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With every day, and from both sides of my intelligence, the moral and the intellectual, I thus
drew steadily nearer to that truth, by whose partial discovery I have been doomed to such a
dreadful shipwreck: that man is not truly one, but truly two. . . . It was on the moral side, and
in my own person, that I learned to recognise the thorough and primitive duality of man; I saw
that, of the two natures that contended in the field of my consciousness, even if I could rightly
be said to be either, it was only because I was radically both; and from an early date, even
before the course of my scientific discoveries had begun to suggest the most naked possibility of
such a miracle, I had learned to dwell with pleasure, as a beloved daydream, on the thought of
the separation of these elements. If each, I told myself, could be housed in separate identities,
life would be relieved of all that was unbearable; the unjust might go his way, delivered from
the aspirations and remorse of his more upright twin; and the just could walk steadfastly and
securely on his upward path, doing the good things in which he found his pleasure, and no
longer exposed to disgrace and penitence by the hands of this extraneous evil. It was the curse of
mankind that these incongruous faggots were thus bound together—that in the agonised womb
of consciousness, these polar twins should be continuously struggling. How, then were they
dissociated?

— Strange Case of Dr Jekyll and Mr Hyde, Robert Louis Stevenson
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Abstract
This dissertation describes progress on programming with domain-specific spec-

ification logics in dependently typed programming languages. Domain-specific log-
ics are a promising way to verify software, using a logic tailored to a style of pro-
gramming or an application domain. Examples of domain-specific logics include
separation logic, which has been used to verify imperative programs, and authoriza-
tion logics, which have been used to verify security properties in security-typed lan-
guages. The first goal of the research described here is to show that it is possible to
define, study, automate, and use domain-specific logics within a dependently typed
programming language. We demonstrate this fact with a significant new example,
showing how to embed a security-typed language using dependent types.

This example suggests that better support for programming with logics in type
theory will facilitate this style of program verification. The central notion in logic is
consequence—entailment from premises to conclusions—and two notions of conse-
quence are necessary for programming with logics: derivability, which captures uni-
form reasoning, and admissibility, which captures inductive proofs and functional
programs. Presently, derivability is better supported in LF-based proof assistants,
such as Twelf, Delphin, and Beluga, whereas admissibility is better supported in
proof assistants based on Martin-Löf type theory, such as Coq, Agda, and Epigram.
Our second contribution is to show that it is possible to implement, within a depen-
dently typed programming language, a logical framework that allows derivability
and admissibility to be mixed in novel and interesting ways.

The above framework is simply-typed, which makes it suitable for programming
with abstract syntax but not logical derivations. Our third contribution is to general-
ize this framework to dependent types, which we accomplish as an instance of a more
general problem: We describe Directed Type Theory (DTT), a new notion of depen-
dent type theory, inspired by higher-dimensional category theory, which equips each
type with a notion of transformation on its elements. The structural properties of a
logic arise as a special case, by considering a type of contexts equipped with an ap-
propriate notion of transformation. DTT is an exciting development independently
of our application, as it generalizes recent connections between type theory, homo-
topy theory, and category theory to the asymmetric case.



vi



Acknowledgments
First and foremost, I would like to thank my advisor, Robert Harper. In one of

our first meetings, Bob said “you should take a look at this work on indexed types,”
and seven years later, here we are. When you are picking an advisor, one of the
things they tell you to think about is whether someone will be more hands-on or
hands-off, and Bob has been both: I am very grateful for both all the collaboration—
the afternoons spent working together on whiteboards, and the evenings at 61c—and
the space—when I needed to figure things out for myself. Bob has an amazing eye
for spotting when a solution is right, or when it can be improved. I would like to
thank him for always pushing me to work harder and find the beautiful, canonical,
solution to a problem—this has been essential to the work described here and to my
development as a researcher.

Second, I would like to thank my internal committee members, Karl Crary and
Frank Pfenning, both for their efforts on my dissertation and for many helpful con-
versations over the years. I have learned a lot from watching each of them solving
problems. Third, I would like to thank my external committee member, Greg Mor-
risett, for his feedback on my dissertation, and for his work on Hoare Type Theory,
which has been an inspiration for this work.

Outside of my committee, my closest collaborator was Noam Zeilberger, whose
work on polarity and higher-order focusing was an essential tool for the early stages
of this work. One afternoon, I came down to the lounge, found Noam sitting there,
and said “I wonder if the LF function space is positive”—and several years of inter-
esting and productive collaboration ensued. Noam has an unusual knack for taking
seemingly impossible ideas and making them work out, and for paring something
down to its essence.

Next, I would like to thank Jason Reed, Arbob Ahmad, and Jamie Morgenstern
for collaborating on research described in this dissertation. One of my greatest joys
in grad school was watching Jason do logic on a whiteboard. As undergraduates,
Arbob worked on a project that refined my understanding of focusing, and Jamie
worked on the security-typed programming example described below, which is the
most practical motivation for the more theoretical work that follows it.

My work on directed type theory has benefited tremendously from conversations
with Steve Awodey, Peter Lumsdaine, Chris Kapulkin, and Kristina Sojakova. I
would also like to thank Vladimir Voevodsky for attracting my attention to higher-
dimensional type theory, which turned out to be a very useful technique for attacking
the problems considered in this dissertation.

The moment I decided to come to CMU was at the Saturday night dinner of the
visit weekend, when, over beer at the Church Brew Works, Tom Murphy VII and



others explained the Curry-Howard interpretation of classical logic as continuations.
This was not false advertising. I am extremely grateful for the many colleagues
and friends in the PoP Group whose knowledge and company I have shared over
the past seven years. My understanding of logic is almost entirely the product of
many, many, long and delightful whiteboard conversations with Noam, Jason, Neel
Krishnaswami, and Rob Simmons. Kevin Watkins introduced me to the wonders
of focusing and canonical-forms-only presentations of type theory. Each of Kumar
Avijit, David Baelde, Lars Birkedal, Kaustuv Chaudhuri, Derek Dreyer, Joshua Dun-
field, Deepak Garg, Daniel Lee, Ruy Ley-Wild, William Lovas, Chris Martens, Sean
McLaughlin, Tom Murphy VII, Susmit Sarkar, and Dan Spoonhower has contributed
to this dissertation in some way.

I am also lucky to have had helpful conversations with many external colleagues
in the proof theory, dependent types, and mechanized metatheory communities. I
would especially like to thank Paul Levy, Thorsten Altenkirch, and Conor McBride
for discussions about this work.

I would like to thank Simon Peyton Jones for a wonderful internship at Microsoft
Research Cambridge, for getting me to think more about the practical applications
of programming languages research, and for suggesting that working out a specific
example of a domain-specific logic in more detail would be a good complement to
working on general technology.

This dissertation would have been very different if not for the Agda proof assis-
tant, and I would like to thank its developers, particularly Ulf Norell and Nils Anders
Danielsson. I would also like to thank Wouter Swierstra for turning me on to Agda
at ICFP’07.

I probably would not have gone into programming languages if not for the
Schemeleh (that’s Yiddish for “little Scheme”) project in CS17-18 at Brown, both
the year that I took the course, with John Hughes, and the years that I TAed it with
Spike and with Philip Klein. And I certainly would not have gone into program-
ming languages if not for several years of research with Shriram Krishnamurthi. I
worked on software verification as an undergrad, and I remember telling Shriram
that I was pretty sure I wanted to do programming languages, even though I hadn’t
really worked on it. His response was “yeah, it’s what we do for beauty.”

I would like to thank my parents, Ken and Sue, my brother, Matt, and my grand-
parents, Jean, Jules, Ruthe, and Gerry. When you’re applying to grad school, they
tell you not to tell your computer origin story in your personal statement. Fortu-
nately, no one ever says that about your thesis document: A long time ago (I was
so little that I don’t even remember this story, except from being told about it), Dad
brought home an Apple II from school. Mom and Dad set me up in the dining room
playing Math Blaster or something and invited Grandma and Papa over. The trick
worked, and pretty soon we had our own Apple IIGS in the house. Which is to say:
I’d like to thank my parents for setting me on a path to something that makes me
happy, and for supporting me along the way.

Both of my grandmothers died while I was in grad school. One time, during my

viii



first or second year of grad school, Grandma Jean asked me how long the program
took, and I told her that the average was five or six years. Her response, which
surprised me in its frankness, was “That’s too long! We won’t be around to see you
graduate.” Technically, she made it: she died the evening of the day I sent out my
dissertation draft.

Grandma Ruthe was the only one of my grandparents to ever use a computer, one
that Matt and I built for her back when it was cool to order your motherboard, RAM,
video card, etc., separately online. She kept records for her temple’s sisterhood,
checked her Juno e-mail, and played a bunch of virtual mahjong. Her brother, Uncle
Alex, has a PhD in mathematics, and a copy of his dissertation was on the bookcase
at Grandma and Papa’s house. Grandma Ruthe used to joke that the only part of it
that she understood was his name. I like to think that, here, she would have made it
to page two.

ix



x



Contents

1 Introduction 1

2 Background 5
2.1 Logical Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 First-order inductive definitions . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Hypothetical Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Generic Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 A Tale of Two Consequence Relations . . . . . . . . . . . . . . . . . . . 8
2.1.5 Higher-order Inductive Definitions . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Logical Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Programming with Logics in Existing Languages 27

3 Security-Typed Programming 29
3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 File IO with Access Control . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 File IO with Access Control and Information Flow . . . . . . . . . . . . 39
3.1.3 Spatial Distribution with Information Flow . . . . . . . . . . . . . . . . 40
3.1.4 ConfRM: A Conference Management System . . . . . . . . . . . . . . . 41

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Representing BL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Proof Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Semantic Differential Privacy 61
4.1 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Distance-preserving functions . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Monoidal products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.4 Large products and sums . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Derived forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Source to combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Combinators to metric spaces . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II Mixing Derivability and Admissibility 79

5 An Embedded Logical Framework 81
5.1 Language Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.1 Evaluating Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.4 Closure-based Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.5 Variable Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.6 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.7 Normalization by Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.3 Exchange/Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 Strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.5 Weakening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.6 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Logical Foundations 111
6.1 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Simple contexts and patterns . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 Focusing Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.3 Patterns for Pre-derivability . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.4 Identity and Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.5 Shock therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xii



6.1.6 Relationship to modal logic . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Agda Representation of Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III Directed Dependent Type Theory 127

7 2-Dimensional Directed Type Theory 129
7.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.1 Structural properties as functoriality . . . . . . . . . . . . . . . . . . . . 130
7.1.2 Structural Properties of the Generic Judgement . . . . . . . . . . . . . . 131
7.1.3 Higher-dimensional type theory . . . . . . . . . . . . . . . . . . . . . . 132
7.1.4 Directed Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Base Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.1 Two-dimensional Judgements . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.2 Involution, Identity, and Composition Principles . . . . . . . . . . . . . 149
7.2.3 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2.5 Weakening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.1 Semantic Judgemental Framework . . . . . . . . . . . . . . . . . . . . . 160
7.3.2 Semantic Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.3 Semantic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.3.4 Soundness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8 Applications and Extensions 169
8.1 The Generic Judgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1.1 Simple Contexts and Variables . . . . . . . . . . . . . . . . . . . . . . . 169
8.1.2 Structurality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.1.3 Subjects of Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2.1 Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2.2 The Attraction of Opposites . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2.3 Substitution and Other Structural Properties . . . . . . . . . . . . . . . . 180
8.2.4 Covariant Π’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.5 Higher-Dimensional Quotient Types . . . . . . . . . . . . . . . . . . . . 185
8.2.6 Directed Hom Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.2.7 Universes and Higher-dimensions . . . . . . . . . . . . . . . . . . . . . 187

8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9 Conclusion 191

Bibliography 193

xiii



xiv



List of Figures

3.1 Sample access control policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Monadic IO with Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Monadic File IO with Authorization . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 ConfRM Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 ConfRM Policy Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Agda Representation of BL0 Propositions . . . . . . . . . . . . . . . . . . . . . 51
3.7 Weakly focused sequent calculus for BL0 . . . . . . . . . . . . . . . . . . . . . 53
3.8 Agda representation of proofs (exceprt) . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Typing rules for differential privacy . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Interpretation of the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Type signatures of structural properties . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Normalization by evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Normalization by evaluation with a single context . . . . . . . . . . . . . . . . . 103
5.5 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Focusing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Agda Representation of Polarized Types . . . . . . . . . . . . . . . . . . . . . . 122
6.4 Agda Representation of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5 Agda Representation of Focusing Rules . . . . . . . . . . . . . . . . . . . . . . 125

7.1 2DTT: Identity, Composition, and Involution Principles (1) . . . . . . . . . . . . 139
7.2 2DTT: Identity, Composition, and Involution Principles (2) . . . . . . . . . . . . 140
7.3 2DTT: General equality rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4 2DTT: Contexts (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.5 2DTT: Contexts (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.6 2DTT: Dependent Function Types . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.7 2DTT: Dependent Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.8 2DTT: General Rules for Sets and Elements . . . . . . . . . . . . . . . . . . . . 146
7.9 2DTT: Some Sets (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.10 2DTT: Some Sets (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1 Simple contexts and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 2DTT: Covariant Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xv



xvi



Chapter 1

Introduction

Up until the fall of 2009, Carnegie Mellon University’s computer science department was housed
in a building named Wean Hall, an eight-story bunker of a building whose dominant architectural
feature is bare concrete. On the fourth floor of Wean Hall was the graduate student lounge, a
room decorated with a billowy sky-blue table, neon hanging lampshades, and floor-to-ceiling
whiteboards. On the wall outside the lounge was a bronze plaque of eight quotations by Alan
Perlis, the first head of Carnegie Mellon’s computer science department, taken from his Epigrams
on Programming (Perlis, 1982). Sixth from the top was the following:

It is easier to write an incorrect program than understand a correct one.

This dissertation describes progress towards invalidating Perlis’s epigram, in two ways: making
incorrect programs harder to write and correct programs easier to understand.

To illustrate these ideas, imagine that it is the mid-1990s and you are writing the first airline
search Web site, Ellipsez.com. Just after launching the first version, you notice that your cus-
tomers tend to click through all the pages of search results looking for the flight with the lowest
price. So, you think, Ellipsez.com should automatically sort the results by price, and display
them from lowest to highest. To do this, you implement a function sort which takes a list of
flights and puts them into increasing order by price. First of all, it is important that this new sort
functionality does not crash: if it crashes, then Ellipsez.com will never display any results at all,
so no one can buy anything through it. It is also important that the flights are actually ordered
by price—if the best price is on page three instead of page one, your customers might miss it,
and think that your competitors are searching more flights than you are. For similar reasons, it is
important that sort does not drop any flights, or include flights that were not in the original list.
These are examples of different notions of correctness.

At some point later, you, or maybe one of the many programmers you hire after Ellipsez.com
gets popular, will notice that now the customers are clicking through the pages of search results
looking for one that departs at a particular time, rather than just picking the cheapest one. So you
want to go back and change the code for sort so that you can order flights not only by price, but
also by time of departure, arrival, and so on. To do this, it is important that the code for sort be
understandable so that you or other programmers can change and maintain it.

There are a variety of techniques that help programmers write correct and understandable
software. In this dissertation, we focus on static, or compile-time, techniques, used when the
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programmer is writing a program—as opposed to dynamic, or run-time, techniques, used when
the user is running a program. One simple technique is testing: the programmer runs sort on
some example search results and sees that it does the right thing. While testing can help find
bugs and boost confidence, it cannot show that there is no circumstance in which sort fails. Prov-
ing that sort is correct on all possible inputs takes more sophisticated techniques based on logic.
Type systems, as in programming languages such as ML (Milner et al., 1997) and Haskell (Pey-
ton Jones, 2003), are a lightweight approach that provides certain limited but useful guarantees
(for example, they rule out certain kinds of crashes). A more expressive, but also more costly,
technique is to use a specification logic such as Hoare logic (Hoare, 1969), a mathematical for-
malism in which a program can be proved to have certain correctness properties (“for all lists
l, sort produces a permutation of the flights in l which is in increasing order by price”). A de-
pendent type theory (Martin-Löf, 1975) integrates these two approaches into a type system rich
enough to express logical specifications. Type systems and specification logics also make pro-
grams more understandable. Because types and specifications provide a concise summary of the
behavior of a piece of code, they are often easier to understand than the code itself. Additionally,
because this documentation is machine-checkable, it does not get out of date. Moreover, types
and specifications enable modular programming, where one piece of code relies only on the type
or specification of another, allowing the two pieces of code to be modified independently.

However, different programs and correctness properties require different logics tailored to
reasoning about them: For example, Hoare logic and separation logic (Reynolds, 2002) are
used to reason about imperative programs which manipulate the state of memory in intricate
ways. Temporal logics (Clarke et al., 2002) are used to reason about the evolution of concur-
rent processes. Authorization logics (Abadi et al., 1993) are used to verify security properties
(Ellipsez.com does not leak your credit card number to anyone). Differential dynamic logic is
used to reason about hybrid (discrete/continuous) cyber-physical systems (Platzer, 2010). Be-
cause different logics are appropriate for different tasks, specification logic design necessarily
becomes part of the programming process.

What are the typical activities involved in designing a new logic? The first task is to define
the logic, and write down the syntax of its propositions and proof rules. This must include a way
of integrating the logic with the programming language, either by allowing logical formulas that
refer to programs, as in a specification logic, or by externally assigning propositions to programs,
as in a type system. To show that the logic is reasonable, it is common to prove some sort of
correctness result about the logic: one may prove that the logic is consistent, or more generally
that it ensures that programs have the properties of interest. Such proofs may use syntactic
methods (structural induction on derivations), or semantic ones (showing that the logic is sound
and/or complete with respect to a notion of truth). Next, to make verification practical, it is
common to implement some sort of automated or interactive theorem proving for the logic.

At a high level, the first goal of the research described here is to advance the idea that

It is possible to define, study, automate, and use domain-specific logics within a
dependently typed programming language.

Dependent types make logic design part of the programming process, so that programmers can
define logics and use them both to reason about their code and to explain it to others. The result
is code that tells you why it works. All of the tasks involved in programming with logics can be
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carried out within a dependently typed host language, which improves on current practice, where
it is common to implement logics and type systems either within language implementations or
as external tools. Dependently typed languages provide richer tools for describing, studying, and
implementing logics than the current simply-typed languages used in these implementations, and
they permit program verification as well.

Though the particular approach that we advocate has some modern twists, this general ap-
proach to program verification is an old idea and it is only through decades of work on depen-
dently typed proof assistants and programming languages that it is now becoming a reality. In
Part I of this dissertation, we contribute some new examples as further evidence of the above
claim. Our most significant new example shows how to do security-typed programming, in the
style of the languages PCML5 (Avijit et al., 2010), Aura (Jia et al., 2008), and Fine (Swamy
et al., 2010), within a dependently typed programming language. Second, we show how to rep-
resent and implement the semantics of Reed and Pierce (2010)’s type system for differential
privacy (Dinur and Nissim, 2003; Dwork and Nissim, 2004; Dwork et al., 2006), which pro-
vides an extensible approach to implementing differentially private algorithms in a formally cer-
tified manner. Throughout the dissertation, we use the dependently typed programming language
Agda (Norell, 2007).

Of course, we would like to achieve a state of affairs where it is not just possible, but practi-
cal, to program with logics using dependent types. At present researchers can, with some effort,
do this type of programming, but we have not achieved the practicality necessary for wide-spread
adoption. The remaining parts of this thesis make some technical contributions towards making
programming with logics easier.

Mixing derivability and admissibility A key notion in logic is the hypothetical judgement,
which codifies reasoning from assumptions. Any tool for programming with logics must sup-
port two notions of hypothetical judgement, derivability, which captures uniform reasoning, and
admissibility, which captures inductive proofs and functional programs. These notions are es-
sential for describing and programming with logics. Derivability is better supported in proof
assistants that use type theory in the style of LF (Harper et al., 1993), whereas admissibility is
better supported in proof assistants that use type theory in the style of Martin-Löf type theory
(MLTT) (Martin-Löf, 1975).

Our aim is to heal this divide by proving better support for derivability in MLTT. In the
process, we have an opportunity to go beyond previous work, by allowing admissibility and
derivability to interact in new ways. Part II of this dissertation is devoted to studying these
interactions. In particular, we show that

It is possible to implement, within a dependently typed programming language, a
logical framework that allows derivability and admissibility to be mixed in novel
and interesting ways.

We were originally motivated to consider these interactions by studying derivability and ad-
missibility in the context of Zeilberger’s higher-order focusing (Zeilberger, 2008a,b, 2009). Zeil-
berger’s previous work showed how to do higher-order focusing for classical logic, and for the
“positively-only” part of intuitionistic logic. Our work in this part also includes a formulation of
higher-order focusing for full intuitionistic propositional logic, which is of interest independently
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of the application.

Directed Dependent Type Theory The dependently typed analogue of the hypothetical judge-
ment is called the generic judgement, and implementing a logical framework with genericity is
not as easy. The difficulty comes in implementing the structural properties of the generic judge-
ment. We analyze these difficulties as an instance of a much more general phenomenon, that of
dependently typed programming with directed types.

In the standard interpretation of type theory, a type may be thought of as a set of values,
and any two values may or may not be equal. This interpretation turns out to be level 1 in a
hierarchy of more structured types. Down at level 0 are the propositions: proof-irrelevant types
whose members are all equal (if there are any). Up at level 2 are types that contain values, but
these values may be related in more ways than just equality. For example, one could have a
type whose values are themselves (smaller) types, which are considered equal iff they are iso-
morphic—there are functions back and forth that compose to the identity. This generalizes the
notion of a quotient type (a type equipped with an equivalence relation) by allowing multiple,
computationally relevant proofs of equivalence. Level 3 gives the notion of equivalence of cate-
gories, or “isomorphism up to isomorphism,” of category theory, and in general level n gives the
(weak) n-equivalence of higher-dimensional category theory. Higher-dimensional type theories
make this dimension hierarchy available to the programmer. The turnstile in typing judgements
is interpreted as functoriality: any judgement Γ ` J means not only that J is well-formed in
Γ, but also that “equal” Γ’s give “equal” J’s, where “equal” is in the sense appropriate for the
levels of Γ and J . These ideas are being explored in work connecting Martin-Löf type theory,
higher-dimensional category theory, and homotopy theory (Awodey and Warren, 2009; Hofmann
and Streicher, 1998; Lumsdaine, 2009; van den Berg and Garner, 2010; Voevodsky, 2010). This
work promises a new class of proof assistants that intrinsically support proof irrelevance, equal-
ity, isomorphism, equivalence of categories, and so on, and thus will be much more convenient
for formalizing mathematics.

