

static

* Predict the policy
* Prove conseguences statically

* Failures only if prediction
was wrong

I
[
0
i

b

Verification spectrum _

4

~
P S
y dynamic
/ \
Q
B
%
I
I
I
. : f
* Do all proving at run-time !
/
/
\
\ 4
N /
N &
~ -~ g - "

Security-Typed Programming within DTP

27

Dan Licata and Jamie Morgenstern

Verification Spectrum

gp R WS-
-’ . ~ i
s static S . dynamic
’
/ N

/
! \
1

% Prove consequences staticallyd

* Predict the policy

* Do all proving at run-time

i
\
v Failures only if prediction 4
\was wrong Y
\ ! 4
N &
s SR

--—

Security-Typed Programming within DTP 27 Dan Licata and Jamie Morgenstern

Compile-time Proving
For ['pol a static (known at compile-time) policy:

[pol = CMU says student(Alice) ::
ACM says A :: ...

For a call
read(Alice, paper.pdf, ?)

can verify at compile-time that ? can be filled in

Security-Typed Programming within DTP 28 Dan Licata and Jamie Morgenstern

Compile-time Proving

I'pol =

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

Security-Typed Programming within DTP 29 Dan Licata and Jamie Morgenstern

I'pol =

Compile-time Proving M

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

* proof? computes to either None or Some(pf)

Security-Typed Programming within DTP 29 Dan Licata and Jamie Morgenstern

I'pol =

Compile-time Proving M

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

% proof? computes to either None or Some(pf)

*run at compile-time and get value out

Security-Typed Programming within DTP 29 Dan Licata and Jamie Morgenstern

Compile-time Proving

ML/Haskell:

valOf : Maybe A — A
run-time error If it’s None

Security-Typed Programming within DTP 30 Dan Licata and Jamie Morgenstern

Compile-time Proving

ML/Haskell:
valOf : Maybe A — A
run-time error If it’s None
Agda:

valOf : (s : Maybe A) = 2?2 — A
only well-typed if s is equal to Some(pf)

Security-Typed Programming within DTP 30 Dan Licata and Jamie Morgenstern

Compile-time Proving

IsSome : v {A} =& Maybe A — Type
IsSome (Some _) = Unit
IsSome None = Void

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Compile-time Proving

IsSome : v {A} =& Maybe A — Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : v {A} — (s : Maybe A) — IsSome s = A
valOf (Some x) _ =X
valOf None (v)=H

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Compile-time Proving

IsSome : v {A} =& Maybe A — Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : v {A} — (s : Maybe A) — IsSome s = A
valOf (Some x) _ = X
valOf None (v:IsSome None) = ?

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Compile-time Proving

IsSome : v {A} =& Maybe A — Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : v {A} — (s : Maybe A) — IsSome s = A
valOf (Some x) _ = X
valOf None (v: Void)=H

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Compile-time Proving

IsSome : v {A} =& Maybe A — Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : v {A} — (s : Maybe A) — IsSome s = A
valOf (Some x) _ = X
valOf None (v: Void) = impossibe v

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Compile-time Proving

theProof : I'pol - Mayread(Alice, paper.pdf)
theProof = valOf proof? <>

Given
valOf : v {A} — (s : Maybe A) — IsSome s = A

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))

Security-Typed Programming within DTP 32 Dan Licata and Jamie Morgenstern

Compile-time Proving

theProof : I'pol - Mayread(Alice, paper.pdf)

theProof = valOf proof? <>\
Agda type error if
theorem prover fails

Given
valOf : v {A} — (s : Maybe A) — IsSome s = A

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))

Security-Typed Programming within DTP 32 Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 33 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I = mayread(k,f))
=+ =slEng

Security-Typed Programming within DTP 34 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I = mayread(k,f))

— () string

Security-Typed Programming within DTP 34 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I mayread(k,f))

— () string

represents the policy; where does it come from?

Security-Typed Programming within DTP 34 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I mayread(k,f))

— () string

represents the policy; where does it come from?

