
Security-Typed Programming
within

Dependently-Typed Programming

Dan Licata
Joint work with Jamie Morgenstern

Carnegie Mellon University

Supported by NSF CCF-0702381 and CNS-0716469

Security-Typed
Programming

Access control: who gets access to what?
 read a file
 play a song
 make an FFI call

Information flow: what can they do with it?
 post the file contents on a blog
 copy the mp3
 save the result in a database

2Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Security-Typed
Programming

Access control: who gets access to what?
 read a file
 play a song
 make an FFI call

Information flow: what can they do with it?
 post the file contents on a blog
 copy the mp3
 save the result in a database

3Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Access Control

4

Read secret.txt

Access control list (ACL)
 for secret.txt

Alice

Server

 Alice: r
 Bob: rw

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTP

Access Control

4

Read secret.txt

Access control list (ACL)
 for secret.txt

Alice

Server

Enforcement: Authentication + ACL lookup

 Alice: r
 Bob: rw

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTP

5

Decentralized Access Control

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read paper.pdf

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

5

Decentralized Access Control

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read paper.pdf

Need a mechanism to
specify and enforce
decentralized policies...

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

6

Decentralized Access Control

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU

Digital library

(slide by Kumar Avijit)
Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ACM says ∀ s:principal,
 ∀ i:principal,
 ∀ p:paper,
 (member(i) ⋀ i says student(s))
 ⊃ MayRead(s, p)
...

CMU says student(Alice)
...

7

Proof Carrying Authorization

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

[Appel+Felten]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

7

Proof Carrying Authorization

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

[Appel+Felten]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

8

Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

8

Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

• ACM
says ...

Policy

8

Proof Carrying Authorization

Alice

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Proof OK?

Access granted Runtime error

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

State

• ACM
says ...

Policy

An API for PCA

9Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

An API for PCA
read : prin → file → proof → contents

9Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

An API for PCA
read : prin → file → proof → contents

9

read(Alice,paper.pdf,p)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Alice

Digital library

Read “paper.pdf”

p : mayread(Alice,paper.pdf){

An API for PCA

10

p might not be a well-formed proof

p might not be a proof of the right theorem!

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Problems:

e.g. read(Alice, paper.pdf,p)

read : prin → file → proof → contents

Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
 → contents

11Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

read : prin→ file → proof
 → contents

Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
 → contents

11

typing ensures p is a well-formed proof

theorem is explicit in p’s type

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

read : prin→ file → proof
 → contents

Verification Spectrum

12

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Verification Spectrum

12

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Reuse proofs
for several API calls

PCML5 [Avijit,Datta,Harper, TLDI’10]

Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08]

Fine [Swamy,Chen,Chugh, ESOP’10]

F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,
 CSF’08]

…

13Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Dependent PCA

Several new languages:

14

This paper:

We can do
security-typed programming

within an existing
dependently-typed language

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

PCML5 [Avijit,Datta,Harper, TLDI’10]

Aura [Jia,Vaughan,Zdancewic,et al., ICFP’08]

Fine [Swamy,Chen,Chugh, ESOP’10]

F7 [Gordon,Bengston,Bhargavan,Fournet,Maffeis,
 CSF’08]

…

15Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Our library

Supports programming as in

Aglet: Security-typed
Programming in Agda

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

16Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

17Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Aglet: Security-typed
Programming in Agda

Dependent Types!

read : (k : prin) (f : file) (p : proof(mayread(k,f))
 → contents

18

typing ensures p is a well-formed proof

theorem is explicit in p’s type

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

read : file → prin → proof
 → contents

19Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0 [Garg+Pfenning]

says(Prin CMU,
 student(Prin Alice))CMU says student(Alice)

19Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0 [Garg+Pfenning]

data Propo where
 says : Principal → Propo → Propo
 ...

says(Prin CMU,
 student(Prin Alice))CMU says student(Alice)

20Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

[Garg+Pfenning]

20Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

[Garg+Pfenning]

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

20Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B}
 → (A :: Γ) ⊢ B
 → Γ ⊢ (A ⊃ B)

[Garg+Pfenning]

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

20Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Representing BL0

Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B}
 → (A :: Γ) ⊢ B
 → Γ ⊢ (A ⊃ B)

dependent
de Bruijn
indices

[Garg+Pfenning]

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

 BL0

21

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Logic with says modality: CMU says student(Alice)

Ω ; Δ ; Γ → A
k

individuals:
x : τ

claims:
k claims A

truth:
A true

principal we’re reasoning as

22Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

22Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

23Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

We implemented a certified theorem prover:

prove : (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

We implemented a certified theorem prover:

prove : (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)(n : nat)

search depth

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

We implemented a certified theorem prover:

prove : (Θ : Ctx) (A : Propo) → Maybe (Θ ⊢ A)(n : nat)

search depth

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

data Propo where
 says : Principal → Propo → Propo
 ...