The structural properties of the generic judgement are instance of higher-dimensional struc-
ture, given by entailment between logical propositions. However, entailment is not symmetric,
and thus is not an instance of the higher-dimensional theories discussed above, which account
only for symmetric notions of equivalence. This application prompted us to begin to study a new
notion of directed dependent type theory which accounts for asymmetric or directed types. This
requires not just a new semantic interpretation, but also a new proof theory, as MLTT proves
symmetry of equivalence. In Part III, we study the 2-dimensional case, which accounts for types
of level 2, and give it a semantics in category theory. We show that

A language with directed types provides a useful framework for describing the struc-
tural properties of the generic judgement.

Directed type theory is of interest independently of our application, as it extends the connec-
tion between type theory, higher-dimensional groupoids, and homotopy theory to directed type
theory, higher-dimensional categories, and directed homotopy theory.



Chapter 2

Background

2.1 Logical Frameworks
Two main tools are necessary to program with logics. The first is a mechanism for representing
a logic as data in a program. This involves representing the abstract syntax of propositions and
proofs. The second is a mechanism for computing with logics: writing recursive functions that
case-analyze and traverse syntax. As we will see below, computation has many uses, such as
proving meta-theorems about a logic, or implementing a proof search procedure.

2.1.1 First-order inductive definitions
In this thesis, we concentrate on the proof-theoretic study of logic, using natural deduction sys-
tems and sequent calculi (Gentzen, 1935). Proof theories are described using inductive defini-
tions, presented as a collection of inference rules. For example, one may define a proposition to
be true iff it is an element of the least set of propositions closed under a collection of inference
rules of the form

A1 true . . . An true
C true

We call such collections of rules first-order inductive definitions. First-order inductive definitions
have a straightforward set-theoretic justification: the inference rules define a monotone operator,
which has a least fixed point.

2.1.2 Hypothetical Judgements
While first-order inductive definitions suffice to define truth in an axiomatic, Hilbert-style, way,
the most important notion in proof theory is consequence: entailment of a conclusion from an
assumption. Consequence is used, for example, in the natural deduction (Gentzen, 1935) rule for
implication introduction:

A true
u

...
B true

A ⊃ B true
⊃Iu

5
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This rule says that, to conclude that the proposition A ⊃ B is true, it suffices to conclude the
truth of B, using a new, scoped assumption that A is true. We indicate scoping by (a) labelling
the assumption u, and (b) writing this label after the name of the inference rule, indicating that
the rule discharges the assumption—the assumption may not be used below the rule, in another
branch of the derivation tree.

What are the characteristics of assumptions? The first is identity: an assumption may be used
to conclude what was assumed. That is, an assumption may be used as the leaf of a derivation
tree; for example:

A true
u

A ⊃ A true
⊃Iu

The second is α-conversion: derivations differing only by the labels of assumptions are con-
sidered equal. For example, the above derivation is the same as

A true
v

A ⊃ A true
⊃Iv

The third is substitution: a derivation may be plugged in for an assumption. That is, given

D
A true and

A true
u

E
B true

we can form a derivation
[D/u]E
B true

by replacing each leaf labelled u in E with D.
This notion of assumptions is used pervasively in natural deduction. For example, in disjunc-

tion elimination

A ∨B true

A true
u

...
C true

B true
v

...
C true

C true
∨Eu,v

each branch has a scoped assumption, of A in one and of B in the other. Sequent calculi can be
described using this notion of assumption as well (Pfenning, 1994).

The above rules can be rephrased in a one-dimensional syntax by collecting the assumptions
into a context Γ. For example:

Γ, u : A true ` B true
Γ ` A ⊃ B true

⊃Iu

Then we can write the identity and substitution properties as follows:

Γ, u : J ,Γ′ ` J
u

Γ,Γ′ ` J1 Γ, u : J1 ,Γ
′ ` J2

Γ,Γ′ ` J2
subst

Here we write J to stand for an arbitrary judgement.
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The one-dimensional notation reveals several additional properties that were tacit above:

Γ,Γ′ ` J ′
Γ, u : J ,Γ′ ` J ′ weakening

Γ, u2 : J2 , u1 : J1 ,Γ
′ ` J ′

Γ, u1 : J1 , u2 : J2 ,Γ
′ ` J ′ exchange

Γ, u1 : J , u2 : J ,Γ′ ` J ′
Γ, u1 : J ,Γ′ ` J ′ contraction

Weakening says that an assumption may go unused. Exchange says that the order of assumptions
does not matter. Contraction says that an assumption may be duplicated (note that it is an in-
stance of substitution, where one assumption is plugged in for another). We refer to these five
properties collectively as the structural properties, and we say that a judgement that obeys them
is structural, or a hypothetical judgement (Martin-Löf, 1996).

As in the two-dimensional notation discussed above, we identify derivations that differ only
in the labels of assumptions, such as

Γ, u : J ,Γ′ ` J
u

Γ, v : J ,Γ′ ` J
v

This allows us to tacitly maintain the invariant that all assumptions are distinct; e.g. in ⊃I , u can
and must be distinct from all assumptions already in Γ.

2.1.3 Generic Judgements
A close relative of the hypothetical judgement is the generic judgement (Martin-Löf, 1996), in
which an assumption may be used not only in the derivation tree, but also in the subjects of the
judgement. This accounts for the notion of variables, or binding and scope, used pervasively
in logic and programming languages. An example is the universal quantifier proposition ∀x.A,
where the variable x is bound in the proposition A. The rules for this connective are as follows:

Γ, x : indiv ` A true
Γ ` ∀x.A true

∀I Γ ` ∀x.A true Γ ` e : indiv
Γ ` [e/x ]A true

∀E

We use the judgement x : indiv to mean that x is an individual or term of the first-order logic.
The premise of the introduction rule is a derivation generic in the assumption x. The generic
judgement satisfies structural properties analogous to above. For example, identity allows a
variable to be used to form a term, while substitution of a term for a variable, [e/x ]e ′, is used in
the ∀E rule.

Using generic judgements to model variables brings us to another one of Perlis’s epigrams (Perlis,
1982):

As Will Rogers would have said, "There is no such thing as a free variable."

When modeled using generic judgements, every variable is bound, either in a term (as in ∀x.A)
or in the context of a judgement (as in Γ, x : indiv ` A true). Treating the context as a binding site
means that judgements can be horizontally α-converted, renaming variables in both the context
and the right-hand side. For example, we equate the judgements x : indiv ` A true and y : indiv `
[y/x ]A true.
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We call this approach to variables pronominial: every variable is a pronoun that refers to
a designated binding site. Other approaches to variables, such as nominal logic (Pitts, 2003),
instead conceive of variables as nouns, which exist independently of any scope.

The structural properties of the generic judgement are as follows:

Γ, x : τ,Γ′ ` x : τ
x

Γ ` e : τ Γ, x : τ,Γ′ ` J
Γ, [Γ′/e]x ` [J/e]x

subst

Γ,Γ′ ` J ′
Γ, x : τ,Γ′ ` J ′ weakening

Γ, x2 : τ2 , τ1 : τ1 ,Γ
′ ` J ′

Γ, x1 : τ1 , x2 : τ2 ,Γ
′ ` J ′ exchange

Γ, x : τ, y : τ,Γ′ ` J ′
Γ, x : τ, [x/y ]Γ′ ` [x/y ]J ′

contraction

Substitution reveals a somewhat subtle staging issue: to state the rule of substitution, we re-
quire a substitution operation on the syntax of judgements J . This can be sorted out in various
ways. One is to distinguish between terms e : τ (used to represent propositions A, judgements
J , etc.) and derivations of judgements D : J and define substitution for terms prior to substitu-
tion for derivations. An alternative, which avoids this distinction, is to first define a substitution
operation on a raw syntax of (possibly ill-formed) derivations, and then to later show that this
operation satisfies the formation rule given by subst. The same issue comes up in contraction,
but not weakening and exchange, because we have presumed that they do not alter the syntax of
a judgement—a presumption we will return to below.

2.1.4 A Tale of Two Consequence Relations
Thus far, we have considered the hypothetical and generic judgements as interfaces: a relation
R(Γ, A) is a hypothetical/general consequence relation if it satisfies the appropriate structural
properties. There are two commonly used implementations of this interface, called derivability
and admissibility. In a sense, derivability is the least (initial) consequence relation, whereas
admissibility is the greatest (final) one.

Derivability To warm up, we illustrate these ideas for a logic specified by a collection of first-
order inference rules, which we will now write in a linear notation as J ← J1, . . . , Jn. The
derivability hypothetical judgement is defined inductively to be the least relation closed under
the following rules:

Γ, u : J ,Γ′ ` J
u

J ← J1, . . . , Jn is a rule Γ ` J1 . . .Γ ` Jn
Γ ` J

This definition generates the following induction principle:
For all predicates P (Γ, J), if
• P (Γ, J) whenever u : J ∈ Γ

• for all rules J ← J1, . . . , Jn, if P (Γ, J1) and . . . and P (Γ, Jn) then P (Γ, J)
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then for all Γ and J , if Γ ` J , then P (Γ, J).
It is simple to see that this definition of derivability defines a hypothetical judgement: identity is
taken as a rule, and the remaining properties can be proved by induction.

Derivability, as specified by this inductive definition, is a very restricted notion of entailment:
all you can do with an assumption is to slot it in at the leaf of a derivation tree. A consequence
is that derivability is open-ended with respect to future extensions of the logic: if Γ ` J with a
particular collection of inference rules, then the entailment holds in any larger set of inference
rules. A particularly illustrative case is a derivability false ` J , where false is a judgement with
no inference rules concluding it. Derivability does not satisfy the principle of explosion, which
states that false entails any judgement J : there is no way to slot in an assumption of false at a leaf
of a derivation tree to prove J (unless J happens to explicitly include an inference rule allowing
this).

Admissibility Our second notion of consequence, admissibility, does not share this open-ended
character. An admissibility Γ � J is proved by giving any function that, for all proofs of every
assumption in Γ, delivers a proof of J . These functions are drawn from the meta-logic, the
ambient logic in which we describe inference rules. For example, when working on paper it is
common to take the meta-logic to be set theory. At this point, we do not specify the meta-logic
precisely, but we do assume that a meta-logic function may be defined by induction on the proofs
of the derivability judgement. We also assume that the meta-logic functions satisfy the structural
properties, so that admissibility does.

Admissibility has many uses. For example, in sequent calculus, the proof rules are typically
defined so that cut (the rule that allows the use of lemmas) is not derivable, but, crucially, is
admissible: Cut-free sequent calculi guide the implementation of proof search and make certain
meta-theoretic properties, such as consistency, obvious. On the other hand, a logic does not make
sense unless proofs can in some sense be substituted for assumptions. Thus, it is typical not to
include cut as an inference rule, but to prove that all instances of it hold. This theorem can be
phrased as an admissibility, and proved by induction on derivations:

(A left ` C right), A right � C right

The judgements A left and A right represent the side of the sequent on which a proposition is
located (Pfenning, 1994). Note that cut is stated as a higher-order admissibility, in the sense that
one of the assumptions is itself a derivability.

It is also useful, if less common, to use admissibility in the premises of inference rules. For
instance, admissibility can be used to negate a judgement J , by writing J � false. As an example,
consider a rule from the operational semantics of a language with mutable state:

l1 = l2 � false lookup(M, l1) = v

lookup(M [l2 7→ _], l1) = v

When the memory is M extended with location l2 pointing to some value, and l1 is not equal to
l2, the result of lookup is the result of looking l1 up in M . If the memory may contain duplicate
bindings of a location, the disequality is necessary to ensure determinism of the operational
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semantics. Such negated judgements are often written as informal side conditions on inference
rules; with admissibility, they can be expressed as honest premises.

Another well-known example uses the admissibility generic judgement, which we will write
x : τ � J . Such an admissibility is witnessed by a meta-logic universal quantifier. This notion
underlies the ω-rule for natural numbers (Hilbert, 1931)

t : nat P (0) true P (1) true . . .

P (t) true

This rule states that to prove P (t) it suffices to show P (0), P (1), and so on—the rule has in-
finitely many premises. This can be represented by an admissibility judgement:

t : nat n : nat � P (n)

P (t) true

A witness for the second premise is a function that assigns each natural number n to a proof of
P (n), which formalizes the ellipsis above. We will see additional uses of admissibility premises
in the formulation of logic described in Chapter 6.

From a programming point of view, admissibility corresponds to computing with logics. For
example, a function which translates one logic to another, or implements a theorem prover, can
be represented using � and programmed using functions that recursively transform syntax and
derivations.

Relationship between derivability and admissibility. Every derivability implies an admissi-
bility, but not vice verse. Assuming Γ ` J , we prove Γ � J by giving a function from closed
derivations of Γ to closed derivations of J . But this is exactly the substitution property for `.
Thus, we say that every derivability determines an admissibility by substitution. On the other
hand, returning to the example above, admissibility does satisfy explosion: the trivial function
with no cases witnesses false � J . This is, of course, not stable under extension of the logic,
because if we add an inference rule concluding false, the admissibility will no longer be valid.
This shows that not every admissibility is also a derivability.

More generally, we define a class of consequence relations Γ→ A such that
• → is structural: it satisfies identity, weakening, exchange, contraction, and substitution
• → is closed: Γ→ J if there is a rule J ← Γ

• → is complete, in the sense that it does not add any theorems relative to derivability: if
· → J then · ` J .

Next, we order consequence relations by containment: → ≤ →′ iff for all Γ,J , Γ → J
implies Γ→′ J .

The following theorem shows that derivability and admissibility are the least and greatest
consequence relations:
PROPOSITION 2.1.1. For all→, ` ≤ → ≤ �.

Proof. For the first inequality, we can interpret the inference rules using structurality and closure
under the rules. For the second, given Γ→ J and a closed derivation of · ` Γ, we must create a
closed derivation of · ` J . By minimality of `, · → Γ. Then we can use the structural properties
to conclude · → A, which gives · ` A by completeness.



2.1. LOGICAL FRAMEWORKS 11

2.1.5 Higher-order Inductive Definitions
Our warm-up definition of the derivability judgement above covered only first-order inference
rules of the form J ← J1, . . . , Jn. However, in the examples, we used derivability and admissi-
bility in the premises of inference rules. When do such premises make sense?

Admissibility premises Admissibilities may be problematic, as a rule like

J � false
J

does not induce a monotone operator: Consider building up the collection of proofs in stages,
ranked by their size. At the first stage, J is vacuously true, so the premise holds. But then, at the
second stage, J has a proof, so this proof is no longer valid! Thus, not all inference rules with
admissibility premises give rise to an inductive definition. However, a rule such as

J � false
K

is permissible if J is in some sense defined prior to K: then it is permissible to inductively
analyze the proofs of J in the definition of K. An example is the lookup rule given above,
where equality of locations can be defined prior to lookup. This observation is formalized in
Martin-Löf’s theory of iterated inductive definitions (Martin-Löf, 1971) and the notion of strati-
fication (Chan, 1988).

Derivability premises On the other hand, derivability can always be used in the premise of
an inference rule. Intuitively, this is because derivability is such a restricted notion of conse-
quence that it does not circumscribe its assumptions. Thus, it is unproblematic to use derivability
assumptions of a judgement in its own definition. We can formalize this by reducing infer-
ence rules with derivability premises to first-order inductive definitions. That is, we specify,
using first-order inductive definitions, a formalism that allows inference rules with derivability
premises. These second-order inference rules have the form J ← (Γ1 ` J1), . . . , (Γn ` Jn).
Second-order derivability is defined as follows:

Γ, u : J ,Γ′ ` J
J ← (Γ1 ` J1), . . . , (Γn ` Jn) is a rule Γ,Γ1 ` J1 . . . Γ,Γn ` Jn

Γ ` J

For example, ⊃I would be represented as a rule

A ⊃ B true ← (A true ` B true).

which, when plugged into the above schema, yields the usual implication introduction rule.
When we allow only first-order inference rules, as above, the definition of derivability is

parametrized by a context Γ: for each context Γ, there is an inductive definition of the judgement
Γ ` −. However, it is indexed by the judgement J : the definition of Γ ` J refers to Γ ` J ′ for
different J ′, so the entire family of inductive definitions must be defined simultaneously. When
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we consider second-order rules, Γ becomes an index as well: the definition of Γ ` J refers to
Γ′ ` J ′ for different Γ′ and J ′.1

Thus, the induction principle must be contextualized, in the sense that it simultaneously
proves a property of derivations in different contexts:

DEFINITION 2.1.2: INDUCTION PRINCIPLE FOR SECOND-ORDER RULES. For all predicates
P (Γ; J), if
• P (Γ; J) whenever u : J ∈ Γ

• for all rules J ← (Γ1 ` J1), . . . , (Γn ` Jn), if P (Γ,Γ1; J1) and . . . and P (Γ,Γn; Jn) then
P (Γ; J)

then for all Γ and J , if Γ ` J , then P (Γ; J).

Rules of the form J ← (Γ1 ` J1), . . . , (Γn ` Jn) are local: they specify only the additions to
the context in each premise. Consequently, such rules are pure (Avron, 1991): they apply equally
well in any context. Because all rules are pure, second-order derivability can be proved structural
generically, independent of the particular inference rules.

Alternatively, one might consider rules written in a global notation, which allow arbitrary
constraints on the context. Such rules may be impure, in the sense that they may not apply
in all contexts, which may invalidate the structural properties. An example of such a rule is !
introduction in linear logic (Girard, 1987), which applies only in a context made up entirely of
assumptions of the form !A:

!Γ ` A true
!Γ `!A true

As a consequence of this rule (among others), linear logic does not satisfy weakening.
Global rules are not the only source of impurity: admissibility premises also may introduce

impurity, as they allow rules to inspect the ambient context. For example, consider a rule of the
form J ← (K � false). Then J may be provable in a context Γ, if it happens that it is impossible
to prove K from Γ. However, this derivation cannot be weakened to the context (Γ, K), in
which K is provable by identity! The study of the impurities arising from admissibility is one
contribution of this thesis.

Thus far, we have been informal about the representation of Γ and the names of assumptions.
However, we would like an inference rule formalism that allows general, in addition to hypothet-
ical, judgements, in inference rule premises—where, in Γi ` Ji, the assumptions in Γi may occur
in J . Thus, a context extension Γ,Γi must ensure that the assumption names in Γ do not clash
with those in Γi. On paper, it is common to work with the following interface: In an inference
rule, the assumption names in Γi are treated as a binding site, and in induction, these assumption
names can be tacitly α-converted—e.g. P (Γ, u : J ;K) is the same as P (Γ, v : J ; [v/u]K ). Thus,
when proving that P (Γ,Γi; Ji) implies P (Γ; J), one never runs into a situation where the premise
or conclusion has the “wrong” assumption names. We call this induction modulo α-conversion.
However, it takes some care to provide this interface in a proof assistant, as we now discuss.

1Though both are indices, there is folklore terminology for a further distinction between Γ and J : Γ is a “Protes-
tant” index, which means that it varies only in premises, but is fully general in the conclusion of each rule. On the
other hand, J is a “Catholic” index, which means that it may be specialized in the conclusion of rules (like ⊃I).
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2.1.6 Logical Frameworks
The formalisms for first-order inductive definitions, derivability, and second-order derivability
defined above are examples of logical frameworks: a logical framework is a meta-logic that
makes it convenient to specify and reason about logics. For example, the formalism for second-
order derivability permits one to represent a logic by inference rules, and reason about it by
induction-mod-α. The framework provides operations, such as the structural properties, generi-
cally for all logics thus represented. While logical frameworks are helpful when reasoning infor-
mally on paper, they are especially useful for mechanized reasoning on a computer, because one
cannot be sloppy about details. In this section, we review the support for inductive definitions,
derivability, and admissibility in existing logical frameworks.

Many logical frameworks are based on type theory, and in particular dependent type theory.
In such frameworks, base judgements are represented as type families. For example, the judge-
ment A true is represented by a type family true : prop→ type, where the type true A classifies
derivation trees witnessing A true.

Next, the notions of derivability and admissibility are represented as function types. For
admissibility, this representation should be unsurprising: an admissibility J � K is witnessed by
a meta-logic function from derivations of J to derivations of K.

For derivability, we view a proof from assumptions as a term with free variables. An open
term with a designated free variable determines a function (and therefore an admissibility) by
substitution. For example, a deduction

A true
u

...
B true

is represented by a term D with free variable u. This determines a function λu.D, that, when
applied to a derivation E , returns the substitution instance [E/u]D. Such functions are often
called parametric or schematic or uniform, as they simply slot their argument in for the variable,
without analyzing them.

The term higher-order abstract syntax (Church, 1940; Harper et al., 1993; Pfenning and El-
liott, 1988) has historically been used to refer to the representation of derivability using functions
of a logical framework, though the term has sometimes also been used to refer to representing
admissibility using functions of a logical framework (Zeilberger, 2008b). In this thesis, we will
use the term to refer to derivability, unless it is qualified to indicate otherwise.

Next, we overview the support for derivabilities and admissibilities in various logical frame-
works.

Church’s theory of types

The use of functions to represent derivability dates back to Church’s definition of higher-order
logic in his theory of types (Church, 1940). The relevant aspects for our purposes are: Base types
are used to represent syntax, such as a type i for individuals and o for propositions. Functions of
the type theory are used to represent variable binding; e.g. the universal quantifier is represented
by a constant all : (i → o) → o. Why should→ be read as derivability, not admissibility? The
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reason is that base judgements are represented as uninterpreted base types, and there are no rules
for deconstructing base types. Thus, the function space of the type theory allows only schematic
or uniform use of assumptions, not inductive analysis of them. So the type theory can been seen
as a meta-logic with support for derivability but not admissibility.

LF

This representation style was extended to judgements in the LF logical framework (Harper et al.,
1993), which uses a dependent, rather than simple, type theory as a representation language.
With a dependently typed framework, one can represent not just syntax (i and o) but also judge-
ments (A true) and derivations. Judgements are still represented using indexed base types, so
the LF function space A → B represents derivability, not admissibility. Moreover, the LF de-
pendent function space Π x :A.B represents generic judgements. However, there is no notion of
admissibility internal to the LF type theory.