Want policies to be:

* dynamic: not known until run-time
% stateful: can change during execution (chown)

Security-Typed Programming within DTP 34 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

/ [cf. HTT]
policy before policy after

Security-Typed Programming within DTP 35 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

./ [cf. HTT]
policy before policy after

read : (f : file) (k : prin) (p : [— mayread(k,f)—= (O T string I

Security-Typed Programming within DTP 35 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

./ [cf. HTT]
policy before policy after

read : (f : file) (k : prin) (p : [— mayread(k,f)—= (O T string I

chown : (f : file) (k1 k2 : prin)
(p : (I',owns(k1,f)) — maychown(k1,f))
— (O (I,owns(k1,f) string (I,owns(k2,)

Security-Typed Programming within DTP 35 Dan Licata and Jamie Morgenstern

INndexed Monad

read : (f : file) (k : prin)
(p : I - mayread(k,f))
— (O Tl string T

Security-Typed Programming within DTP 36 Dan Licata and Jamie Morgenstern

INndexed Monad

need to track who
read : (f : file) (k : prin) A/you’re running as [AHO7]
(p : I - mayread(k,f))

— (O Tl string T

Security-Typed Programming within DTP 36 Dan Licata and Jamie Morgenstern

INndexed Monad

read : (f : file) (k : prin)

— (O Tl string T

running as k

>

(p : I - mayread(k,f) & as(k))

Security-Typed Programming within DTP 37

Dan Licata and Jamie Morgenstern

INndexed Monad

running as k
read : (f : file) (k : prin) \
(p : I - mayread(k,f) & as(k))
— (O Tl string T

sudo : (f : file) (k1 k2 : prin)
— [,as(k1) - maysu(k1,k?2)
= O ([,as(k?)) C (",as(k2))

— (O (T,as(k1)) C (I,as(k1))

Security-Typed Programming within DTP 37 Dan Licata and Jamie Morgenstern

\Viore examples

* file access control (more details)
* located computation
* combination with information flow

% conference management server with several
phases (submission, reviewing, notification, ...)

Security-Typed Programming within DTP 38 Dan Licata and Jamie Morgenstern

Summary

Can do security-typed programming within DTP

* Indexed inductive definition to represent proofs

* Theorem prover to discharge proof obligations, run
at compile-time and run-time

* Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP 39 Dan Licata and Jamie Morgenstern

-eature Reqguests

How could a DTPL better support this application?
* Speed or interface to theorem provers

% Reflection (prover works well at extremes <
but not in the middle)

* Binding+scope (logic)

Security-Typed Programming within DTP 40 Dan Licata and Jamie Morgenstern

-eature Reqguests

How could a DTPL better support this application?

* Speed or interface to theorem provers
term repr. / [Brady et al.] [Kariso]

% Reflection (prover works well at extremes <
but not in the middle)

* Binding+scope (logic)

Security-Typed Programming within DTP 40 Dan Licata and Jamie Morgenstern

-eature Reqguests

How could a DTPL better support this application?

* Speed or interface to theorem provers
term repr. / [Brady et al.] [Kariso]

% Reflection (prover works well at extremes <=
but not in the middle)

quoteGoal

* Binding+scope (logic)

Security-Typed Programming within DTP 40 Dan Licata and Jamie Morgenstern

-eature Reqguests

How could a DTPL better support this application?

* Speed or interface to theorem provers
term repr. / [Brady et al.] [Kariso]

% Reflection (prover works well at extremes <=
but not in the middle)

quoteGoal

* Binding+scope (logic)
Dan’s thesis, coming next month

Security-Typed Programming within DTP 40 Dan Licata and Jamie Morgenstern

[hanks for listening!

code at http://www.cs.cmu.edu/~drl

Security-Typed Programming within DTP 41 Dan Licata and Jamie Morgenstern

http://www.cs.cmu.edu/~drl
http://www.cs.cmu.edu/~drl

Summary

Can do security-typed programming within DTP

* Indexed inductive definition to represent proofs

* Theorem prover to discharge proof obligations, run
at compile-time and run-time

* Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP 42 Dan Licata and Jamie Morgenstern