Important that Propos are inductive!

Verification Spectrum

25

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Verification Spectrum

25

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Run-time Proving

26

tryRead : Ctx → Prin → File → Maybe(String)
tryRead Γ k f = case (prove 15 Γ Mayread(f,p)) of
 None → None
 Some proof → Some (read k f proof)

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Run-time Proving

26

tryRead : Ctx → Prin → File → Maybe(String)
tryRead Γ k f = case (prove 15 Γ Mayread(f,p)) of
 None → None
 Some proof → Some (read k f proof)

use prove like “look up in ACL”

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Verification Spectrum

27

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Verification Spectrum

27

Do all proving at run-time

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Predict the policy

Prove consequences statically

Failures only if prediction
was wrong

Compile-time Proving

28

For Γpol a static (known at compile-time) policy:

Γpol = CMU says student(Alice) ::
 ACM says A :: …

For a call

 read(Alice, paper.pdf,)

can verify at compile-time that can be filled in

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

?

?

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

29

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ACM says...Γpol =

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

29

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? computes to either None or Some(pf)

ACM says...Γpol =

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

29

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? computes to either None or Some(pf)

run at compile-time and get value out

ACM says...Γpol =

30

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ML/Haskell:

 valOf : Maybe A → A

run-time error if it’s None

30

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

ML/Haskell:

 valOf : Maybe A → A

run-time error if it’s None

Agda:

 valOf : (s : Maybe A) → → A

only well-typed if s is equal to Some(pf)

?

31

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None = Void

31

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None (v) = ?

31

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None (v) = ?: IsSome None

31

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None (v) = ?: Void

31

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

IsSome : ∀ {A} → Maybe A → Type
IsSome (Some _) = Unit
IsSome None = Void

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A
valOf (Some x) _ = x
valOf None (v) =: Void impossibe v

32

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = valOf proof? <>

Given

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))

32

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

valOf : ∀ {A} → (s : Maybe A) → IsSome s → A

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = valOf proof? <>

Given

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))

Agda type error if
theorem prover fails

Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

33Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

34Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

34

◯

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

34

◯

represents the policy; where does it come from?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

34

◯

represents the policy; where does it come from?

dynamic: not known until run-time

stateful: can change during execution (chown)

Want policies to be:

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

35

Represent computations with a type

◯ Γ A Γ’
policy before policy after

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

35

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→ ◯ Γ string Γ

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

35

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→ ◯ Γ string Γ

chown : (f : file) (k1 k2 : prin)
 (p : (Γ,owns(k1,f)) ⊢ maychown(k1,f))
 → ◯ (Γ,owns(k1,f)) string (Γ,owns(k2,f))

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

36

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → ◯ Γ string Γ

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

36

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → ◯ Γ string Γ

need to track who
you’re running as [AH07]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

37

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f) & as(k))
 → ◯ Γ string Γ

running as k

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

37

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f) & as(k))
 → ◯ Γ string Γ

running as k

sudo : (f : file) (k1 k2 : prin)
 → Γ,as(k1) ⊢ maysu(k1,k2)
 → ◯ (Γ,as(k2)) C (Γ’,as(k2))

 → ◯ (Γ,as(k1)) C (Γ’,as(k1))

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

More examples

file access control (more details)

located computation

combination with information flow

conference management server with several
phases (submission, reviewing, notification, …)

38Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Summary

Can do security-typed programming within DTP

39

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run
at compile-time and run-time

Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Feature Requests

How could a DTPL better support this application?

40

Speed or interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Feature Requests

How could a DTPL better support this application?

40

Speed or interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

term repr. / [Brady et al.] [Kariso]

Feature Requests

How could a DTPL better support this application?

40

Speed or interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

term repr. / [Brady et al.] [Kariso]

quoteGoal

Feature Requests

How could a DTPL better support this application?

40

Speed or interface to theorem provers

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

term repr. / [Brady et al.] [Kariso]

quoteGoal

Dan’s thesis, coming next month

Thanks for listening!

41

code at http://www.cs.cmu.edu/~drl

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

http://www.cs.cmu.edu/~drl
http://www.cs.cmu.edu/~drl

Summary

Can do security-typed programming within DTP

42

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run
at compile-time and run-time

Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