Instead, admissibility is handled by defining a separate meta-logic for reasoning about LF
terms. In this meta-logic, the terms of LF (and in particular the canonical forms, or β-normal
η-long terms) are specified by an inductive definition, so one can induct over canonical forms,
just as we inducted over derivations of second-order derivability above. This observation is ex-
ploited in two parts of the LF methodology: This first is in proving adequacy—that the formal
representation of a logic in LF is isomorphic to the informal representation written on paper.
The second is in proving “meta-theorems” about LF representations of logics. In our terminol-
ogy, these metatheorems correspond to admissibilities. Various systems built around LF, such as
Twelf (Pfenning and Schürmann, 1999), Delphin (Poswolsky and Schürmann, 2008), and Bel-
uga (Pientka, 2008), formalize a such a meta-language, permitting machine-checked proofs of
meta-theorems. However, the downside of this approach is that one cannot use admissibility in
LF representations, which precludes some of the examples described above.

Schürmann et al. (2001) describe a different approach to integrating admissibility. In their
language, a modal type �A classifies closed terms of type A and is eliminated by primitive re-
cursion; Despeyroux and Leleu (1999) describe a generalization with dependent types. Unlike
the LF-based approaches described above, these languages are not syntactically stratified into
separate representational and computational parts. Instead, they reuse the same arrow for deriv-
ability (e.g., a function A→ B where A and B do not include �, is used for representation) and
admissibility (e.g., a function �A → B can decompose A by primitive recursion). However,
these languages do not permit admissibility functions such as �A→ B in datatype definitions.

Martin-Löf Type Theory

Dependent types are also the basis for a variety of proof assistants/programming languages based
on Martin-Löf type theory (Martin-Löf, 1975), such as NuPRL (Constable et al., 1986), Coq (Coq
Development Team, 2009), Epigram (McBride and McKinna, 2004), Agda (Norell, 2007), De-
pendent ML (Xi and Pfenning, 1999), Ωmega (Sheard, 2004), and ATS (Xi, 2003). We will refer
to these, especially the mostly-pure languages like NuPRL, Coq, Epigram, and Agda, as MLTTs.
MLTTs provide a richer collection of types than LF, such as inductively defined datatypes and in-
dexed families of datatypes (Dybjer, 1991). Thus, a base judgement (such as true : prop→ type)
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can be represented either as an inductive type or as a base type.
When syntax and judgements are represented as inductive types, the function space of the

theory represents admissibility, not derivability: a function J → K may case-analyze or induct
on the proof of J . Thus, one can straightforwardly encode inference rules with admissibilities as
premises using iterated inductive definitions (Martin-Löf, 1971), or datatypes with higher-order
premises. For example, the ω-rule is represented as follows (using Agda notation, but being
informal about the representation of variables):

data _true : Prop � Set where
omega : ( (n : Nat) � (A [ n / x ]) true )

� (all x.A) true
...

In Agda notation, naming the type family _true allows it to be used post-fix. The constructor
omega says that, given a function that maps each natural number n to a proof of A[n/x], we can
conclude allx.A. Because Nat is an inductive type, such a function may be defined by recursion.

On the other hand, we are cheating by assuming this notation for variables and substitution:
when syntax and judgements are represented as inductive types, MLTTs do not provide any built-
in support for derivability. For example, if we try to represent syntax using MLTT functions as
follows:

data Indiv : Set where
...

data Prop : Set where
all : (Indiv � Prop) � Prop
...

then Indiv � Prop represents admissibility, not derivability. In the literature, such representations
are often said to have a problem with “exotic terms” (Despeyroux et al., 1995)—elements of the
function space that do not correspond to the desired syntax. This is true if the desired syntax is
in fact derivability. However, if the desired syntax is admissibility, then the exotic terms are not
exotic at all, but exactly what you want. That is, there is nothing wrong with using admissibility
in syntax; it is simply a different notion than derivability. For example, the above use of admissi-
bility defines a syntax of propositions with induction over individuals. The same idea is exploited
in Zeilberger’s higher-order focusing (Zeilberger, 2008a,b, 2009), which is “higher-order” in this
admissibility sense. These higher-order representations facilitate simple proofs of cut elimination
for logics with inductive types, using iterated inductive definitions in the meta-logic.

As discussed above, admissibility requires an iteration/stratification condition, which pre-
cludes putting a judgement to the left of an admissibility in its own definition. For example, we
might try to extend the above logic with a second-order quantifier, represented by a new datatype
constructor all2 : (Prop � Prop) � Prop. However, this constructor is rejected by the positivity
checker of a system like Agda, which checks stratification. Naïvely extending a type theory with
general (non-stratified) recursive types permits the definition of non-terminating terms of every
type, which makes the type theory inconsistent as a logic. In the literature, this is often referred
to as a problem with “negative occurrences” of a type in its own definition. While these negative
occurrences rule out certain uses of admissibility, it is important to realize that they are not a
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problem for derivability—as argued above, there is no problem putting a judgement to the left
of a derivability in its own definition. Thus, claims that “higher-order abstract syntax” (meaning
derivability) runs into problems with negative occurrences are predicated on a confusion be-
tween derivability and admissibility. Similarly, claims that “you cannot induct over higher-order
abstract syntax” apply to admissibility, but not to derivability—one can perfectly well induct over
derivability, e.g. using the induction principle for second-order derivability described above.

Higher-order approaches to derivability An alternative to representing base judgements as
inductive types is to represent them as base types (as in an LF representation). Then the func-
tion space of the type theory represents derivability, not admissibility. For example, one could
represent propositions by parametrizing over the following variables:
Indiv : Set
Prop : Set
all : (Indiv � Prop) � Prop
all2 : (Prop � Prop) � Prop
...

There is no requirement for stratification if Prop is a base type. However, this representation
affords no support whatsoever for admissibility within MLTT. Most of the time, one represents
a logic in a proof assistant not just to reason in the logic, but also to reason about it—to prove
theorems or to write recursive functions.

The need for admissibility leads to an interesting twist on the above representation, called
weak higher-order abstract syntax (Despeyroux et al., 1995): replace the occurrence of Prop on
the left of the arrow by a base type PropVar, and let occurrences on the right of an arrow refer
to an inductive type. Then functions PropVar � C represent derivability, but functions Prop � C
represent admissibility. However, WHOAS runs into some problems as well: First of all, because
the type on the left is different than the type on the right, it is necessary to define substitution ex-
plicitly. Moreover, many recursive functions over syntax, including substitution, require testing
the equality of variables. However, as soon as you add, e.g., varEq : PropVar � PropVar � Bool,
the function space PropVar � C no longer corresponds to derivability, as it allows a form of in-
trospection of variables.

Several solutions to this problem have been considered: The first (Despeyroux et al., 1995)
is to allow a meta-language type PropVar � C that is too broad, and then isolate the subset of
such functions that represent derivabilities using a predicate valid. However, the proof of valid
follows the structure of a term exactly. Thus, writing down a function f and its validity proof
amounts to writing both a higher-order and first-order representation of the same term. Thus, this
representation is only tenable in a system with enough proof automation that these obligations
can be discharged automatically.

A second solution, taken in the theory of contexts (Bucalo et al., 2006; Miculan, 2001), is
to avoid adding any operations that would create exotic terms, while supporting admissibility by
postulating various operations on syntax. For example, decidability of variables is postulated at a
separate propositional level only, so that it cannot be used to define in a function. Other postulates
include the existence of a variable that does not occur in a given term, and recursion/induction
principles that fix the meaning of PropVar � Prop. A downside of this approach is that it requires
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an extension of MLTT with these postulates as axioms. Moreover, the operational semantics of
these axioms (e.g. the computational behavior of a recursor) can be given only by proofs of
propositional equations, not as part of the definitional equality of the type theory.

A third solution, called parametric higher-order abstract syntax (Chlipala, 2008), involves
mediating between an abstract and concrete type of variables. Rather than fixing PropVar to be a
single base type, quantified at the outside of the program, one sometimes chooses PropVar to be
a type variable, and sometimes instantiates it concretely, using polymorphic quantification over
types. To accomplish this, the datatype of propositions is parametrized by the type of proposi-
tion variables, and in a polymorphic term of type ∀α.Prop(α) the functions α � Prop must be
uniform, representing derivability. But when programming with such terms, the quantifier can be
instantiated by a concrete type, e.g. nat, so that variables can be compared for equality. However,
working with PHOAS terms is somewhat idiosyncratic. For example, proving the correctness of a
translation from PHOAS to a well-scoped first-order representation requires parametricity prop-
erties of the meta-logic, which no current implementations of MLTT provide (alternatively, one
can translate PHOAS terms equipped with a separate proof of well-formedness, but that proof is
similar to a first-order representation).

One weakness of these three approaches is that they do not provide the contextualized induc-
tion principles described above, which permits proving a context-indexed family of properties
P (Γ, J) about a derivation of Γ ` J . This is because these approaches identify the object-logic
context with the meta-logic context, so the proof of a meta-theorem is “inside” an object logic
context Γ, and thus cannot talk about the entire context explicitly. This situation is similar to two
of the LF-based systems, Twelf and Delphin, but different than Beluga. In Twelf and Delphin,
context invariants (e.g. “every term variable has an associated typing derivation”) can be main-
tained without mentioning the context explicitly—in Twelf using the %worlds declaration, and
in Delphin using functions from a type of variables. The latter approach could be used with
WHOAS, but not in the theory of contexts (defining the functions require case-analysis on vari-
ables). In PHOAS, one way to maintain such invariants is by instantiating the type of variables
appropriately. However, some theorems require a more detailed statement about the context,
which does not simply associate some invariant with each variable in isolation. For example,
when proving a substitution theorem for first-order logic, the assumptions to the left of the vari-
able being substituted for remain unchanged, whereas the assumptions to its right are substituted
into. One approach to proving such theorems, which has been used in Twelf, is to define an
alternative representation where contexts are explicit, and to mediate between this and the usual
representation (Crary, 2008).

Another problem with these three approaches is that it is unclear how well they scale to
assumptions of order greater than two. For example, in the theory of contexts, one adds an in-
duction principle for PropVar → Prop, allowing inductive analysis of such functions. However,
this means that a function of type (PropVar → Prop) → Prop corresponds to admissibility,
not derivability. One could imagine considering a base type PropVarFn representing derivability
assumptions of such functions, but this has, to our knowledge, not been worked out.

These three solutions show that it is possible to model derivability using the function space
of MLTT, but either with some proof overheads (for WHOAS) or by adopting a somewhat id-
iosyncratic programming model (in the the theory of contexts or PHOAS). In any case, these
approaches do not provide direct support for explicit reasoning about contexts, or for higher-
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order assumptions.

First-order approaches to derivability An alternative to modeling derivability as MLTT func-
tions with a particular domain type is to model it using first-order means. To do so, it is necessary
to choose a representation for contexts and variables.

Named form. The most basic representation is to use explicit names: a binding site, in a
context or in a term, is represented as a pair of a a name (e.g. a string) and a judgement (e.g.
Γ, (”u”, Atrue)), and variables are represented by occurrences of the same name. The advantages
of this representation are that it is easy to write down terms, and that it matches informal practice.
A problem is that it requires quotienting by α-conversion, so that judgements that differ only by
the names of assumptions are considered equal. Quotient types are not very well supported in
existing proof assistants, and in informal practice it is common to elide the proofs that operations
respect α-equivalence.

de Bruijn indices. A second possibility is to represent contexts as lists of judgements (Γ, Atrue),
and represent variables as indices into a list Γ. This representation is known as de Bruijn in-
dices (de Bruijn, 1972). This gives unique representations of α-equivalence classes, but makes
terms somewhat difficult to write down and work with, because the de Bruijn indices are harder
to write and read than names. Another disadvantage of de Bruijn indices is that weakening and
exchange modify a term, as they must replace one index with another. A third problem is that
terms may contain dangling free variables, which do not correspond to any variable in scope.

This last problem can be solved by using well-scoped de Bruijn indices (Altenkirch and Reus,
1999; Bellegarde and Hook, 1994; Bird and Paterson, 1999): representing terms as a dependent
type indexed by the context, so that dangling indices are ruled out by typing. For example:

data _∈_ : Prop � Ctx � Set where
i0 : ∀ {Γ A}
� A ∈ (A :: Γ)

iS : ∀ {Γ A B}
� A ∈ Γ
� A ∈ (B :: Γ)

data _`_ : Ctx � Prop � Set where
id : ∀ {Γ A}
� A ∈ Γ
� Γ ` A
⊃I : ∀ {Γ A}
� (A :: Γ) ` B
� Γ ` (A ⊃ B)

We represent variables by a type A ∈ Γ, which is a unary number indexed by a context and a
proposition being judged to be in that context. Next, we represent derivability by a type family
` indexed by a context Γ and a proposition being judged true in Γ. The rules for this type family
consist of identity id, as well as the inference rules for each connective. The representation is
isomorphic to the intended on-paper definition of derivability, and gives you direct access to the
appropriate contextualized induction principle. However, while the indexing makes the de Bruijn
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indices somewhat easier to manage (many incorrect manipulations of them are type errors), it is
still less convenient than names.

Locally/globally named/nameless. Another possibility is to distinguish bound variables (ref-
erences to a binding site in a term) from free variables (references to a binding site in a context),
and to use a different representation for each (Aydemir et al., 2008; McKinna and Pollack, 1999).
A common choice is locally nameless, which uses de Bruijn indices for bound variables but
names for free variables, though different permutations of {locally,globally} {named, nameless}
have been considered. In general, an advantage of distinguishing bound and free variables is that
substitution need not worry about capture: when substituting [M /x ]N , it is necessary to ensure
that the free variables in M do not collide with the bound variables in M , which would cause
those variables to refer to the wrong binding site. If bound and free variables are differentiated,
then a free variable can never refer to a binding site in a term. However, the cost of this repre-
sentation is that, when traversing a binder, it is necessary to open the term, replacing the bound
variable with a free variable.

Regarding locally nameless / globally named specifically, one advantage relative to de Bruijn
is that weakening and exchange of free variables do not change the term. However, while locally
nameless gives unique representatives of α-equivalence classes of bound variables, it does not
immediately allow horizontal α-conversion of judgements. To ensure that judgements can be
α-converted, some care is required when writing inference rules. For example, in rules that
introduce assumptions, it is common to mediate between existential and universal quantification
over fresh variables:

there exists u /∈ Γ such that Γ, u : A true ` B true
Γ ` A ⊃ B true

for all u /∈ Γ, Γ, u : A true ` B true
Γ ` A ⊃ B true

The existential rule is easier to introduce, because it requires only that one show the premise
for a particular fresh variable. However, it is harder to reason from, because one only knows
the premise for some fresh variable, and in some proofs, this fresh variable might need to be
matched up with another fresh variable introduced elsewhere. On the other hand, the universal
rule is harder to introduce, but easier to reason from, because the inductive hypothesis will give
the premise for all fresh variables. One technique for using locally nameless involves mediating
between these two rules: for example, one might define the system with the universal rule, but
then prove, using a notion of permutation of variable names as in nominal logic (Pitts, 2003), that
the existential rule is admissible—if the premise holds for some fresh variable, then it holds for
all of them. Another technique is to use cofinite quantification (Aydemir et al., 2008), which uses
a universal quantifier, but rather than demanding that the variable be fresh for Γ, one demands
that it be fresh for some existentially quantified set L. This technique sometimes avoids the need
to prove the existential rule admissible.

A disadvantage of these techniques that distinguish bound and free variables is that, unlike
well-scoped de Bruijn indices, the scoping of free variables is not represented intrinsically in a
term’s type. For example, a locally nameless syntax will be typically have a term constructor
fvar : Name A � Term A allowing a term to be constructed from a name. However, this provides
no information about which names may appear in a term. Moreover, as soon as you try to index
Term by a context of free variables, and check that all names are in this context, you end up back
at a de Bruijn representation, because the proof that a name is in a context is exactly a de Bruijn
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index. Thus, locally nameless works best in a proof assistant with good support for automation,
where a Term Γ A can be represented as a Term A paired with a separate proof that all of its
free variables are in Γ, and these proof obligations can be discharged automatically by the proof
assistant.

Structural properties. A disadvantage of all of these first-order representations, when used
directly, is that the structural properties must be proved for each datatype. It would be nicer to
instead have a logical framework that guarantees that the structural properties hold. Several
tools, Ott (Sewell et al., 2007), Lambda Tamer (Chlipala, 2007), and LNGen (Aydemir and
Weirich, 2010), provide frameworks for writing down definitions of syntax with binding, and
provide generic implementations of the structural properties. However, a disadvantage of these
approaches is that they are external to the type theory, implemented as tactics or stand-alone
tools. A second disadvantage is that the notion of datatype with binding does not allow full
exploitation of the host language—for example, they do not allow admissibility functions of the
host language to be used in syntax.

Another approach to presenting the structural properties, taken in Hybrid (Ambler et al.,
2002; Capretta and Felty, 2007; Momigliano et al., 2007) and Barzilay and Allen (2002); Hickey
et al. (2006)’s work, is to define derivability using an underlying de Bruijn representation, but
then to present a higher-order interface to it, using the admissibility functions of the host theory.
As with WHOAS, this involves defining a predicate that identifies the subset of Prop � Prop
functions that corresponds to derivability—those that, when applied, act like substitution into
some de Bruijn term. Like WHOAS, this approach also requires managing some proof obliga-
tions that are external to a term. However, it improves on WHOAS by providing substitution, in
addition to weakening, contraction, and exchange, as function application.

Logic Programming

The integration of derivability and admissibility has also been studied in the context of logic
programming, as opposed to functional programming (Gacek et al., 2008; Miller and Tiu, 2003).
Unlike LF, their approach distinguishes terms (the subjects of propositions) from propositions.
The term level is a higher-order λ-calculus, in which derivability can be represented using higher-
order abstract syntax. The propositional level includes two quantifiers, ∀x.A and ∇x.A, corre-
sponding to admissibility and a notion of derivability, respectively (the exact structural properties
that ∇ satisfies differ in different treatments of the connective). This allows admissibility and
derivability generic judgements to be mixed at the propositional level, but not in terms. Like
Twelf and Delphin, but unlike Beluga, in admissibilities the object-language context is identified
with the generic judgement assumptions in the meta-language context.

Another logic programming idea that is relevant to the present work is definitional reflec-
tion (Hallnäs, 1991; Schroeder-Heister, 1993), which supposes a database of rules used for both
building proofs of propositional atoms and for deriving consequences of atoms by “reflection”
(i.e., by inverting the rules). Through the Curry-Howard interpretation, the rule database corre-
sponds to a database of datatype constructors, which can be used both to build datatype values
and to define functions by pattern-matching. Derivability can be thought of as an extension
of definitional reflection which permits this database of rules to vary, by introducing a scoped
datatype constructor.
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Functional Programming

Miller (1990) describes an early account of mixing derivability and admissibility. This takes the
form of an extension to ML with a new type ’a => ’b representing a term of type ’b with
abstracted parameter ’a, as well as a restricted form of higher-order pattern-matching. In this
proposal, the domain ’a must be not only an equality type, but also a user-defined datatype,
since the meanings of base types such as int or string should not be open-ended. This
restriction corresponds to separating out a class of base judgements that may be hypothesized, a
technique we will borrow in Chapter 5. Moreover, the codomain ’b must be an equality type,
which precludes making a derivability assumption in an admissibility (as ML functions are not
equality types)—this avoids many of the complications that we will address below.

Nominal Logic

Nominal logic (Gabbay, 2010; Pitts, 2003) is another technique used to represent derivability
judgements. However, nominal logic is both more general than and not necessary to represent
derivability. Gabbay explains nominal logic as follows (Gabbay, 2010):

If there is a single idea behind nominal techniques, it is to let names inhabit a de-
notation directly as a form of data . . . That is, the ’x’ in λx.r, ∀x.ϕ,

∫
x
f(x)dx, and

νx.P has an independent denotational reality. This x is, in a mathematical sense that
we will make formal, a ‘real thing’: a name.

Nominal logic studies names as nouns, which have meaning independent of any scope. On
the other hand, derivability assumptions are pronouns that serve only as a reference to a binding
site. It is possible to implement derivability using the names of nominal logic, in the same
way that it is possible to implement a named representation from scratch—except the nominal
framework provides notions of name permutation and α-equivalence, which simplifies the task
considerably. However, it is not necessary to think of derivability in this way, any more than it
is necessary to think of it in terms of de Bruijn indices. Thus, we view nominal logic as one
potential implementation technique for derivability. That said, nominal logic is more general
than derivability, and the notion of a name as a real thing is sometimes useful. For example,
memory locations in an operational semantics for a language with state can be fruitfully modeled
as names.

In one respect, names are easier to integrate with admissibility than derivability is: in nominal
languages such as FreshML (Shinwell et al., 2003), the type of names is kept open-ended (it is
considered to have infinitely many inhabitants). Thus, any admissibility function on syntax with
binding must account for arbitrarily many names, and is therefore weakenable. However, many
functions on syntax are only defined for certain classes of contexts (e.g., only closed arithmetic
expressions can be evaluated to a numeral), and the nominal approach does not allow these
invariants to be expressed in a program’s type.

However, in another respect, names are more difficult to integrate with admissibility: when
names are things, it takes some work to ensure that admissibility functions respect α-equivalence.
There are several approaches to this problem. Static approaches, such as the type system in Pitts
and Gabbay (2000) and and the specification logic in Pure FreshML (Pottier, 2007) use machin-
ery for ensuring that certain names are fresh with respect to (roughly “not free in”) certain com-
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putations. Using this machinery, one can state and prove a freshness condition for binders (Pitts,
2006) for each function definition, demonstrating that the bound variables are fresh for the the
result. Pitts and Gabbay (2000) employ a conservative freshness analysis to discharge these con-
ditions. Pottier (2007) describes a specification logic in which these conditions can be proved. A
dynamic approach, proposed by Shinwell et al. (2003), exploits an effectful operational seman-
tics to ensure that the conditions cannot be violated.

2.2 Agda
We briefly review Agda’s syntax, referring the reader to the Agda Wiki (http://wiki.
portal.chalmers.se/agda/).

Dependent functions Dependent function types are written as (x : A) � B. An implicit
dependent function space is written {x : A} � B or ∀ {x} � B. Arguments to implicit functions
are inferred by default. They can also be explicitly instantiated positionally by writing f {a} or
by name by writing f {x = a}. Non-dependent functions are written A � B.

Anonymous functions are written λ x � e. Named functions are defined clausally by pattern
matching:

append : {A : Set} � List A � List A � List A
append [ ] ys = ys
append (x :: xs) ys = x :: (append xs ys)

Let bindings are written as let x = e1 ... in e.

Infix and Mixfix Operators Infix operators are declared with underscores:

_++_ : {A : Set} � List A � List A � List A
l1 ++ l2 = append l1 l2

Mixfix operators are also allowed; e.g. a function if_then_else can be used as if e then e1 else e2.

Predicative Hierarchy Set is the classifier of classifiers in Agda. Set is a synonym for Set Z,
where Z : Level is a universe level. Sets are stratified into universe for size reasons, to avoid
Set : Set. Agda supports explicit universe polymorphism using quantification over Level.

Inductive Types Inductive types are defined by a datatype notation:

data List { l : Level} (a : Set l) : Set l where
[ ] : List a
_::_ : a � List a � List a

Non-uniform inductive families are allowed. For example, dependent de Bruijn indices are
represented as follows:

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
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data _∈_ {A : Set} : A � List A � Set where
i0 : {x : A} {xs : List A} � x ∈ (x :: xs)
iS : {x y : A} {xs : List A} � y ∈ xs � y ∈ (x :: xs)

For any Set A, and terms x and xs of type A and List A, there is a type x ∈ xs. The first constructor,
i0, creates a proof of x ∈ (x :: xs)—i.e. x is the first element of the list. The second constructor
iS, creates a proof of x ∈ (y :: xs) from a proof that x is in the tail.

As a simple example of dependent pattern matching, we define an n-ary version of iS:

skip : {A : Set} (xs : List A) {ys : List A} {y : A}
� y ∈ ys � y ∈ (append xs ys)

skip [ ] i = i
skip (x :: xs) i = iS (skip xs i)

The fact that this code type-checks depends on the computational behavior of append; e.g., in the
first case, the expression append [ ] ys reduces to ys, so we can return the index i unchanged.

Many basic type constructors can be defined as datatypes: we write Either A B for sums, Bool
for booleans, Void for the empty type, Σ A B, where A : Set and B : A � Set, for dependent
pairs, and A × B for non-dependent pairs.

Agda allows overloading of datatype constructors between different types. As a convention,
we overload . and I for injections from one type to another.

Intensional Equality Intensional equality can be defined by a datatype

data Id { l : Level} {A : Set l} : A � A � Set l where
Refl : {a : A} � Id a a

This notion of equality is propositionally proof-irrelevant: we can prove that any two terms
of type Id x y are themselves Id. It is not functionally extensional, in the sense that one cannot
prove

ext : ((x : A) � Id (f x) (g x)) � Id f g

It is common to postulate this as an axiom, though.

Universes A universe is specified by an inductive datatype of codes for types, along with a
function mapping each code to a Set. For example, a simple universe with an empty type, a unit
type, and binary products is specified as follows:

data Type : Set where
‘0 : Type
‘1 : Type
_⊗_ : Type � Type � Type

Element : Type � Set
Element‘0 = Void
Element‘1 = Unit
Element (τ1 ⊗ τ2) = (Element τ1) × (Element τ2)
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In the right-hand side of Element, we write A × B for the Agda pair type, etc.
Datatype-generic programs are implemented by recursion over the codes; e.g, every element

of the universe can be converted to a string:

show : (τ : Type) � Element τ � String
show‘0 ()
show‘1 <> = "<>"
show (τ1 ⊗ τ2) (e1, e2) =
"< " ++ (show τ1 e1) ++ " , " ++ (show τ2 e2) ++ " >"

In the first clause, the empty parentheses are a refutation pattern, telling Agda to check that the
type in question (in this case Element‘0) is uninhabited, and allowing the programmer to elide the
right-hand side.

As another example, we will often view booleans as a two-element universe, with only True
inhabited:

data Bool : Set where
True : Bool
False : Bool

Check : Bool � Set
Check True = Unit
Check False = Void

Because Agda implements extensionality for Unit (there is only one record with no fields), terms
of type Check True can be left implicit and inferred.

With The with construct allows a new column to be added to a pattern-matching function
definition. This has two uses: the first is simple subsidiary case analysis, which would be written
with case in ML or Haskell. For example:
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forgetMaybe : {A : Set} {B : A � Set} � ((x : A) � Maybe (B x)) � (A � Bool)
forgetMaybe f x with f x
... | Some = True
... | None = False

The second is that, in a dependently typed language, subsidiary case-analysis can refine the type
of previous arguments. For example:

extract-forgotten : {A : Set} {B : A � Set}
� (f : (x : A) � Maybe (B x))
� (x : A) � Check (forgetMaybe f x) � (B x)

extract-forgotten f x p with f x
... | Some b = b
extract-forgotten () | None

In the second clause, once f x is known to be None, forgetMaybe computes to False, and thus the
type of p computes to Void. Thus, we can pattern-match on p with an absurd pattern (), which
indicates to Agda that the type in question is uninhabited.
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Chapter 3

Security-Typed Programming

The example described in this chapter was developed jointly with Jamie Morgenstern, and pub-
lished at ICFP 2010 (Morgenstern and Licata, 2010).

Security-typed programming languages allow programmers to specify and enforce security
policies, which describe both access control—who is permitted to access sensitive resources?—
and information flow—what are they permitted to do with these resources once they get them?
Aura (Jia et al., 2008) and PCML5 (Avijit et al., 2010) enforce access control using dependently
typed proof-carrying authorization (PCA): the run-time system requires every access to a sen-
sitive resource be accompanied by a proof of authorization (Appel and Felten, 1999), while the
type system aids programmers in constructing correct proofs. Fable (Swamy et al., 2008) and
Jif (Chong et al., 2009) enforce information flow properties using type systems that restrict the
use of values that depend on private information. Fine (Swamy et al., 2010) combines these tech-
niques to enforce both. These languages’ type systems employ a number of advanced techniques,
such as dependently typed authorization proofs, indexed monads of computations at a place and
on behalf of a principal (Avijit and Harper, 2007), information flow types, and affine types for
ephemeral security policies.

In this chapter, we show that security-typed programming can be embedded within a general-
purpose dependently typed programming language, Agda. We implement a library, Aglet, which
accounts for the major features of existing security-typed programming languages, such as Aura,
PCML5, and Fine:

Decentralized Access Control: Access control policies are expressed as propositions in an
authorization logic, Garg and Pfenning’s BL0 (Garg, 2009b). This permits decentralized access
control policies, expressed as the aggregate of statements made by different principals about the
resources they control. In our embedding, we represent BL0’s propositions and proofs using
dependent types, and exploit Agda’s type checker to validate the correctness of proofs.

Dependently Typed PCA: Primitives that access resources, such as file system operations,
require programmers to provide a proof of authorization, which is guaranteed by the type system
to be a well-formed proof of the correct proposition.

Ephemeral and Dynamic Policies: Whether or not one may access a resource is often depen-
dent upon the state of a system. For example, in a conference management server, authors may
submit a paper, but only before the submission deadline. Fine accounts for ephemeral policies

29
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using a technique called affine types, which requires a substructural notion of variables. Be-
cause Agda does not currently provide substructurality, we show that one can instead account
for ephemeral policies using an indexed monad. Following Hoare Type Theory (Nanevski et al.,
2008), we define a type © Γ A Γ′, which represents a computation that, given precondition
Γ, returns a value of type A, with postcondition Γ′. Here, Γ and Γ′ are propositions from the
authorization logic, describing the state of resources in the system. For example, consider the
operation in a conference management server that closes submissions and begins reviewing. We
represent this by a computation of type
© (InPhase Submission) Unit (InPhase Reviewing)
Given the conference is in phase Submission, this computation returns a value of type Unit,
and the state of the conference has been changed to Reviewing. For comparison between
the approaches, we adapt Fine’s conference management example to our indexed monad. Aglet
also permits dynamic acquisition and generation of policies—e.g., generating a policy based on
reading the state of the conference management server from a database on startup.

Authentication: Following previous work by Avijit and Harper (2007), we model authenti-
cation with an indexed monad of computation on behalf of a principal, which tracks the currently
authenticated user. This monad is equipped with a sudo operation for switching users, given
appropriate credentials. We show that computation on behalf of a principal is a special case of
our policy-indexed monad© Γ A Γ′.

Spatial distribution: We also show that our policy-indexed monad can be used to model
spatial distribution as in PCML5.

Information Flow: Information flow policies constrain the use of values based on what went
into computing them, e.g. tainting user input to avoid SQL injection attacks. We represent
information flow using well-established techniques, such as indexed monads Russo et al. (2008)
and applicative functors (Swamy et al., 2010).

Compile-time and Run-time Theorem Proving: Dependently typed PCA admits a sliding
scale between static and dynamic verification. At the static end, one can verify, at compile-time,
that a program complies with a statically-given authorization policy. This verification consists of
annotating each access to a resource with an authorization proof, whose correctness is ensured
by type checking. However, in many programs, the policy is not known at compile time—e.g.,
the policy may depend upon a system’s state. Such programs may dynamically test whether each
operation is permitted before performing it, in which case dependently typed PCA ensures that
the correct dynamic checks are made and that failure cases are handled. A program may also mix
static and dynamic verification: for example, a program may dynamically check that an expected
policy is in effect, and then, in the scope of that check, deduce consequences statically. Security-
typed languages use theorem provers to reduce the burden of static proofs (as in Fine) and to
implement dynamic checks (as in PCML5). We have implemented a certified theorem prover for
BL0, based on a focused sequent calculus. Our theorem prover can be run at compile-time and at
run-time, fulfilling both of these roles. The theorem prover also saves programmers from having
to understand the details of the authorization logic, as they often do not need to write proofs
manually.

In Section 3.1, we show a variety of examples adapted from the literature, which demonstrate
that Aglet accounts for programming in the style of Aura, PCML5, and Fine. In Section 3.2, we
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Admin says (∀r.∀o.∀f.
(HR says employee(r)
∧ System says owns(o, f)
∧ o says mayread(r, f))
⊃ mayread(r, f))

System says owns(Jamie, secret.txt)
HR says employee(Dan)
HR says employee(Jamie)
Jamie says mayread(Dan, secret.txt)
Jamie says mayread(Jamie, secret.txt)

Figure 3.1: Sample access control policy

describe the implementation of Aglet, including the representation of the logic and the imple-
mentation of the theorem prover. We discuss related work on security-typed programming in
Section 3.3.

3.1 Examples

In this section, we show that Aglet supports security-typed programming in the style of Aura,
PCML5, and Fine by implementing a number of the benchmark examples considered in the
literature.

3.1.1 File IO with Access Control

First, we show a dependently typed file system interface, a standard example of security typed
programming (Avijit and Harper, 2007; Swamy et al., 2010; Vaughan et al., 2008).

Policy

To begin, we specify an authorization policy for file system operations in BL0 (Figure 3.1): First,
the principal Admin says that for any reader, owner, and file, if human resources says the reader is
an employee, and the system administrator says the owner owns the file, and the owner says the
reader may read a file, then the reader may read the file. Admin is a distinguished principal whose
statements will be used to govern file system operations. Second, the system administrator says
Jamie owns secret.txt. Third, human resources says both Dan and Jamie are employees. Fourth,
Jamie says Dan and Jamie may read the file. This policy illustrates decentralized access control
using the |says| modality: the policy is the aggregate of statements by different principals about
resources they control.

For the principal Dan to read secret.txt, it will be sufficient to deduce the goal

Admin says mayread(Dan, secret.txt)
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This proposition is provable from the above policy because of three properties of says : First,
says is closed under instantiation of universal quantifiers (that is, k says ∀x.A(x) entails ∀x.k says
A(x)). Second, says distributes over implications (k says (A ⊃ B) entails ((k says A) ⊃
(k says B)). Third, every principal believes that every statement of every other principal has
been made (k says A entails k′ says (k says A))—though it is not the case that every principal
believes that every statement of every other principal is true. Thus, the goal can be proved by
using the first clause of the policy (Admin says . . .), instantiating the quantifiers, and using the
other statements in the policy to satisfy the preconditions.

In Agda, we represent this first clause as the first element of the following context (list of
propositions):

Γpolicy =
(I Prin "Admin" says

(∀e principal · ∀e principal · ∀e filename ·
let owner = . (iS (iS i0))

reader = . (iS i0)
file = . i0 in

(((I Prin "HR" says (a- (Employee · reader)))
∧ (I Prin "System" says (a- (Owner · (owner, file))))
∧ (owner says (a- (Mayread · (reader, file)))))
⊃

(a- (Mayread · (reader, file)))))) ::
(I Prin "Admin" says

(∀e principal ·
∀e filename ·

(I Prin "System" says (a- (Owner · (. iS i0, . i0))))
⊃

(a- (MayChown · (. iS i0, . i0))))) ::
[ ]

The second element of the list expresses an additional policy clause, not discussed above, which
states that an owner of a file may change its ownership. Variables are represented as de Bruijn in-
dices (i0, iS), constants are represented as injections of strings (i.e. Admin is written asI Prin "Admin",
where Prin makes a constant out of a string, and I makes a term out of a constant), and atomic
propositions are tagged with a polarity (a+ or a-), which can be thought of as a hint to the theo-
rem prover. Quantifiers are written ∀e τ · A, where τ is the domain of quantification and A is the
body of the quantifier. (Here ∀e is the name of the quantifier, with the e standing for explicit—the
type τ is given as an explicit argument.) Atomic propositions are written p · t, where p is a
proposition constant such as Mayread and t is a term (see Section 3.2.1 for details).

Next, we define a context representing a particular file system state. This context includes
all the employee, ownership, and may-read facts mentioned above, with one additional clause
saying that Dan may su as Jamie.
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Γstate =
(I Prin "System" says

(a- (Owner · (I Prin "Jamie",I File "secret·txt"))))
:: (I Prin "HR" says (a- (Employee · (I Prin "Dan"))))
:: (I Prin "HR" says (a- (Employee · (I Prin "Jamie"))))
:: (I Prin "Jamie" says

(a- (Mayread · (I Prin "Dan",I File "secret·txt"))))
:: (I Prin "Jamie" says

(a- (Mayread · (I Prin "Jamie",I File "secret·txt"))))
:: (I Prin "Admin" says

(a- (MaySu · (I Prin "Dan",I Prin "Jamie"))))
:: [ ]

Γall = Γpolicy ++ Γstate

Finally, we let Γall stand for the append of Γpolicy and Γstate.

Compile-time Theorem Proving

We now explain the use of our theorem prover:

goal = a- (Mayread · (I Prin "Dan",I File "secret·txt"))

proof? : Maybe (Proof Γall goal)
proof? = prove 15

theProof : Proof Γall goal
theProof = solve proof?

The term proof? sets up a call to the theorem prover, attempting to prove mayread(Dan, secret.txt)
using the policy specified by Γall. Sequent calculus proofs are represented by an Agda type family
(Ω; ∆; Γ; k) ` A, where Ω binds individual variables, ∆ is a context of claims assumptions, Γ
is context of truth assumptions, and k, the view, is a principal from whose point of view the
judgement is made. Informally, the role of the view is that, in a sequent whose view is k, k says A
entails A; see Section 3.2.1 for details about the logic. In this example, Ω and ∆ will always be
empty, Γ will represent a policy, as above, and the view k will be Prin "Admin"—we abbreviate
such a sequent by Proof Γ A. The context and proposition arguments to prove can be inferred by
Agda, and so are left as implicit arguments. The term theProof checks that the theorem prover
succeeds at compile-time in this instance. The function solve has type:

solve : ∀ {A} (s : Maybe A) � {p : Check (isSome s)} � A

The argument p, of type Check (isSome s), is a proof that s is equal to Some s’ for some s’. Because
this argument is implicit, Agda will attempt to fill it in by unification, which will succeed when
s is definitionally equal to a term of the form Some s’. In this example, the call to the theorem
prover in the term proof? proves the goal, computing definitionally to Some s’ for a proof s’ of
mayread(Dan, secret.txt). Thus, we can use solve to extract this proof s’. In general, a call to the
theorem prover on a context and a proposition that have no free Agda variables will always be
equal to either Some p or to None.
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© : TCtx+ [ ] � (A : Set) � (A � TCtx+ [ ]) � Set

return : ∀ {Γ A} � A �© Γ A (λ � Γ)

_>>= _ : ∀ {A B Γ Γ’ Γ” }
� (© Γ A Γ’)
� ((x : A) �© (Γ’ x) B Γ”)
�© Γ B Γ”

weakenPre : ∀ {A Γ Γ’ Γn}
� (Good Γn � Good Γ)
�© Γ A Γ’ � Γ ⊆ Γn �© Γn A Γ’

weakenPost : ∀ {A Γ Γ’ Γn}
�© Γ A Γ’
� ((x : A) � (Γn x ⊆ Γ’ x))
� ((x : A) � (Good (Γ’ x) � Good (Γn x)))
�© Γ A Γn

getLine : ∀ {Γ} �© Γ String (λ � Γ)

print : ∀ {Γ} � String �© Γ Unit (λ � Γ)

error : ∀ {A Γ Γ’} � String �© Γ A Γ’

acquire : ∀ {A Γ Γ’} � (Γn : TCtx+ [ ])
� (Good Γ � Good (Γn ++ Γ))
�© (Γn ++ Γ) A Γ’ �© Γ A Γ’
�© Γ A Γ’

Figure 3.2: Monadic IO with Authorization

Computations

We present a monadic interface for file operations in Figures 3.3 and 3.2. This figure shows
both the generic IO operations, as well as three file-specific operations for reading, creating, and
changing the owner of a file. The type © Γ A Γ’ represents a computation with precondition Γ
and postcondition Γ’. The Agda type of a context is TCtx+ [ ] (a context of positive truth assump-
tions, with no free individual variables—see Section 3.2.1). The postcondition is a function from
A’s to contexts, so the postcondition may depend on the computation’s result (see create below).
The generic operations are typed as follows: Because return is not effectful, its postcondition is
its precondition. Bind (>>=) chains together two computations, where the postcondition of the
first is the precondition of the second. Both pre- and postconditions can be weakened to larger
and smaller contexts, respectively; the Good predicate can be ignored until Section 3.1.1 below.
Primitives like getLine (reading a line of input) and print do not change the state and do not require
proofs. The postcondition of error is arbitrary, as it never terminates successfully. The remaining
computations are defined as follows:

Read The function read takes a principal k, a file f, and a proof argument. The proof ensures
that the principal k is authorized to access the file (Mayread (k, f)) and that the principal k is
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sudo : ∀ {Γ A Γ’ ∆ ∆’} � (k1 k2 : )
� Replace (a+ (As · k1)) (a+ (As · k2)) Γ ∆
� ((x : A) � Replace (a+ (As · k2)) (a+ (As · k1))

(∆’ x) (Γ’ x))
� (Proof Γ (a- (MaySu · (k1, k2))))
�© ∆ A ∆’
�© Γ A Γ’

read : ∀ {Γ} (k : ) (file : )
� Proof Γ ((a- (Mayread · (k, file)))
∧ (a+ (As · k)))

�© Γ String (λ � Γ)

create : ∀ {Γ} (k : )
� Proof Γ ( (a- (User · k))
∧ (a+ (As · k)))

�© Γ String
(λ new � (I Prin "System" says

(a- (Owner · (k,I File new)))) :: Γ)

chown : ∀ {Γ ∆} � (k k1 k2 : ) � (f : )
� Replace (I Prin "System" says (a- (Owner · (k1, f))))

(I Prin "System" says (a- (Owner · (k2, f))))
Γ ∆

� (Proof Γ ((a+ (As · k))
∧ (a- (MayChown · (k, f)))))

�© Γ Unit (λ � ∆)

Figure 3.3: Monadic File IO with Authorization
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the currently authenticated user (As (k)). An alternate type for read would put these facts in
the context Γ, rather than as a separate proof argument; we do not take this approach because,
as discussed below, Γ will contain only atomic facts that are known about the policy, and not
arbitrary logical consequences of them. We use the proposition As to model computation on
behalf of a principal (Avijit and Harper, 2007). The proof is checked in the context Γ that is the
precondition of the computation, ensuring that it is valid in the current state of the world. read
delivers the contents of the file and leaves the state unchanged.

An example call to read looks like this:

Γj = Γall as "Jamie"

jread : © Γj String (λ � Γj)
jread = read (I Prin "Jamie") (I File "secret·txt")

(solve (prove 17))

jreadprint : © Γj Unit (λ � Γj)
jreadprint = jread >>= λ x �

print ("the secret is: " ↑ x)

The function call Γall as k is shorthand for adding the proposition As (k) to the context Γall. The
computation jread reads the file secret.txt as principal Jamie; the proof argument is supplied by
a call to the theorem prover, which statically verifies that the required fact is derivable from the
policy given by Γall. The computation jreadprint reads the file and then prints the result.

Create The type of create is similar to read, in that it takes a principal and a proof that the
principal can create a file (in this case, the fact that the principal is a registered user is deemed
sufficient). It returns a String, the name of the created file, and illustrates why postconditions
must be allowed to depend on the return value of the computation: the postcondition says that the
principal is the owner of the newly created file. Thus, after a call to create (k), the postconditions
signify System says Owner (k, f), where f is the name of the new file.

Chown To specify chown, we use a type Replace x y Γ ∆, which means that ∆ is the result
of replacing exactly one occurrence of x in Γ with y. Replace (whose definition is not shown) is
defined by saying that (1) there is a de Bruijn index i showing that x is in Γ and (2) ∆ is equal
to the output of the function replace y i, which recurs on the index i and replaces the indicated
element by y. The type of chown should be read as follows: if the principal k as whom the
computation is running has the authority to change the owner of a file, and replacing owns (k, f)
with owns (k’, f) in Γ produces ∆, then we can produce a computation which changes the owner
of f from k to k’, leaving the remaining context unchanged.

Next, we show an example call to chown, using a context Γstate’ that is the result of replacing
the fact that Jamie owns secret.txt with Dan owning that file. The computation dchown runs as
Dan; it changes the owner of the file from Dan to Jamie, and then runs a computation drdprnt,
defined below, that reads the file. proveReplace is a tactic used to prove that Γall’ is Γall with the
ownership of secret.txt changed. solve (prove 15) calls the theorem prover to statically verify that
Dan has permission to chown secret.txt.
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Γstate’ = replace { } {Γstate}
(I Prin "System" says

(a- (Owner · (I Prin "Dan",I File "secret·txt"))))
i0

Γall’ = Γpolicy ++ Γstate’

dchown : © (Γall’ as "Dan") Unit (λ � Γall as "Dan")
dchown = chown (I Prin "Dan") (I Prin "Dan") (I Prin "Jamie")

(I File "secret·txt")
(solve proveReplace) (solve (prove 15))
>> drdprnt

Sudo Following Avijit and Harper (2007), we now give a well-typed version of the Unix com-
mand sudo, which allows switching principals during execution. A first cut for the type of sudo
is as follows:

sudo1 : ∀ {Γ A Γ’} � (k1 k2 : )
� (Proof Γ (a- (MaySu · (k1, k2))))
�© ((a+ (As · k2)) :: Γ) A (λ � (a+ (As · k2)) :: Γ’)
�© ((a+ (As · k1)) :: Γ) A (λ � (a+ (As · k1)) :: Γ’)

If there is a proof that k1 may sudo as k2 (e.g., a password was provided), and As (k1) is in the
precondition, then it is permissible to run a subcomputation as k2. This subcomputation has a
postcondition saying that it terminates running as k2, and then the overall computation returns
to running as k1. Because our contexts are ordered (represented as lists rather than sets), sudo
has the type in Figure 3.3, which allows the As facts to occur anywhere in the context. sudo’s
type may be read: if replacing As (k1) with As (k2) in Γ equals ∆, and if replacing As (k2) with
As (k1) in ∆’ equals Γ’, and k2 has permission to su as k1, then a computation with preconditions
∆ and postconditions ∆’ can produce a computation with preconditions Γ and postconditions
Γ’.

The following example call to sudo defines a computation as Dan that su’s as Jamie to run the
computation jreadprint defined above:

drdprnt : © (Γall as "Dan") Unit (λ � Γall as "Dan")
drdprnt = sudo (I Prin "Dan") (I Prin "Jamie")

(solve proveReplace)
(λ � solve proveReplace)
(solve (prove 15))
jreadprint

This requires proving that Γstate as "Jamie" and Γstate as "Dan" are related by replacing
As (Prin "Jamie") with As (Prin "Dan") (in both directions). Our tactic proveReplace proves
all of these equalities. Additionally, the theorem prover statically verifies Dan may su as Jamie
under the policy Γall as "Dan".
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Acquire The function acquire allows a program to check whether a proposition is true in the
state of the world. This construct is inspired by acquire in PCML5, but there are slight dif-
ferences: in PCML5, acquire does theorem proving to prove an arbitrary proposition from the
policy, whereas here acquire only verifies the truth of state-dependent atomic facts (which have
no evidence) and statements of principals (whose only evidence is a digital signature (Avijit et al.,
2010; Jia et al., 2008)). The function acquire takes two continuations: one to run if the check is
successful, whose precondition is extended with the proposition, and an error handler, whose pre-
condition is the current context, to run if the check fails. In fact, we allow acquire to test an entire
context at once: given a context Γn, a computation with preconditions Γ extended with Γn (the
success continuation), and a computation with preconditions Γ (the error continuation), acquire
returns a computation with preconditions Γ. We use the notation acquire Γn / \_ no⇒ s yes⇒ f
to write a call to acquire in a pattern-matching style. The \_ elides a Good argument, which is
explained below.

main : © [ ] Unit (λ � [ ])
main = acquire (Γall as "Jamie") /

no⇒ error "acquiring policy failed"
yes⇒ weakenPost jreadprint (λ ())

This example call begins and ends in the empty context. The call to acquire examines the system
state to check the truth of each of the propositions in Γall as "Jamie". If all of these are true,
then we run jreadprint and use weakening to forget the postconditions. If some proposition cannot
be verified, then main calls error.

Verifying Policy Invariants

When authoring the above monadic signature for file IO, the programmer may have in mind
some invariants to which policies Γ must adhere. For example, a call to chown (above) would
have unexpected consequences if there ever were more than one copy of System says owns (k, f)
in Γ (only one copy would be replaced, leaving a file with two owners in the postcondition).
Our interface permits programmers to specify context invariants using a predicate Good Γ. The
intended invariant of our interface is that a monadic computation© Γ A Γ’ should have the prop-
erty that Γ’ satisfies Good if Γ does. To achieve this, the weakening operations and acquire require
the preconditions Γ be accompanied by a proof of Good Γ, and the programmer must verify that
operations such as read, chown, and sudo preserve the invariant. Because of this invariant, it is not
necessary to make each monadic operation require a proof that the precondition is Good. This
means, that when writing a client program, the programmer needs only to verify that the initial
policy and those in calls to weakening and acquire satisfy the invariants.

In the above examples, we took Good to be the trivially true invariant, so the proofs could be
elided with an _. As mentioned above, a useful invariant to enforce is that for every file f there
is at most one statement of the form System says Owner ( , f) in the context. This is defined in
Agda as follows:
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Good : TCtx+ [ ] � Set
Good Γ = ∀ {k k’ f}
� (a : (I Prin "System" says (a- (Owner · (k, f)))) ∈ Γ)
� (b : (I Prin "System" says (a- (Owner · (k’, f)))) ∈ Γ)
� Equal a b

Then we may prove that the postcondition of each operation is Good if the precondition is;
e.g.

ChownPreservesGood : ∀ {Γ ∆ k1 k2 f}
� Replace (I Prin "System" says (a- (Owner · (k1, f))))

(I Prin "System" says (a- (Owner · (k2, f))))
Γ ∆

� Good Γ � Good ∆

In the companion code, we revise the above examples so that they maintain this invariant, using
a tactic to generate the proofs.

3.1.2 File IO with Access Control and Information Flow
Next, we extend the above file signature with information flow, adapting an example from
Fine (Swamy et al., 2010). First, we define a type Tracked A L which represents a value of
type A tracked with security level L, where L is a list of filenames and t appends two lists.
Following Fine, we define Tracked as an abstract functor that distributes over functions (though
different type structures for information flow, such as an indexed monad (Russo et al., 2008), can
be used in other examples):

Tracked : Set � Label � Set
fmap : ∀ {A B L} � (A � B) � Tracked A L � Tracked B L
_�_ : ∀ {A B L1 L2} � Tracked (A � B) L1
� Tracked A L2 � Tracked B (L1 t L2)

An application f � x joins the security levels of the function and the argument.
Next, we give flow-sensitive types to read and write: read tags the value with the file it was

read from, and write requires a proof of MayAllFlow provs file, representing the fact that all of the
files upon which the written string depends may flow into file.

read : ∀ {Γ} (k : ) (file : )
� Proof Γ ((a- (Mayread · (k, file))) ∧ (a+ (As · k)))
�© Γ (Tracked String [file ]) (λ � Γ)

write : ∀ {Γ provs} (k : ) (file : )
� Tracked String provs
� Proof Γ ((a- (Maywrite · (k, file)))
∧ (a+ (As · k))
∧ (MayAllFlow provs file))

�© Γ Unit (λ � Γ)
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For example, we can read two files and write their concatenation to secret.txt:

go : © (Γ as "Jamie") Unit (λ � (Γ as "Jamie"))
go = read (I Prin "Jamie") (I File "file1.txt")

(solve (prove 15)) >>= λ s �
read (I Prin "Jamie") (I File "file2·txt")

(solve (prove 15)) >>= λ s’ �
write (I Prin "Jamie") (I File "secret·txt")

((fmap String.string-append s) � s’)
(solve (prove 15))

Here the theorem prover shows that both file1.txt and file2.txt may flow into secret.txt, according
to the policy. This proof obligation results from the fact that
(fmap String.string-append s) � s’
has type
Tracked String ["file1.txt","file2.txt" ].

3.1.3 Spatial Distribution with Information Flow
PCML5 investigates PCA for the spatially distributed programming language ML5 (Murphy VII,
2008). Here, we show how to embed an ML5-style type system, which can be combined with the
above techniques for access control and information flow. PCML5 considers additional aspects
of distributed authorization, such as treating the policy itself as a distributed resource, which we
leave to future work.

ML5 tracks where resources and computations are located using modal types of the form
A @ w. For example, database.read : (key � value) @ server says that a function that reads from
the database must be run at the server, while javascript.alert : (string � unit) @ client says that a
computation that pops up a browser alert box must be run at the client. Network communication
is expressed in ML5 using an operation get : (unit � A) @ w � A @ w’ that (under some
conditions which we elide here) goes to w to run the given computation and brings the resulting
value back to w’. In other work (Licata and Harper, 2010), we have shown how to build an ML5-
like type system on top of an indexed monad of computations at a place, © w A, with a rule
get : © w’ A � © w A. Here, observe that this monad indexing can be represented using a
proposition At (w), where get is given a type analogous to sudo:

get : (w1 w2 : ) � ∀ {Γ A Γ’ ∆ ∆’}
� Replace (a+ (At · w1)) (a+ (At · w2)) Γ ∆
� Replace (a+ (At · w2)) (a+ (At · w1)) ∆’ Γ’
�© ∆ A (λ � ∆’)
�© Γ (Tracked A w2) (λ � Γ’)

Additionally, we combine spatial distribution with information flow, tagging the return value of
the computation with the world it is from. The postcondition must be independent of the return
value, as there is in general no coercion either way between A and Tracked A L.

Information flow can be used in this setting to force strings to be escaped before they are sent
back to the client—e.g. to prevent SQL injection attacks:
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sanitize : Tracked String (I client) � HTML
str : Tracked String (I server) � HTML

Strings from the client must be escaped before they can be included in an HTML document,
whereas strings from the server are assumed to be non-malicious, and can be included directly.

3.1.4 ConfRM: A Conference Management System
Swamy et al. (2010) present an example of a conference management server, ConfRM, adapted
from CONTINUE (Krishnamurthi, 2003) and its access control policy (Dougherty et al., 2006).
Here, we show an excerpt of an authorization policy for ConfRM, a proof-carrying monadic
interface to the computations which perform actions, and the main event loop of the server. This
example uses ephemeral policies: authorization to perform actions, such as submitting a paper
or a review, depend on the phase of the conference (submission, notification,. . . ).

Policy

We formalize ConfRM’s policy using terms of various types: actions represent requests to the
web server; principals represent users; papers and strings are used to specify actions; roles define
whether a user is an Author,PCMember, and so on. The policy is also dependent on the phase of
the conference (e.g., an Author may submit a paper during the submission phase). The proposition
May · (k, a) states that k may perform action a. Each action is a first-order term constructed
from some arguments (e.g., Submit,Review,Readscore,Read all have papers, while Progress has
two phases, the phase the conference is in before and after it is progressed).

Fine specifies the policy as a collection of Horn clauses, which are simple to translate to our
logic, as in the following clause:

clause1 =
( (∀e principal · ∀e string ·

let
author = . iS i0
papername = . i0

in
(( (a- (InPhase · (I Submission))) ∧
( (a- ( InRole · (author , I Author)))))
⊃ (a- (May · (author , (Submit · papername)))))))

This proposition reads: for all authors and paper names, if the conference is in the submission
phase, and the principal is an author, then the principal may submit a paper. We have also begun
to reformulate the policy using the says modality, e.g. to allow authors to share their paper
scores with their coauthors.
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saysClause =
( (∀e principal · ∀e paper · ∀e principal ·
let primary = . i0

paper = . (iS i0)
coauthor = . (iS (iS i0)) in

(( ( (a- (InPhase · (I Notification)))) ∧
( (a- (Author · (primary , paper) ))) ∧
(primary says (a- (May · (coauthor ,

(Readscore · paper))))))
⊃ (a- (May · (coauthor , (Readscore · paper)))))))

This rule states that, for any principal author, paper paper, and principal coauthor, if the
conference is in notification phase, and author is the author of paper, and author says
coauthor may read the scores for paper, then coauthor may read the scores for paper.
Similarly, using says, it is straightforward to specify a policy allowing PC members to delegate
reviewing assignments to subreviewers.

Actions

Rather than defining a command for each action—doRead, doSubmit, etc.— we use type-level
computation to write one command for processing all actions; this simplifies the code for the
main loop presented below and allows for straightforward addition of actions. The generic com-
mand for processing an action, doaction, has the following type:

doaction : ∀ {Γ} (k : ) (a : ) � (e : ExtraArgs Γ a)
� Proof Γ (a- (May · (k, a))) ∧ (a+ (As · k))
�© Γ (Result a) (λ r � PostCondition a Γ e k r)

doaction takes a principal k, an action a to perform, and some ExtraArgs for a, along with a
proof that the computation is running as k, and that k may perform a. In this example, a Proof
abbreviates a sequent whose view is PCChair, rather than Admin. It returns a Result, and has a
PostCondition, both of which are dependent upon the action being performed. In Agda, ExtraArgs,
Result, and PostConditions are functions defined by recursion on actions, which compute a Set, a
Set, and a context, respectively.

Several actions, such as Submitting a paper, require extra data that is not part of the logical
specification (e.g., the contents of the paper should not be part of the proposition which authorizes
it to be submitted). ExtraArgs produces the set of additional arguments each action requires.

ExtraArgs : TCtx+ [ ] � Term [ ] (I action) � Set
ExtraArgs Γ (Review · ) = Term [ ] (I string)
ExtraArgs Γ (Submit · ) = Term [ ] (I string)
ExtraArgs Γ (Progress · (p1, p2)) =

Σ (λ ∆ � Replace (a- (InPhase · p1)) (a- (InPhase · p2)) Γ ∆)
ExtraArgs Γ = Unit

Reviews and paper submissions require their contents, represented as terms of type string (the
Agda type Term [ ] (I string) is an injection of strings into the language of first-order terms that
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we use to represent propositions, as described in Section 3.2 below). Progressing the phase of
the conference requires a proof that the conference is in the first phase, along with a new context
in the resulting phase, which we represent by a pair of a new context ∆ and a proof of Replace.

Next, we specify the result type of an action:

Result : Term [ ] (I action) � Set
Result (Submit · ) = Term [ ] (I paper)
Result (Review · ) = Unit
Result (BeAssigned · ) = Unit
Result (Readscore · ) = String
Result (Read · ) = String
Result (Progress · ) = Unit

Readscore and Read return a paper’s reviews and contents, while submit produces a
Term [ ] (I paper), a unique id for the paper.

Finally, we define the PostCondition of each action, which is dependent upon the action itself,
the precondition, the extra arguments for the action, the principal performing the action, and
the Result of the action. Submitting a paper extends the preconditions with two propositions:
one saying the paper has been submitted, and one saying the submitting principal is its author.
Reviewing and Assigning a paper add that the paper is reviewed by or assigned to the principal,
respectively. Readscore and Read leave the conditions unchanged. The postcondition of Progress
is the first component of its ExtraArgs, i.e. the context determined by replacing the current phase
with the resulting one.

PostCondition : (a : Term [ ] (I action)) (Γ : TCtx+ [ ])
� ExtraArgs Γ a � (k : Term [ ] (I principal))
� Result a � TCtx+ [ ]

PostCondition (Submit · y) Γ e k r = (a- (Submitted · r)) :: (a- (Author · (k, r))) :: Γ
PostCondition (Review · y) Γ e k r = (a- (Reviewed · (k, y))) :: Γ
PostCondition (BeAssigned · y) Γ e k r = (a- (Assigned · (k, y))) :: Γ
PostCondition (Readscore · y) Γ e k r = Γ
PostCondition (Read · y) Γ e k r = Γ
PostCondition (Progress · (ph1, ph2)) Γ e k r = (fst e)

In writing the main server loop, we will use the following monadic wrapper of our theorem
prover, in order to test at run time whether a given proposition holds in the current state of the
server:

prove/dyn : ∀ {Γ1} � Nat � (Γ : TCtx+ [ ]) �
(A : Propo- [ ]) �
© Γ1 (Maybe (Proof Γ A)) (λ � Γ1)

Server Main Loop

In Figure 3.4 we show the code for the main loop of the ConfRM server, implemented using
the interface described above. The main loop serves requests made by principals who wish



44 CHAPTER 3. SECURITY-TYPED PROGRAMMING

fix : ∀ {A Γ’}
� ((∀ {Γ} �© Γ A Γ’) � (∀ {Γ} �© Γ A Γ’))
� (∀ {Γ} �© Γ A Γ’)

main : ∀ {Γ} �© Γ Unit (λ � [ ])
main = fix loop where

loop : (∀ {Γ} �© Γ Unit (λ � [ ])) �
(∀ {Γ} �© Γ Unit (λ � [ ]))

loop rec {Γ} =
prompt "Enter an action:" >>= λ astr � {-1 -}

case (parseAction astr)
None⇒ error "Unknown action"
Some⇒ λ actionArgs �
let a = (fst actionArgs)

args = (snd actionArgs) in
prompt "Who are you?" >>= λ ustring � {-2 -}
let u = parsePrin ustring in

acquire [( (a- (MaySu · (I Prin "Admin", u))))] {-3 -}
/
no⇒ error "Unable to su"
yes⇒ case make-replace {-4 -}

None⇒ error "oops, not running as admin"
Some⇒ λ asadmin �

case (inputToE a args) {-5 -}
None⇒ error "Bad input (e.g. not in phase)"
Some⇒ λ args �

(sudo (I Prin "Admin") u {-6 -}
(snd asadmin)
(\x � (snd (repAsPost (snd asadmin)
{a} x)))

(lfoc i0 init-)
(prove/dyn 15 >>= {-7 -}

none⇒ error "Unauthorized action"
some⇒ λ canDoAction �

doaction u a args canDoAction)) {-8 -}
>>= λ � rec {-9 -}

Figure 3.4: ConfRM Main Loop
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to perform actions. Because the requests are not determined until run-time, and authorization
depends on the system state (the phase of the conference, the role of a principal), this example
uses entirely dynamic verification of security policies: the server dynamically checks that each
request is authorized just before performing it, using our theorem prover at run-time. The type
system ensures that the appropriate dynamic check is made. Informally, the server loop works by
(1) reading in an action and its arguments, (2) reading in a principal, (3) acquiring the credentials
to su as that principal, (4) computing the precondition of the su, (5) computing the postconditions
of performing the action, (6) su-ing as the principal, (7) proving the principal may perform the
action, (8) performing the action, and (9) recurring. The fact that we have coalesced all of
the actions into one primitive command makes this code much more concise than it would be
otherwise, when we would have to repeat essentially this code as many times as there are actions.

This code is rendered in Agda as follows. fix permits an IO computation to be defined
by general recursion. Because its type is restricted to the monad, it does not permit non-
terminating elements of other types, such as Proof. This fixed-point combinator abstracts over
the precondition, so it may vary in recursive calls, but leaves the postcondition fixed through-
out the loop; we leave more general loop invariants to future work. First, main is given the type
∀ λ Γ � © Γ Unit (λ � [ ]): given any precondition, the computation returns unit and an empty
postcondition (we do not expect to run any code following main so it is not worthwhile to track
the postconditions). main is defined by taking the fixed point of the axillary function loop, which
is abstracted over the recursive call. On line (1), the loop prompts the user to enter an action to
perform, parseAction then parses the string to produce a : action and args: InputArgs, and raises an
error otherwise. (2) The loop prompts for a username, parses it into a Term [ ] principal. (3) The
loop attempts to acquire credentials that "Admin" may su as the principal (e.g., by prompting
for a password). (4) The loop calls the functions make-replace to produce the preconditions for
the su, by replacing (As (Prin "Admin")) with a+ (As u). (5) The loop calls inputToE to produce
the ExtraArgs for the action from the args; for Progress, this function computes the postcondition
of the action from the current context. (6) The loop su-s as the principal. The first replace argu-
ment to su is the result of step (4), the proof argument is the assumption acquired in step (3), the
second replace argument is discussed below. (7) The loop calls the theorem prover at run-time to
prove the principal may perform the requested action. (8) The loop calls doaction and (9) recurs.

The second replace argument to su is generated using a proof that As is preserved in the
PostCondition of an action:

postPreservesAs : ∀ {a Γ e k r k’}
� (a+ (As · k’) ∈ Γ)
� ((a+ (As · k’)) ∈ PostCondition a Γ e k r)

This is another example of using Agda to verify invariants of the pre- and post-conditions, as in
Section 3.1.1.

Dynamic Policy Acquisition

Finally, we describe an example of dynamic policy acquisition in Figure 3.5: we read the re-
viewers’ paper assignments from a database, parse the result into a context, acquire the context,
and start the main server loop with those preconditions. This is simple in a dependently typed
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getReviewerAsgn : ∀ {Γ} � String �
© Γ (List (List String)) (λ � Γ)

parseReviewers : List String � TCtx+ [ ]

mkPolicy : ∀ {Γ} �© Γ (TCtx+ [ ]) (λ � Γ)
mkPolicy = getReviewerAsgn "papers.db" >>= λ asgn �

return (ListM.fold [ ] (λ x � λ y �
parseReviewers x ++ y) asgn)

start = mkPolicy {[ ]} >>= λ ctx �
acquire ctx /

no⇒ error "policy not accepted"
yes⇒ main

Figure 3.5: ConfRM Policy Acquisition

language because contexts themselves are data. The function getReviewerAsgn takes a string, rep-
resenting a path to the database, and returns the list of reviewers for each paper. The function
parseReviewers then turns each of these lists into lists of propositions, each stating the parsed re-
viewer is a reviewer of the paper. A more realistic ConfRM implementation would read a variety
of other propositions from the database as well (which papers have been submitted, reviewed,
etc.) The computation mkPolicy calls getReviewerAsgn and parses the results. The computation
start uses mkPolicy to generate an initial policy, acquires these preconditions, and starts the main
sever loop.

3.2 Implementation
Our Agda implementation consists of about 1400 lines of code. We have also written about
1800 lines of example code in the embedded language, including policies, monadic interfaces to
primitives, and example programs. In this section, we describe the implementation of the logic,
the theorem prover, and the indexed monad.

3.2.1 Representing BL0

BL0 (Garg, 2009b) extends first-order intuitionistic logic with the modality k says A. While
a variety of definitions of says have been studied (Abadi (2008) overviews some of the ap-
proaches), in BL0, says is treated as a necessitation (�) modality, and not as a lax modality
(i.e. a monad) (Abadi, 2006; Avijit and Harper, 2007; Garg and Pfenning, 2006; Jia et al., 2008).
The definition of says in BL0 supports exclusive delegation, where a principal delegates respon-
sibility for a proposition to another principal, without retaining the ability to assert that propo-
sition himself. For example, consider a policy that payroll says ∀t.(HR says employee(t)) ⊃
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MayBePaid(t). Under what circumstances can we conclude payroll says MayBePaid(Alice)?
The fact that HR says employee(Alice) should be sufficient. However, the fact that payroll says
employee(Alice) should not, as the intention of the policy is that payroll delegates responsibility
for the employee predicate to human resources, without retaining the ability to assert employee
instances itself. When says is treated as a lax modality, payroll says employee(Alice) implies
payroll says HR says employee(Alice), which is enough to conclude the goal. Abstractly, we
wish k says A to imply k′ says (k says A), but not k says (k′ says A). The modality satisfies
several other axioms; in a Hilbert-style combinator system, it can be described as follows:

` s
` k says A (Necessity)

k says (A ⊃ B) ⊃ (k says A ⊃ k says B) (K)
(k says A) ⊃ (k′ says (k says A)) (I)
k says ((k says A) ⊃ A) (C)
(k says A) ⊃ (k′ says A) if k′ ≥ k (S)

The last axiom refers to a delegation order on principals, which automatically includes the state-
ments of one principal into another.

Terms, Types, and Atomic Propositions

In the above examples, we used a variety of atomic propositions (Mayread, Owns, etc.), which
refer to several datatypes (principals, papers, conference phases, etc.). Though we are attempting
to do this example in “raw Agda,”, we could not help but embed a simple logical framework, so
that the representation of BL0 and its theorem prover can be parametrized over such datatypes
and atomic propositions. In particular, we implement the simplest possible logical framework:
first-order terms, with free variables, over a given signature. This allows us to specify the types,
terms, and propositions for an example concisely, while exploiting a datatype-generic definition
of the structural properties when we state the inference rules of the logic. The following excerpt
from the signature for ConfRM illustrates what one writes to instantiate the logical framework
to a specific example:
data BaseType : Set where
string paper role action phase principal : BaseType

data Const : BaseType -> Set where
Prin : String -> Const principal
Paper : String -> Const paper
PCChair Reviewer Author Public : Const role
Init Presubmission Submission ... : Const phase

data Func : BaseType -> Type -> Set where
Review BeAssigned ... : Func action (I paper)
Progress : Func action (I phase ⊗ I phase)

data Atom : Type -> Set where
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InPhase : Atom (I phase)
Assigned ... : Atom (I principal ⊗ I paper)
May : Atom (I principal ⊗ I action)
As : Atom (I principal)

The programmer defines a datatype of base types, a datatype giving constants of each type, a
datatype of function symbols, and a datatype of atomic propositions over a given type. Addition-
ally, the programmer must define a couple of operations on these types (equality, enumeration
of all elements of a finite type) which in a future version of Agda could be generated automati-
cally (Altenkirch and McBride, 2003).

My First Logical Framework

First, we define an interface that formalizes the notion of a signature: what the programmer
specifies to instantiate the framework to a particular example. The above datatypes BaseType,
Const, etc. will constitute one such signature. We represent this in Agda with a record type:

record TermSig : Set1 where
field

BaseType : Set
Const : BaseType � Set

typeEq : (A B : BaseType) � Maybe (Id A B)
constEq : ∀ {A : BaseType} � (C C’ : Const A) � Maybe (Id C C’)

allConst : (extraStrings : List String) � {A : BaseType} � List (Const A)

module Typ = Types BaseType

field
Func : BaseType � Typ.Type � Set
allFuncs : (τ : BaseType) � List (Σ (λ (A : Typ.Type) � Func τ A))
funcEq : ∀ {τ1 τ2 : BaseType} {A1 A2 : Typ.Type}

� (C1 : Func τ1 A1) � (C2 : Func τ2 A2)
� Maybe (Id τ1 τ2 × Id A1 A2 × HId C1 C2)

The programmer defines a set of BaseTypes, and a set Const of constants of each BaseType.
When we implement the theorem prover below, we will need to compare types and terms for
equality, and enumerate all terms of a given signature, so we additionally require functions that
compare BaseTypes and Constants and enumerate all Constants.

The parametrized module Types defines the types over a given collection of base types:

module Types (BaseType : Set) where
data Type : Set where
I_ : BaseType � Type
_⊗_ : Type � Type � Type
unit : Type

Types are BaseTypes, unit, and pair types (τ1⊗ τ2).
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Returning to TermSig, the programmer may additionally specify a collection of function sym-
bols Func τ A, which require an argument of type A and produce a term of type τ , along with
enumeration and equality for function symbols.

Given an instance of this signature the framework provides a datatype of terms and a collec-
tion of operations on it. First, the datatype of terms:

ICtx = List BaseType

data Term : ICtx � Type � Set where
._ : ∀ {Ω τ } � τ ∈ Ω � Term Ω (I τ)
I_ : ∀ {Ω τ } � Const τ � Term Ω (I τ)
, : ∀ {Ω τ1 τ2} � Term Ω τ1 � Term Ω τ2 � Term Ω (τ1 ⊗ τ2)

[ ] : ∀ {Ω} � Term Ω unit
_·_ : ∀ {Ω τ A} � Func τ A � Term Ω A � Term Ω (I τ)

The terms over a signature are given by a datatype Term Ω τ , where Ω, an individual context
(ICtx), represents the free variables of the term. An ICtx is a list of BaseTypes, and represents
a context of individual variables—e.g. the context x1 : τ1, . . . , xn : τn will be represented by
the list τ1 :: ... :: τn :: []. Variables are represented by well-scoped de Bruijn indices, which are
pointers into such a list—i0 says x ∈ (x :: l), and iS says that x ∈ (y :: l) if x ∈ l. Terms are either
variables (.i), where i : τ ∈ Ω is a de Bruijn index, constants, applications of function symbols
(f · t), or [] and (t1, t2) for unit and product types.

Next, we equip this datatype of terms with a variety of operations, generally in the signature.
First, we write Ω ⊆ Ω’ for ∀ {τ } � τ ∈ Ω � τ ∈ Ω’ and define weakening (as well as
exchange and contraction):

weakenTerm : ∀ {Ω Ω’ τ } � Term Ω τ � Ω ⊆ Ω’ � Term Ω’ τ

Similarly, we can define substitution:

substTerm : ∀ {Ω τ Ω’}
� Term Ω τ � (∀ {τ } � τ ∈ Ω � Term Ω’ (I τ))
� Term Ω’ τ

Next, we specialize substitution to the last variable, using the identity substitution on Ω:

substTermLast : ∀ {Ω τ τ ’} � Term (τ :: Ω) τ ’ � Term Ω (I τ) � Term Ω τ ’

Finally, we define equality and enumeration:

varEq : {Ω : ICtx} {τ : BaseType} � (x y : τ ∈ Ω) � Maybe (Id x y)
termEq : ∀ {Ω τ } � (T1 T2 : Term Ω τ) � Maybe (Id T1 T2)
allVars : (Ω : ICtx) {τ : } � List (τ ∈ Ω)
allTermsGen : List String � (Ω : ) (A : ) � List (Term Ω A)

allTermsGen only terminates if the signature is non-recursive; we could build a proof of this fact
into TermSig, but for now we have taken the shortcut of turning off the termination checker.

Next, we prove some properties of these operations generically. First, weakening by the
identity is the identity:



50 CHAPTER 3. SECURITY-TYPED PROGRAMMING

IsId : ∀ {Ω} � (Ω ⊆ Ω) � Set
IsId {Ω} w = {τ : BaseType} (i : τ ∈ Ω) � Id i (w i)

weakenTerm-id : ∀ {Ω} � {w : Ω ⊆ Ω} � IsId w
� {τ : Type} (t : Term Ω τ) � Id (weakenTerm t w) A

Because Agda equality is intensional, it is too strong to demand Id w (λ x � x); thus, we use
IsId, which says that is the identity on all arguments.

Second, we prove that weakening by a composition is the composition of weakenings:

_◦_ : ∀ {Ω1 Ω2 Ω3 : ICtx} � (w2 : Ω2 ⊆ Ω3) � (w1 : Ω1 ⊆ Ω2) � Ω1 ⊆ Ω3

weakenTerm◦ : ∀ {Ω1 Ω2 Ω3 τ } � (w2 : Ω2 ⊆ Ω3) (w1 : Ω1 ⊆ Ω2)
� (A : Term Ω1 τ)
� Id (weakenTerm A (λ { } � w2 ◦ w1)) (weakenTerm (weakenTerm A w1) w2)

Another artifact of intensional equality is that we must prove that weakening by point-wise
equal functions is the identity:

WEq : ∀ {Ω Ω’} � (f1 f2 : Ω ⊆ Ω’) � Set
WEq f1 f2 = {τ : BaseType} � (x : τ ∈ ) � Id (f1 x) (f2 x)

weakenTerm-ext : ∀ {Ω Ω’} {w1 w2 : Ω ⊆ Ω’} � WEq w1 w2 �
{τ : Type} (t : Term Ω τ) � Id (weakenTerm t w1) (weakenTerm t w2)

These are all the generic operations on terms that we required in our development, though we
could go on to prove analogous properties of substitution, etc.

For atomic propositions, we similarly define a datatype Aprop Ω. This datatype is parametrized
over a set of atomic proposition symbols Atom : Type � Set, and an atomic proposition p ·
t consists of an Atom A paired with a term of type A. We could have used Terms of a particular
base type prop to represent atomic propositions, but for a historical accident: we had abstracted
out a signature of atomic propositions before doing so for terms.

Propositions

BL0 propositions include conjunction, disjunction, implication, universal and existential quan-
tification, and the says modality:
A,B,C ::= P | A ∧B | A ∨B | A ⊃ B | >

| ⊥ | ∀x:τ .s | ∃x:τ .A | k says A

In Figure 3.6, we represent this syntax in Agda. Propositions (Propo) are indexed by a context
of free variables, and additionally by a polarity (+ or −), which will be helpful in defining a
focused sequent calculus below. Because the syntax of propositions is polarized, there are two
injections a− and a+ from atomic propositions Aprop to negative and positive propositions,
respectively. Additionally, the shifts ↓ and ↑ include negative into positive and vice verse. The
remaining datatype constructors correspond to the various ways of forming propositions in the
above grammar. For example, the _∧_ constructor takes two terms of type Propo+ Ω and returns
a term of type Propo+ Ω. The constructor ∃i (existential quantification over individuals), takes
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data Propo : Polarity � ICtx � Set where
_⊃_ : ∀ {Ω} � Propo+ Ω � Propo- Ω � Propo- Ω
∀i_ : ∀ {Ω τ } � Propo- (τ :: Ω) � Propo- Ω
a- : ∀ {Ω} � Aprop Ω � Propo- Ω
↑ : ∀ {Ω} � Propo+ Ω � Propo- Ω

_∨_ : ∀ {Ω} � Propo+ Ω � Propo+ Ω � Propo+ Ω
_∧_ : ∀ {Ω} � Propo+ Ω � Propo+ Ω � Propo+ Ω
⊥ : ∀ {Ω} � Propo+ Ω
> : ∀ {Ω} � Propo+ Ω
∃i_ : ∀ {Ω τ } � Propo+ (τ :: Ω) � Propo+ Ω
_says_ : ∀ {Ω} � Term Ω principal �

Propo- Ω � Propo+ Ω
a+ : ∀ {Ω} � Aprop Ω � Propo+ Ω
↓ : ∀ {Ω} � Propo- Ω � Propo+ Ω

Figure 3.6: Agda Representation of BL0 Propositions

a positive proposition, in a context with one new free variable of type τ , and returns a positive
proposition in the original context Ω.

We have suppressed the shifts up to this point in the paper for readability. We could suppress
shifts in our Agda code by implementing a simple translation that, given an unpolarized proposi-
tion and an intended polarization of each atom, computes a polarized proposition with minimal
shifts.

Proofs

Sequent calculus. Sequents in BL0 have the form Ω; ∆; Γ
k−→ A. The context Ω gives types to

individual variables (e.g. it is extended by ∀), and the context Γ contains propositions that are
assumed to be true (e.g. it is extended by⊃)—these are the standard contexts of first-order logic.
The context ∆ contains claims, assumptions of the form k′ claims A; claims is the judgement
underlying the says connective (Garg, 2009b; Pfenning and Davies, 2001). Finally, k, the view
of the sequent, is the principal on behalf of whom the inference is made.

The rules for says are as follows:

Ω; ∆; []
k−→ A

Ω; ∆; Γ
k0−→ k says A

SAYSR

Ω; ∆, (k claims A); Γ, (k says A)
k0−→ C

Ω; ∆; Γ, (k says A)
k0−→ C

SAYSL

Ω; (∆, k claims A); (Γ, A)
k0−→ C k ≥ k0

Ω; (∆, k claims A); Γ
k0−→ C

CLAIMSL
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In order to show k says A, one empties the context Γ of true assumptions, and reasons on behalf
of k with the goal A (rule saysR). It is necessary to empty Γ because the facts in it may depend
on claims by the principal k0, which are not valid when reasoning as k. The rule saysL says that
if one is reasoning from an assumption k says A, one may proceed using a new assumption that
k claims A. Claims are used by the rule claimsL, which allows passage from a claim k claims A
to an assumption that A is actually true. This rule makes use of a preorder on principals, and
asserts that any statements made by a greater principal are accepted as true by lesser principals.

Focused sequent calculus. To help with defining a proof search procedure, we present BL0 as
a weakly-focused sequent calculus. Garg (2009b) describes both an unfocused sequent calculus
and a focused proof system for FHH, a fragment of BL0; here we give a focused sequent calculus
for all of BL0. Focusing (Andreoli, 1992b) is a proof-theoretic technique for reducing inessential
non-determinism in proof search, by exploiting the fact that one can chain together certain proof
steps into larger steps. In the Agda code above, we polarized the syntax of propositions, divid-
ing them into positive and negative classes. Positive propositions, such as disjunction, require
choices on the right, but are invertible on the left: a goal C is provable under assumption A+

if and only if it is provable under the left rule’s premises. Dually, negative propositions involve
choices on the left but are invertible on the right. Weak focusing (Pfenning and Simmons, 2009)
forces focus (choice) steps of like-polarity connectives to be chained together, but does not force
inversion (pattern-matching) steps to be chained together. We use weak, rather than full, focusing
because it is slightly easier to represent in Agda, and because it can sometimes lead to shorter
proofs if one internalizes the identity principles (which say that A entails A)—though we do not
exploit this fact in our current prover.

The polarity of k says A is as follows: A is negative, but k says A itself is positive. As a
simple check on this, observe that k says A is invertible on the left—one can always immediately
make the claims assumption—but not on the right—because saysR clears the true assumptions.
For example, a policy is often of the form k1 says A1, . . . kn says An, with a goal of the form
k′ says B. It is necessary to use claimsL to turn all propositions of the form k says A in Γ
into claims in ∆ before using saysR on the goal—if one uses saysR first, the policy would be
discarded. This polarization is analogous to � in Pfenning and Davies (2001) and to ! in linear
logic (Andreoli, 1992b), which is reasonable given that says is a necessitation modality.

Our sequent calculus, presented in Figure 3.7, has three main judgements:

• Right focus: Ω; ∆; Γ
k−→ [A+]

• Left focus: Ω; ∆; Γ
k−→ [A-] > C

• Neutral sequent: Ω; ∆; Γ
k−→ C-

Here ∆ consists of claims k claims A- and Γ consists of positive propositions. For convenience in
the Agda implementation, we break out a one-step left-inversion judgement Ω; ∆; Γ

k−→ A+ >I C,
which applies a left rule to the distinguished proposition A+ and then reverts to a neutral sequent.
The rules are a fairly simple integration of the idea of weak focusing (Pfenning and Simmons,
2009) with the focusing interpretation of says described above.
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Ω; ∆; Γ;P + k−→ [P +]
INIT+

Ω; ∆; Γ
k−→ [P -] > P -

INIT-

Ω; ∆; Γ
k−→ [>]

>
Ω; ∆; Γ

k−→ C

Ω; ∆; Γ
k−→ > >I C

>L
Ω; ∆; Γ

k−→ ⊥ >I C
⊥

Ω; ∆; Γ
k−→ [A+] Ω; ∆; Γ

k−→ [B+]

Ω; ∆; Γ
k−→ [A+ ∧B+]

∧R
Ω; ∆; Γ, A+, B+ k−→ C

Ω; ∆; Γ
k−→ (A+ ∧B+) >I C

∧L

Ω; ∆; Γ
k−→ [A+]

Ω; ∆; Γ
k−→ [A+ ∨B+]

∨R1
Ω; ∆; Γ

k−→ [B+]

Ω; ∆; Γ
k−→ [A+ ∨B+]

∨R2
Ω; ∆; Γ, A+,

k−→ C Ω; ∆; Γ, B+,
k−→ C

Ω; ∆; Γ
k−→ (A+ ∨B+) >I C

∨L

Ω ` t : τ Ω; ∆; Γ
k−→ [[t/x]A+]

Ω; ∆; Γ
k−→ [∃x : τ.A+]

∃R
Ω, x : τ ; ∆; Γ, A+ k−→ C

Ω; ∆; Γ
k−→ (∃x : τ.A+) >I C

∃L

Ω; ∆; Γ
k−→ A-

Ω; ∆; Γ
k−→ [↓ A-]

BLURR
Ω; ∆; Γ, ↓ A- k−→ [A-] > C

Ω; ∆; Γ, ↓ A- k−→ C
LFOC

Ω; ∆; []
k−→ A-

Ω; ∆; Γ
k0−→ [k says A-]

SAYSR
Ω; ∆, (k claims A-); Γ

k0−→ C

Ω; ∆; Γ
k0−→ (k says A-) >I C

SAYSL

Ω; ∆; Γ, A+ k−→ B-

Ω; ∆; Γ
k−→ A+ ⊃ B-

⊃R
Ω; ∆; Γ

k−→ [A+] Ω; ∆; Γ
k−→ [B-] > C

Ω; ∆; Γ
k−→ [A+ ⊃ B-] > C

⊃L

Ω; ∆; Γ
k−→ [t/x]A-

Ω; ∆; Γ
k−→ ∀x : τ.A-

∀R
Ω; ∆; Γ

k−→ [[t/x]A-] > C

Ω; ∆; Γ
k−→ [∀x : τ.A-] > C

∀L

Ω; ∆; Γ
k−→ [A+]

Ω; ∆; Γ
k−→↑ A+

RFOC
Ω; ∆; Γ, A+ k−→ C

Ω; ∆; Γ
k−→ [↑ A+] > C

BLURL

Ω; ∆; (Γ, A+)
k−→ [A+] >I C

-

Ω; ∆; (Γ, A+)
k−→ C

LINV
Ω; (∆, k claims A-); Γ

k0−→ [A-] > C k ≥ k0

Ω; (∆, k claims A-); Γ
k0−→ C

CLAIMSL

Figure 3.7: Weakly focused sequent calculus for BL0
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record Ctx : Set where
field rΩ : ICtx

rΓ+ : List (Propo+ rΩ)
r∆ : List (Term rΩ principal × Propo- rΩ) -- pairs written (k claims A)
rk : Term rΩ principal

addTrue : (θ : Ctx) � (A : Propo Pos (ictx θ)) � Ctx
addTrue θ A =
record {rΩ = Ctx.rΩ θ; rΓ+ = A :: (Ctx.rΓ+ θ); r∆ = Ctx.r∆ θ; rk = Ctx.rk θ}

addClaim : (θ : Ctx) � (t : Claim (ictx θ)) � Ctx
addClaim θ c =
record {rΩ = Ctx.rΩ θ; rΓ+ = Ctx.rΓ+ θ; r∆ = c :: Ctx.r∆ θ; rk = Ctx.rk θ}

addVar : (θ : Ctx) � (A : Type) � Ctx
addVar θ τ = record {rΩ = (τ :: Ctx.rΩ θ); rΓ+ = (weakenT+ (Ctx.rΓ+ θ) iS);

r∆ = (weakenC (Ctx.r∆ θ) iS); rk = (weakenTerm (Ctx.rk θ) iS)}
sayCtx : (θ : Ctx) � (k : Term (Ctx.rΩ θ) principal) � Ctx
sayCtx θ k = record {rΩ = Ctx.rΩ θ; rΓ+ = [ ]; r∆ = Ctx.r∆ θ; rk = k}

mutual
data _`L_>_ : (θ : Ctx) � Propo- (ictx θ) � Propo- (ictx θ) � Set where
∀L : ∀ {θ τ A C} � (t : Term (ictx θ) τ) �

θ `L (substlast A t) > C �
θ `L ∀i_ { ictx θ} {τ } A > C

...

data _`I_>_ : (θ : Ctx) � (Propo+ (ictx θ)) � Propo- (ictx θ) � Set where
∃L : ∀ {θ τ A C}
� (addTrue (addVar θ τ) A) ` (weakenP C iS)
� θ `I (∃e τ A) > C

saysL : ∀ {θ k s B}
� addClaim θ (k claims s) ` C
� θ `I (k says s) > C

...

data _`R_ : (θ : Ctx) � Propo+ (ictx θ) � Set where
saysR : ∀ {θ k A}

� (sayCtx θ k) ` A
� θ `R (k says A)

...

data _`_ : (θ : Ctx) � Propo- (ictx θ) � Set where
claimsL : ∀ {θ k A C}
� (k claims A) ∈ Ctx.r∆ θ
� θ `L A > C � k > Ctx.rk θ
� θ ` C

...

Figure 3.8: Agda representation of proofs (exceprt)
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Agda Representation In Figure 3.8, we show an excerpt of the Agda representation of this
sequent calculus. First, we define a record type for a Ctx, which tuples together the Ω, ∆, Γ, and
k parts of a sequent—we write Θ for such a tuple. Γ is represented as a list of propositions; ∆
is represented as a list of pairs of a principal and a proposition, written p claims A; k is a term
of type principal. Record fields are selected by writing R.x, where the type of the record is R
and the desired field is x (e.g., Ctx.rk selects the principal from a Ctx record). Note that Ctx is a
dependent record: the true context, the claims context, and the view can mention the variables
bound in the individual context rΩ. We write TCtx+ Ω for List (Propo+ Ω). We define several
helper functions on Ctxs: sayCtx clears the Ctx of true propositions, and changes the view of the
context to its second argument. ictx (not shown) is shorthand for Ctx.rΩ. addTrue and addClaim
cons a true proposition onto Γ or a claim onto ∆, respectively. addVar adds a variable to Ω, and
weakens the rest of the context.

When writing down the calculus on paper, it is obvious that extending Ω does not affect Γ or
∆; any variables bound in Ω will be bound in Ω’ ⊇ Ω. However, in Agda, it is necessary to ex-
plicitly coerce F Ω to F Ω’ for type families F dependent on Ω. Above, we discussed weakenTerm;
weakening for propositions, claims, true contexts (weakenT+), claims contexts (weakenC), and so
on, are analogous.

There are 4 judgments in our weakly-focused sequent calculus; analogously, there are 4 mu-
tually recursive datatype declarations representing these judgements in Agda, with one datatype
constructor for each inference rule. We show the constructors ∀L (for the left focus judgement),
∃L and saysL (for the left inversion judgement), saysR (for the right focus judgement), and claimsL
(for the neutral sequent judgement). For the most part, the rules are a straightforward transcrip-
tion of the sequent calculus rules. In ∀L, the function substlast substitutes a term for the last
variable in a proposition; we have implemented substitution for individual variables for each of
the syntactic categories. In ∃L, it is necessary to weaken the goal with the new variable, which is
tacit in on-paper presentations.

Properties Because the sequent calculus is cut-free, consistency of closed proofs is immediate:
Consistency: For all principals k, there is no derivation of
[]; []; []

k−→↑ ⊥.
Proof: no rule concludes⊥ in right focus, and in the empty context no left focus or left inversion
rules apply.

Identity and cut can be proved using the usual syntactic methods, adapting Garg’s proof (Garg,
2009b) for an unfocused sequent calculus to weak focusing, following Pfenning and Simmons
(2009).

3.2.2 Proof Search

We have implemented a simple proof-producing theorem prover for BL0:

prove : Nat � (θ : Ctx) � (A : Propo- (ictx θ)) � Maybe (θ ` A)

prove takes a depth bound, a context, and a proposition, and attempts to find a proof of θ ` A
with at most the given depth. The prover is certified: when the prover succeeds, it returns a
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proof, which is guaranteed by type checking to be well-formed. When the prover fails, it simply
returns None. The prover is implemented by around 200 lines of Agda code.

Our prover is quite naïve, but it suffices to prove the examples in this paper. For the most part,
the prover backchains over the focusing rules. However, whereas the above sequent calculus was
only weakly focused, the prover is fully focused, in that it eagerly applies invertible rules, which
avoids backtracking over different applications of them. If the goal is right-invertible, the prover
applies right rules. Once the goal is not right-invertible (an atom or a shift ↑ A+), the prover fully
left-inverts all of the assumptions in Γ. Inverting a context Γ breaks up the positive propositions
using left rules, generating a list of non-invertible contexts Θ1, ...,Θk such that, if for every i,
Θi ` C, then Θ ` C. Once the sequent has been fully inverted, the prover tries right-focusing (if
the goal is a shift ↑ A+) and left-focusing on all assumptions in Γ and claims in ∆, until one of
these choices succeeds. The focus phases involves further backtracking over choices (e.g., which
branch of a disjunction to take). The focus rules for quantifiers (∀E and ∃I) require guessing an
instantiation of the quantifier. Our current implementation is brute-force: it simply computes all
terms of a given type in a given context and tries each of them in turn—we have only considered
individual types with finitely many inhabitants.

The following snippet of an auxiliary function implementing the right focus judgement gives
a feel for the prover:

proveRight : Nat � (θ : Ctx) � (A : Propo Pos (ictx θ)) � Maybe (θ `R A)
proveRight Z _ _ = None
proveRight (S n) θ (A ∨ B) =
(map ∨R1 (proveRight n θ A)) || (map ∨R2 (proveRight n θ B))

proveRight (S n) θ (A ∧ B) =
proveRight n θ A »= λ x � map (λ y � ∧R x y) (proveRight n θ B)

proveRight (S n) θ > = Some >R
proveRight (S n) θ ⊥ = None
proveRight (S n) θ (↓ A) = map (λ x � blurR x) (proveNeutral n θ A)
proveRight (S n) θ (k0 says A) = proveNeutral n (sayCtx θ k0) A »= λ y � Some (saysR y)
...

If the depth bound is 0, fail. If the goal is a disjunction, try proving the two disjuncts. if the goal
is a conjunction, prove them both. If the goal is >, succeed; if it is ⊥, fail. If the goal is ↓ A,
switch to proving A as a neutral sequent. Similarly, if the goal is k0 says A, switch contexts and
prove A neutrally. We write map and >>= and || for functoriality, bind, and “mplus” of Maybe;
|| tries the left disjunct first.

The prover achieves tolerable compile times on the small examples we have considered so
far (1 to 13 seconds). If it proves too slow for some examples, we have several options: First, we
can improve our implementation—e.g. by implementing unification, which will eliminate much
of the branching from quantifiers, or by doing a better job of clause selection. Second, we could
connect Agda with an external theorem prover, following Kariso (2010). Garg has implemented
theorem prover for BL0 in ML (Garg, 2009b), which we could integrate soundly by writing a
type checker for the certificates it produces. Third, we could optimize Agda itself, by fixing
some known inefficiencies in Agda’s compile-time evaluation.
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3.2.3 Computations

The monadic interfaces presented in Section 3.1 are currently treated as refinement types on
Haskell’s IO monad, which is exposed through the Agda foreign function interface. The imple-
mentations of proof-carrying file operations simply ignore their proof arguments. fix is compiled
using general recursion in Haskell. In this operational model, programs written in Aglet adhere
to the security policies, but no guarantees are made about programs that can access, e.g., the raw
file system operations. We discuss alternatives in Section 3.4 below.

3.3 Related Work
Aglet implements security-typed programming in the style of Aura (Jia et al., 2008), PCML5 (Avi-
jit et al., 2010), Fine (Swamy et al., 2010), and previous work by Avijit and Harper (2007)
(henceforth AH), which integrate authorization logics into functional/imperative programming
languages. Our main contribution relative to these languages is to show how to support security-
typed programming within an existing dependently-typed language. There are also some techni-
cal differences between these languages and ours:

First, Aura, PCML5, and AH interpret says as a lax modality, whereas BL0 interprets it as a
necessitation modality to support exclusive delegation (see Section 3.2.1); Fine uses first-order
classical logic and does not directly support the says modality. The context-clearing necessitation
modality is more challenging to represent than a lax modality.

Second, unlike these four languages, our language treats propositions and proofs as induc-
tively defined data, which has several applications: In Aura, all proof-carrying primitives log the
supplied proofs for later audit; the programmer could implement logged operations on top of our
existing interface by writing a function
toString : Proof Γ A � String
by recursion over proofs. Recursion over propositions is also essential for writing our theorem
prover inside of Agda.

Third, our indexed monad of computations allows us to encode computation on behalf of a
principal, following AH. In Aura, all computation proceeds on behalf of a single distinguished
principal self. In PCML5, a program can authenticate as different principals, but the credentials
are less precise: in PCML5, the program authenticates as k, whereas in AH the program acquires
only the ability to su from a given k′ to k—which may be a useful restriction if the program is
subsequently no longer running as k′. Fine does not track authentication as a primitive notion,
though it seems likely it could be encoded using an As predicate and affine types.

Fourth, in PCML5, acquire uses theorem proving to deduce consequences of the policy,
whereas in our language acquire only tests whether a state-dependent atom or a statement by
a principal is literally in the policy, and a separate theorem prover deduces consequences from
the policy. We separate theorem proving from acquire so that we may also use the same theorem
prover at compile-time to statically discharge proof obligations. PCML5 and AH make use of a
theorem prover only at run-time, whereas Fine uses theorem proving only at compile-time.

Fifth, PCML5 is a language for spatially distributed authorization, where resources and poli-
cies are located at different sites on a network. We have shown how to support ML5-style spatial
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distribution using our indexed monad, but we leave spatial distribution of policies to future work.

Sixth, the operational semantics of both PCML5 and AH include a proof-checking reference
monitor; we have not yet considered such an implementation.

Several other languages provide support for verifying security properties by type checking.
For example, Fournet et al. (2007) develop a type system for a process calculus, and Bengtson
et al. (2008) for F#, both of which can be used to verify authorization policies and cryptographic
protocols. This work addresses important issues of concurrency, which we do not consider here.
A technical difference is that, in their work, proofs are kept behind the scenes (e.g., in F7, propo-
sitions are proved by the Z3 theorem prover). In contrast, our language makes the proof theory
directly available to the programmer, so that propositions and proofs can be computed with (for
logging or run-time theorem proving) and so that proofs can be constructed manually when a
theorem prover fails. Another example of a language that does not give the programmer direct
access to the proof theory is PCAL (Chaudhuri and Garg, 2009), an extension of BASH that
constructs the proofs required by a proof-carrying file system (Garg and Pfenning, 2009); proof
construction is entirely automated, but sometimes inserts run-time checks.

Our indexed monad was inspired by HTT (Nanevski et al., 2006). RIF (Borgström et al.,
2009) also investigates applications of indexed monads to security-typed programming, but there
are some technical differences: First, RIF is a new language where refinement types (using first-
order classical logic) and a refined state monad are primitive notions, whereas we embed an
authorization logic and an indexed monad in an existing dependently typed language. Second,
RIF’s monad is indexed by predicates on an explicit representation of the system state, whereas
we index by policies Γ that describe an implicit ambient state.

Many security-typed languages address the problem of enforcing information flow policies
(see Abadi et al. (1999); Chothia et al. (2003) for but a couple of examples). We follow Russo
et al. (2008); Swamy et al. (2010) in representing information flow using an abstract type con-
structor (e.g., a monad or an applicative functor). Fable (Swamy et al., 2008) takes a different
approach to verifying access-control, information flow, and integrity properties, by providing a
type of labelled data that is treated abstractly outside of certain policy portions of the program.
This mechanism facilitates checking security properties (by choosing the labels appropriately
and implementing policy functions) and proving bi-simulation properties of the programs that
adhere to these policies.

DeYoung and Pfenning (2009) describe a technique for representing access control policies
and stateful operations in a linear authorization logic. Our approach to verifying context invari-
ants, as in Section 3.1.1, is inspired by their work.

The literature describes a growing body of authorization logics (Abadi, 2006, 2008; Abadi
et al., 1993; DeYoung et al., 2008; Garg, 2009a,b). We chose BL0 (Garg, 2009b), a simple
logic that supports the expression of decentralized policies and whose says connective permits
exclusive delegation.

Appel and Felten (1999) pioneered the use of proof-carrying authorization, in which a system
checks authorization proofs at run-time. Several systems have been built using PCA (Bauer et al.,
2005; Garg and Pfenning, 2009; Wobber et al., 1994). Like many security-typed languages, we
use dependently typed PCA to check authorization proofs at compile-time through type checking.
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3.4 Discussion
In this chapter, we have described Aglet, a library embedding security-typed programming in a
dependently-typed programming language. There are many interesting avenues for future work:
First, we may consider embedding an authorization logic such as full BL (Garg, 2009a) that
accounts for resources that change over time.

Second, we have currently implemented the monadic computation interface on top of un-
guarded Haskell IO commands, which provides security guarantees for well-typed programs. To
maintain security in the presence of ill-typed attackers, we may instead implement our interface
using a proof-carrying run-time system such as PCFS (Garg and Pfenning, 2009). Following
PCML5 (Avijit et al., 2010), we may then be able to prove a progress theorem showing that
well-typed programs always pass the reference monitor. Another intriguing possibility is to for-
malize the operational behavior of computations directly within Agda—e.g. using an algebraic
axiomatization (Plotkin and Pretnar, 2009).

Third, we have shown a few small examples of using Agda to reason about the class of con-
texts that is possible given a particular monadic interface. In future work, we would like to
explore ways of systematizing this reasoning (e.g., by using linear logic to describe transforma-
tions between contexts, as in DeYoung and Pfenning (2009)). We would also like to use Agda to
analyze global properties of a particular monadic interface (such as proving a principal can never
access a resource). Once we have circumscribed the contexts generated by a particular interface,
we can prove such properties by induction on BL0 proofs.

Fourth, we have thus far shown examples of entirely static and entirely dynamic verification;
we would like to consider examples that mix the two. This will require using reflection to rep-
resent Agda judgements as data, so that our theorem prover does not get stuck on open Agda
terms.

To illustrate this problem, suppose we set up a call to the theorem prover as follows:

goal : (reviewer : Term [ ] (I principal)) �
Proof ((I Prin "Admin" says a- (MaySu · (I Prin "Public", reviewer))) :: [ ])

(a- (MaySu · (I Prin "Public", reviewer)))
goal reviewer = solve (prove 10)

That is, we would like to prove, abstractly in any reviewer, that if Admin says Public may su as the
reviewer, then Public may su as the reviewer. Unfortunately, the theorem prover does not succeed
in proving this goal, because of the free Agda variable reviewer: the theorem prover gets stuck at
trying to compute termEq reviewer reviewer. While it is true that for all terms termEq t t computes
to Some, this fact is not true definitionally.

We can solve this problem by reflecting the goal, which has a free Agda variable, as a goal
with a free individual variable in the logic: Computation proceeds with derivability assumptions
in places where it gets stuck on admissibility assumptions. In this case, we replace reviewer with
an individual variable of type principal:
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reflectedGoal :
record {

rΩ = principal :: [ ];
r∆ = [ ];
rΓ+ = (I Prin "Admin" says a- (MaySu · (I Prin "Public", . i0))) :: [ ];
rk = I Prin "Admin"}
` (a- (MaySu · (I Prin "Public", . i0)))

reflectedGoal = Sums.getSome (proveNeutral 10 )

and the theorem prover succeeds.
Next, using the substitution principal for the logic, we can instantiate a derivability assump-

tion with an admissibility assumption to prove the original goal:

subst`last : ∀ {Ω τ ∆ Γ k A}
� record {rΩ = τ :: Ω; r∆ = ∆; rΓ+ = Γ; rk = k} ` A
� (t : Term Ω (I τ))
� record {rΩ = Ω; r∆ = substCLast ∆ t;

rΓ+ = substT+Last Γ t; rk = substTermLast k t}
` (substlast A t)

goal : (reviewer : Term [ ] (I principal)) �
(Proof ((I Prin "Admin" says a- (MaySu · (I Prin "Public", reviewer))) :: [ ])

(a- (MaySu · (I Prin "Public", reviewer))))
goal reviewer = subst`last reflectedGoal reviewer

Framework support Before moving on, it is worth summarizing what logical framework fea-
tures we used in this example. We used derivability, implemented “by hand” using dependent de
Bruijn indices, to represent BL0. However, we required not just ordinary derivability, but a modal
version of entailment, to support says. We used admissibility functions to implement a theorem
prover, to compute types and specifications (Result and Postcondition), and to write the code that
we verified using the authorization logic. We used types dependent on derivability functions (the
monad indexed by propositions) and applications of admissibility functions (e.g. the computed
postcondition) to make the link between code and specifications. Agda supports all of this, but
implementing derivability by hand for each logic is tedious—even here, we found it useful to
implement a simple logical framework to parametrize BL0 over terms and atomic propositions.
This motivates the study of richer embedded logical frameworks in Part II. But first, we present
an additional example of a domain-specific logic, which illustrates a different mode of use of
dependent types.



Chapter 4

Semantic Differential Privacy

The example described in this chapter was implemented jointly with Jason Reed.

Large amounts of people’s information are stored in databases (medical records, your Face-
book profile, . . . ), and mechanisms to exploit this information while preserving privacy are very
important. One notion of database privacy that has been studied is differential privacy (Dinur and
Nissim, 2003; Dwork and Nissim, 2004; Dwork et al., 2006): a mechanism is differentially pri-
vate if any conclusion made from the data is almost exactly as likely if any one record is omitted
from the database.

Many differentially private algorithms rely on constructing a distance-preserving function,
and then adding some noise to it. Distance preservation ensures that the distance between outputs
of a function is bounded by a constant factor of the distance between the function’s inputs. A
function is 1-sensitive if it preserves distances exactly, or, more generally, k-sensitive if the
output distance is never more than k times the input distance. k-sensitive functions can be made
differentially private by adding noise proportional to k. However, for programming purposes, it
is necessary to consider not only distance-preserving functions on R, but on many other types
as well: pairs, with distance given by the sum of the distances of the components; sets, with
edit distance; and others. This can be formalized by considering general metric spaces, spaces
equipped with a notion of distance, and distance-preserving functions on them.

Reed and Pierce (2010) observed that the proof obligations that arise in showing that func-
tions are distance-preserving can be packaged as a type system based on affine logic. Their
language is defined in the standard syntactic manner, using a type system and operational se-
mantics. However, this type system is incomplete, in the sense that there are many distance-
preserving functions that cannot be written in the language, and a somewhat arbitrary collection
of such operations are taken as primitives in the languages design.

We can use a dependently typed host language to solve this problem. First, we formalize
the semantic definition of distance-preservation as the fundamental notion. This offers a fully
certified and fully extensible type of distance-preserving functions: if you can prove that a func-
tion satisfies the semantic condition, it is an element of the type of distance-preserving functions.
The affine type system is then interpreted as tactics used to construct semantic elements more
conveniently—it packages up the proof obligations in a convenient way. When a new primitive is
necessary, it can be proved correct in the semantics and then added to the syntax. This language
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architecture is similar to NuPRL (Constable et al., 1986), where a semantics of dependent types
is defined first, and the syntax consists of a particular sound but incomplete collection of proof
rules. However, in NuPRL the semantics exists only on paper, whereas here we implement the
semantics itself inside of a proof assistant, so that it can be programmed with directly when nec-
essary. This example illustrates a different style of program verification than the security-typed
programming example above: here, dependent types are used behind the scenes to implement a
semantics and an interesting type system, but the programs written using this type system are,
for the most part, simply-typed. We restrict attention to differential privacy for total programs, as
semantic embeddings of general recursion require more advanced meta-language features, such
as partial functions (Crary, 1998) or coinduction.

In Section 4.1 we implement metric spaces; in Section 4.2, we define an affine type system for
distance-preserving functions; in Section 4.3, we show the syntax sound relative to the semantics.

4.1 Metric spaces
A metric space equips a set with a notion of distance between any two points. We will find it con-
venient to represent distance relationally, rather than functionally, and to represent an inequality
on distance, rather than equality. Thus, the primitive notion we define is the relation x1 ∼ x2 6 r,
which means that the distance between x1 and x2 is less than or equal to r. If x and y are unrelated
for any r, they are considered to be infinitely distant.

A distance relation on a set satisfies identity if any element is related to itself at any distance.
A distance relation on a set satisfies composition if two distances can be composed, and the
distance of the composition is less than the sum of the distances—i.e. it satisfies the triangle
inequality. A distance relation satisfies weakening if the relation respects "less than or equal to"
on reals in the appropriate way.

Identity : (A : Set) � (A � A � PosReal � Set) � Set
Identity A _~_6_ = ∀ {x r} � x ∼ x 6 r

Composition : (A : Set) � (A � A � PosReal � Set) � Set
Composition A _~_6_ = ∀ {x1 x2 x3 r1 r2}

� x1 ∼ x2 6 r1 � x2 ∼ x3 6 r2
� x1 ∼ x3 6 (r1 + r2)

Weakening : (A : Set) � (A � A � PosReal � Set) � Set
Weakening _~_6_ = ∀ {x1 x2 r r’} � x1 ∼ x2 6 r � r 6 r’ � x1 ∼ x2 6 r’

The type PosReal represents positive reals, and the relation 6 represents less-than-or-equal-to
on positive reals. At present, we have postulated a type of real numbers with the operations
and proofs we have needed for this example, which means that Agda treats this type as a free
variable. An alternative would be to implement the constructive reals (Bishop, 1967).
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Using these definitions, we give an Agda type representing a metric space:

record MetS : Set1 where
constructor met
field

Carrier : Set
_�_~_6_ : (x1 : Carrier) (x2 : Carrier) (r : PosReal) � Set
mid : Identity Carrier _�_~_6_
_�_◦_ : Composition Carrier _�_~_6_
weaken : Weakening Carrier _�_~_6_

open MetS public

A metric space is defined as a record containing a carrier type, a distance relation, and proofs that
the distance relation satisfies identity, composition, and weakening. MetS is a type of level Set1
because it contains a Set, the carrier. We have named the distance relation _�_~_6_, which
allows it to be used infix as in M � x ∼ y 6 r, where M : MetS. The last line opens the record
type, which also allows the field names to be used without the prefix MetS.

For example, we can define a metric space whose carrier set is the real numbers, represented
by a type Real, and whose distance is implemented as usual using subtraction (-) and absolute
value (|-|). Like PosReal, this type is a postulate.

reals : MetS
reals = met Real

(λ x y z � | x - y | 6 z)
(6eql ((IdM.trans (IdM.substeq |_| -same) abs0)) pos) tri 6trans

The line discharges the proof obligations necessary for identity, composition, and weakening.
Relative to the standard definition of a metric space, this definition omits two conditions: first,

we do not assume that distance is symmetric; second, we do not assume that any two elements
at distance 0 are equal. We will not need either of these properties in this chapter.

4.1.1 Distance-preserving functions
If A and B are metric spaces, a distance-preserving function from A to B is an underlying function
on the carriers equipped with a proof that it preserves distances, in the sense that the images of
any two points are no further apart in B than the points were in A.

Pres : (A B : MetS) (und : Carrier A � Carrier B) � Set
Pres A B und = ∀ {x1 x2 r} � A� x1 ∼ x2 6 r � B� und x1 ∼ und x2 6 r

record Func (A : MetS) (B : MetS) : Set where
constructor func
field

und : Carrier A � Carrier B
pres : Pres A B und

open Func public

Taking the distance between two functions to be given pointwise, we show that functions
themselves form a metric space.
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Pointwise : (A B : MetS) � (f g : Func A B) (r : PosReal) � Set
Pointwise B f g r = ∀ {x} � B� (und f x) ∼ (und g x) 6 r

_-os_ : MetS � MetS � MetS
A -os B = met (Func A B)

(λ f g r � Pointwise A B f g r)
(mid B)
(λ d1 d2 � B� d1 ◦ d2)
(λ {x1 x2 r r’} d1 d2 � λ {x} � weaken B d1 d2)

Identity, composition, and weakening are inherited from B.

4.1.2 Scaling
Given a metric space, we can scale it by a positive real. It will be convenient to define this by
division, rather than multiplication; the proofs of the properties use some simple reasoning about
division.

!s : PosReal � MetS � MetS
!s f A = met (Carrier A)

(λ x y r � A� x ∼ y 6 (r ÷ f))
(mid A)
(λ {x1 x3 r1 r2} d1 d2 �

IdM.subst (λ r � A� x1 ∼ x3 6 r) distrib÷+ (A� d1 ◦ d2))
(λ d le � weaken A d (div-weaken le))

4.1.3 Monoidal products
The one-point space has the trivial metric:

ones : MetS
ones = met Unit (λ r � Unit)

The metric on pairs says that d ((x, y), (x’, y’)) = d (x, x’) + d (y, y’), but we spell this
fact out relationally (other notions of ⊗ can be defined with different metrics (Reed and Pierce,
2010)). In linear logic terms, this corresponds to multiplicative pairs (⊗), as the resources are
split between the components.
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record ⊗Met {A : MetS} {B : MetS}
(x : Carrier A × Carrier B) (y : Carrier A × Carrier B) (r : PosReal) : Set where
constructor ⊗met
field

r1 : PosReal
r2 : PosReal
δ1 : A� (fst x) ∼ (fst y) 6 r1
δ2 : B� (snd x) ∼ (snd y) 6 r2
ι : Id (r1 + r2) r

open ⊗Met public

Next, we define a metric space with this distance metric. The proofs follow from the correspond-
ing properties for A and B, with some massaging.

_⊗s_ : MetS � MetS � MetS
A ⊗s B = met (Carrier A × Carrier B)

(⊗Met {A} {B})
(λ {x r} � ⊗met 0 ·0 r (mid A) (mid B) +unit)
(λ {x1 x2 x3 x4 x5} � comp {x1} {x2} {x3} {x4} {x5})
(λ {p q r r’} x le �
⊗met (r1 x) (r2 x + gap le) (δ1 x) (weaken B (δ2 x) (positivity Refl))

(IdM.trans
(IdM.trans +lassoc (IdM.substeq (λ x � x + gap le) (ι x)))
(ungap le)))

where
comp : Composition ⊗Met
comp (⊗met d1 d2 Refl) (⊗met d3 d4 Refl) =
⊗met (A� d1 ◦ d3) (B� d2 ◦ d4) assoc/comm4

At this point, we could define additive binary pairs as well, but they will be a special case of
what we define next.

4.1.4 Large products and sums
It turns out that it is quite simple to define product and sum metric spaces over any Agda set. For
Π, the carrier is an Agda dependent function space, and the distance is given pointwise, just as
with -o.

Πs : (A : Set) � (A � MetS) � MetS
Πs A B = met ((x : A) � Carrier (B x))

(λ f g r � (x : A) � (B x)� f x ∼ g x 6 r)
(λ x � mid (B x))
(λ d1 d2 x � (B x)� (d1 x) ◦ (d2 x))
(λ d r x � weaken (B x) (d x) r)

For Σ A B, the carrier is an Agda dependent pair of an element x of A and an element of the
carrier of B x. The distance metric asks the A components to be equal and the B components to
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be the appropriate distance apart. However, because the types of the B components refer to the
A components, it is necessary to choose one instance at which to make the comparison (in this
case, fst p2) and coerce the other second component using the equality proof.

Σs : (A : Set) � (A � MetS) � MetS
Σs A B = met carrier

mets
(λ {x} � (Refl,mid (B (fst x))))
(λ {x1} {x2} {x3} {x4} {x5} � comp {x1} {x2} {x3} {x4} {x5})
(λ {x1} {x2} {r} {r’} � wkn {x1} {x2} {r} {r’})
where

carrier = Σ λ (x : A) � Carrier (B x)
mets = (λ p1 p2 r �

Σ λ (c1 : Id (fst p1) (fst p2))
� (B (fst p2)� IdM.subst (λ x � Carrier (B x)) c1 (snd p1)

∼ snd p2 6 r))

comp : Composition carrier mets
comp {x, y1} { .x, y2} { .x, y3} {r1} {r2} (Refl, p1) (Refl, p2) =

Refl, (B x)� p1 ◦ p2
wkn : Weakening carrier mets
wkn {x, y1} { .x, y2} {r} {r’} (Refl, p) lt = Refl,weaken (B x) p lt

Σ takes a function A � Set to a Set, which explains the funny notation. Intentional equality is
represented by the type Id, where IdM.subst gives the usual substitution eliminator. The proofs
pattern-match in the input equations, which allows the goal equations to be filled in by Refl,
which in turn simplifies the obligation for the second component.

4.2 Syntax

4.2.1 Types

data Ty : Set where
_-o_ : Ty � Ty � Ty
_⊗_ : Ty � Ty � Ty
‘1 : Ty
! : PosReal � Ty � Ty
real : Ty
‘Π : (A : U) � (El A � Ty) � Ty
‘Σ : (A : U) � (El A � Ty) � Ty

The first part of the syntax of types is unsurprising, consisting of constructors for functions,
monoidal products, scaling, and real numbers.

Next, we exploit the fact that we are defining this language inside of a dependently typed
meta-language by enriching the language with a simple form of dependent types. In particular,
we consider only dependency on sets (which can also be thought of as discrete metric spaces).
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This allows us to avoid the question of what a type dependent on a metric space means (though
we will return to a similar issue in Part III), as the domain of dependent functions and pairs is
discrete. The simplest type for these constructors would be

‘Π‘Σ : (A : Set) � (A � Ty) � Ty

That is, ‘Π takes a set, and a function that picks out a Ty for every element of A, and gives back
a Ty. The function here is an admissibility: the body of the ‘Π can be defined by case-analysis or
recursion on the element of A, which we will exploit below.

However, for technical reasons, it is preferable to replace Set with a universe U, which is
itself a Set. U is populated by "codes" for sets, and equipped with an elimination that decodes
each code as a set:

data U : Set where
Πu Σu : (A : U) � (El A � U) � U
_∨_ : (A B : U) � U
> ⊥ : U
nat : U
bool : U
list : U � U

El : U � Set
El (Πu A B) = (x : El A) � El (B x)
El (Σu A B) = Σ λ (x : El A) � El (B x)
El (A ∨ B) = Either (El A) (El B)
El > = Unit
El ⊥ = Void
El nat = Nat
El bool = Bool
El (list A) = List (El A)

Here, we define a simple universe consisting of dependent functions and products, disjoint sums,
natural numbers, booleans, and lists. The decoding function El recursively computes a Set from
each code. Because of the dependent types, it is necessary to define U and El simultaneously,
using induction-recursion (Dybjer, 2000), because the body of a Πu code is an admissibility
function into codes.

There are two reasons to use U instead of abstracting over any Set. The first is that, because
of predicativity, if we used Set, then Ty itself would be a Set1. As an engineering issue, we
had already done much of the development before adding the dependent type constructors; and
switching to a Set1 would have required rewriting some code. A more significant reason is that
we will soon define a datatype indexed by Ty. Though Agda allows it, the theory of datatypes
indexed non-uniformly by Set1’s has not been studied, and while no problems are known, the
universe approach allows us to play it safe.

4.2.2 Contexts
Contexts are lists of assumptions A [r ], meaning A is true with sensitivity r. The sensitivity is
a scaling factor, equivalent to ! r A. A function A -o B internalizes a term of type B with free
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variable A [1 ], and is thus said to be 1-sensitive. As a type, a context A1 [r1 ], ...,An [rn ] is
equivalent to (! r1 A1) ⊗ ... ⊗ (! rn An).

record Item : Set where
constructor [ ]
field

ty : Ty
sen : PosReal

open Item public
Ctx = List Item

We will sometimes apply a function to the sensitivities in the context, in particular scaling
them with multiplication and division:

mapsens : (PosReal � PosReal) � Ctx � Ctx
mapsens f = ListM.map (λ Ar � ty Ar [f (sen Ar)])

_*c_ : PosReal � Ctx � Ctx
r *c Γ = mapsens (λ x � x * r) Γ

_÷c_ : Ctx � PosReal � Ctx
Γ ÷c r = mapsens (λ x � x ÷ r) Γ

If two contexts Γ1 and Γ2 have the same types, their join is a third context with the sum of
their sensitivities:

-- Γ1 , Γ2 = Γ3
data Join : Ctx � Ctx � Ctx � Set where

Done : Join [ ] [ ] [ ]
Cons : ∀ {Γ1 Γ2 Γ3 r1 r2 A} � Join Γ1 Γ2 Γ3

� Join (A [r1] :: Γ1) (A [r2] :: Γ2) (A [r1 + r2] :: Γ3)

4.2.3 Terms
First, we define a datatype of constants, indexed by their types:

data Const : Ty � Set where
cmpswp : Const (real -o real -o real ⊗ real)
rsplit : Const (real -o real ⊗ real)

cmpswp compares two real numbers and puts them into increasing order; it is 1-sensitive. It is
necessary to take compare-and-swap as a primitive because it is not possible to give a general
1-sensitive comparison on reals, such as positive : real -o bool. Consider what it means for such a
function to preserve distances: given any two reals of distance at most r, the booleans it produces
are of distance at most r. But the space of booleans is discrete, so two booleans are only non-
infinitely-distant if they are identical. So a 1-sensitive function must take e.g. -1 and 1, which are
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not infinitely far apart, to the same boolean. However, compare-and-swap is 1-sensitive, because
it puts the two numbers into increasing order, but does not tell you whether it swapped them or
not.

Similarly, rsplit injects its argument into the left or the right component of the pair, depending
on whether it is positive or negative, and leaves the other component 0, but it does not tell you
whether it was positive or negative.

Next, we define a datatype of typed terms in context—i.e. the typing derivations of the
language—in Figure 4.1. Constants can be used at their stated types with the rule const. Hy-
potheses can be used with the rule var if they are assumed at sensitivity greater than 1. This
rule builds in two kinds of weakening: first, the remaining variables in Γ may go unused, and
second, any remaining sensitivity above 1 may be discarded. The rules lam and app for -o are
the standard rules modified to track sensitivity in the following manner: in the introduction rule,
the new assumption is assumed 1-sensitive; in the elimination rule, the sensitivities used in the
function position and in the argument position are joined. Pair introduction pair is similar. Pair
elimination letpair says that (1) if you can prove A ⊗ B from Γ and (2) assuming A and B with
sensitivity r you can prove C from ∆, then you can prove C using Γ scaled by r and ∆. The reason
this rule is a bit complicated is that it builds in a use of the substitution principle, which has the
form

If Γ ` A and ∆, A[r] ` C then (r ∗ Γ),∆ ` C
or, writing Γ ` A[r] to mean Γ÷ r ` A, it can equivalently be stated as

If Γ ` A[r] and ∆, A[r] ` C then Γ,∆ ` C.
Similarly, the rule bang for ! introduction could equivalently be written with a division in the
premise, rather than a multiplication in the conclusion. The rule let! for ! elimination builds in a
substitution, similarly to letpair; here the s is the sensitivity from the substitution principle. The
rules dlam and dapp use admissibility functions to inherit the type from Agda: a ‘Π is introduced
by giving an Agda function that yields a derivation of Γ ` B x for every element x of A, and
eliminated by choosing such an element. Dually, ‘Σ is introduced by such a choice and eliminated
by hypothesizing the first component of the pair, using an admissibility function, and the second
component, using a derivability assumption. dletpair also manipulates the sensitivities in the
same way as the substitution principle.

4.2.4 Derived forms
As a simple example, we show that binary additives (⊕ and &) are definable using ‘Σ and ‘Π.
First, we define if for booleans:

if_then_else : {C : Set} � Bool � C � C � C
if True then x else y = x
if False then x else y = y

Next, sums are encoded as usual in dependent type theory: as a boolean tag bit, followed by
an element of either A or B, depending on whether the tag bit is true for false:

_⊕_ : Ty � Ty � Ty
A ⊕ B = ‘Σ bool (λ b � if b then A else B)
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data _`_ : Ctx � Ty � Set where
const : ∀ {Γ A}

� Const A
� Γ ` A

var : ∀ {Γ A r}
� (A [r]) ∈ Γ � 1 ·0 6 r
� Γ ` A

lam : ∀ {Γ A B}
� (A [1 ·0 ] :: Γ ` B)
� Γ ` A -o B

app : ∀ {Γ1 Γ2 Γ3 A B}
� Γ1 ` A -o B � Γ2 ` A � Join Γ1 Γ2 Γ3
� Γ3 ` B

〈〉 : ∀ {Γ}
� Γ `‘1

pair : ∀ {Γ1 Γ2 Γ3 A B}
� Γ1 ` A � Γ2 ` B � Join Γ1 Γ2 Γ3
� Γ3 ` A ⊗ B

letpair : ∀ {Γ A B C ∆ r Γ’}
� Γ ` A ⊗ B � (A [r]) :: (B [r]) :: ∆ ` C � Join (r *c Γ) ∆ Γ’
� Γ’ ` C

bang : ∀ {Γ A r}
� Γ ` A
� (r *c Γ) ` ! r A

let! : ∀ {Γ1 Γ2 Γ3 A C r s}
� Γ1 ` ! r A � (A [r * s] :: Γ2) ` C � Join (s *c Γ1) Γ2 Γ3
� Γ3 ` C

dlam : ∀ {Γ A B}
� ((x : El A) � Γ ` (B x))
� Γ `‘Π A B

dapp : ∀ {Γ A B}
� Γ `‘Π A B � (t : El A)
� Γ ` (B t)

dpair : ∀ {Γ A B}
� (t : El A) � Γ ` (B t)
� Γ `‘Σ A B

dletpair : ∀ {r Γ1 Γ2 Γ3 A B C}
� Γ1 `‘Σ A B � ((x : El A) � ((B x) [r] :: Γ2) ` C) � Join (r *c Γ1) Γ2 Γ3
� Γ3 ` C

Figure 4.1: Typing rules for differential privacy
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The intro rules simply tag the term with the appropriate bit:

inl : ∀ {Γ A B} � Γ ` A � Γ ` (A ⊕ B)
inl e = dpair True e

inr : ∀ {Γ A B} � Γ ` B � Γ ` (A ⊕ B)
inr e = dpair False e

while the elimination rule checks the tag and defers to the appropriate branch:

case : ∀ {Γ1 Γ2 Γ3 A B C r}
� Γ1 ` (A ⊕ B)
� (A [r] :: Γ2) ` C � (B [r] :: Γ2) ` C
� Join (r *c Γ1) Γ2 Γ3
� Γ3 ` C

case {Γ1} {Γ2} {Γ3} {A} {B} {C} {r} e e1 e2 = dletpair e b where
b : (x : Bool) � (if x then A else B) [r ] :: Γ2 ` C
b True = e1
b False = e2

4.3 Soundness

4.3.1 Combinators
Instead of translating to metric spaces directly, we give a syntax that is closer to the metric
spaces, and use that as an intermediary. The reason for this is technical: the translation of a
natural deduction rule typically involves several of the primitive operations on the corresponding
metric spaces—e.g. because the natural deduction rule plumbs the context through each rule. For
example, we may have to apply an operation that reassociates the context, which is represented
as tuple using ⊗:

lassoc : ∀ {A B C} � (A ⊗ (B ⊗ C))⇒ ((A ⊗ B) ⊗ C)

However, when this rule is phrased in terms of the semantics, it is difficult for Agda to figure out
the implicit arguments, because ⊗s is not treated as injective. On the other hand, when this rule
is phrased in terms of the syntax, ⊗ is a datatype constructor and therefore injective. Thus, we
can simplify the syntax of the translation considerably by going through this intermediate step,
so that when we are composing together these combinators, the implicit arguments are filled in
automatically.

The combinators are defined as follows:

data _⇒_ : Ty � Ty � Set where
⇒c : ∀ {A} � Const A � ‘1⇒ A
id : ∀ {A} � A⇒ A
_◦_ : ∀ {A B C} � B⇒ C � A⇒ B � A⇒ C
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abs : ∀ {A B C} � (A ⊗ B)⇒ C � A⇒ (B -o C)
eval : ∀ {A B} � ((A -o B) ⊗ A)⇒ B
wk : ∀ {A B C} � B⇒ C � (A ⊗ B)⇒ C
_⊗m_ : ∀ {A B C D} � A⇒ B � C⇒ D � A ⊗ C⇒ B ⊗ D
tw : ∀ {A B} � (A ⊗ B)⇒ (B ⊗ A)
oneδ : ∀ {A} � A⇒ (A ⊗‘1)
onei : ∀ {A} � A⇒‘1
rassoc : ∀ {A B C} � ((A ⊗ B) ⊗ C)⇒ (A ⊗ (B ⊗ C))
lassoc : ∀ {A B C} � (A ⊗ (B ⊗ C))⇒ ((A ⊗ B) ⊗ C)
dabs : ∀ {Γ A B} � ((x : El A) � Γ⇒ B x) � Γ⇒‘Π A B
dapp : ∀ {A B} � (t : El A) � ‘Π A B⇒ B t
dpair : ∀ {A B} � (t : El A) � B t⇒‘Σ A B
dsplit : ∀ {A B C} � ((x : El A) � B x⇒ C) � ‘Σ A B⇒ C
rassocΣ : ∀ {A B C} � ((‘Σ A B) ⊗ C)⇒ (‘Σ A (λ x � B x ⊗ C))
lassocΣ : ∀ {A B C} � (‘Σ A (λ x � B x ⊗ C))⇒ ((‘Σ A B) ⊗ C)
!i : ∀ {A r} � r 6 1 ·0 � A⇒ ! r A
!e : ∀ {A r} � 1 ·0 6 r � ! r A⇒ A
!split : ∀ {A r s} � (! (r + s) A)⇒ ((! r A) ⊗ (! s A))
!i2 : ∀ {A r} � ‘1⇒ A � ‘1⇒ ! r A
!f : ∀ {A B r} � A⇒ B � ! r A⇒ ! r B
!co : ∀ {A s r} � ! r (! s A)⇒ ! (s * r) A
!coi : ∀ {A s r} � ! (s * r) A⇒ ! r (! s A)
!⊗d : ∀ {A B r} � ! r (A ⊗ B)⇒ (! r A) ⊗ (! r B)
!⊗di : ∀ {A B r} � (! r A) ⊗ (! r B)⇒ ! r (A ⊗ B)
!Σd : ∀ {A B r} � ! r (‘Σ A B)⇒‘Σ A (λ x � ! r (B x))
!Σdi : ∀ {A B r} � ‘Σ A (λ x � ! r (B x))⇒ ! r (‘Σ A B)

From these we can derive weakening (on the right) and interchange:

wk’ : ∀ {A B C} � B⇒ C � (B ⊗ A)⇒ C
wk’ f = wk f ◦ tw
intch : ∀ {A B C D} � ((A ⊗ B) ⊗ (C ⊗ D))⇒ ((A ⊗ C) ⊗ (B ⊗ D))
intch = lassoc ◦ (id ⊗m (rassoc ◦ (tw ⊗m id) ◦ lassoc)) ◦ rassoc

4.3.2 Source to combinators

First, we define the interpretation of a context as a type, as discussed above.

J_Kct : Ctx � Ty
J A [r] :: Γ Kct = J Γ Kct ⊗ (! r A)
J [ ] Kct = ‘1

Next, we prove two lemmas about contexts. First, the meta-operation of multiplying by a
sensitive has the same effect as ! (we need only one direction). Second, the join of two contexts
is the same as their tensor (but again we only need one direction):
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ctx! : ∀ {Γ r} � J r *c Γ Kct⇒ ! r J Γ Kct
ctx! {[ ]} = !i2 id
ctx! {B [s] :: Γ} = !⊗di ◦ (ctx! {Γ} ⊗m !coi)

join-lemma : ∀ {Γ1 Γ2 Γ} � Join Γ1 Γ2 Γ � J Γ Kct⇒ (J Γ1 Kct ⊗ J Γ2 Kct)
join-lemma Done = oneδ
join-lemma (Cons j) = intch ◦ (join-lemma j ⊗m !split)

Next, we interpret variables as a series of weakenings around a use of !e:

varf : ∀ {Γ A r} � (A [r]) ∈ Γ � 1 ·0 6 r � J Γ Kct⇒ A
varf i0 le = wk (!e le)
varf {B [r] :: Γ} (iS y) le = wk’ (varf y le)

Finally, the translation to combinators is an exercise in programming by type-checking. We
recommend reading this in the companion code in Agda, so that you can investigate the types of
each clause.

J_K1 : ∀ {Γ A} � Γ ` A � J Γ Kct⇒ A
J var i le K1 = varf i le
J const c K1 = ⇒c c ◦ onei
J lam e K1 = abs (J e K1 ◦ (id ⊗m !i 6refl))
J app e e’ j K1 = eval ◦ (J e K1 ⊗m J e’ K1) ◦ join-lemma j
J 〈〉 K1 = onei
J pair e e’ j K1 = (J e K1 ⊗m J e’ K1) ◦ join-lemma j
J letpair {Γ} e e’ j K1 = ((J e’ K1 ◦ lassoc) ◦ tw ◦ (tw ⊗m id)) ◦

(((!⊗d ◦ !f J e K1) ◦ ctx! {Γ}) ⊗m id) ◦ join-lemma j
J bang {Γ} x K1 = !f J x K1 ◦ ctx! {Γ}
J let! {Γ1} e e’ j K1 = J e’ K1 ◦ (id ⊗m (!co ◦ (!f J e K1) ◦ ctx! {Γ1})) ◦ tw ◦ join-lemma j
J dlam e K1 = dabs (λ x � J e x K1)
J dapp e t K1 = dapp t ◦ J e K1
J dpair t e K1 = (dpair t) ◦ J e K1
J dletpair {r} {Γ1} {Γ2} {Γ3} e1 e2 j K1 = dsplit (λ x � J e2 x K1 ◦ tw)
◦ ((rassocΣ) ◦ (!Σd ⊗m id))
◦ (!f J e1 K1 ◦ ctx! {Γ1} ⊗m id {J Γ2 Kct}) ◦ join-lemma j

4.3.3 Combinators to metric spaces
First, we interpret types using the corresponding metric space constructors:

J_K : Ty � MetS
J A -o B K = J A K -os J B K
J A ⊗ B K = J A K ⊗s J B K
J real K = reals
J ! r A K = !s r J A K
J‘1 K = ones
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J‘Π A B K = Πs (El A) (λ x � J B x K)
J‘Σ A B K = Σs (El A) (λ x � J B x K)
J_Kc : Ctx � MetS
J Γ Kc = J J Γ Kct K

We also compose this with the type interpretation of contexts.
The interpretation of combinators as metric spaces has the following type:

J_K2 : ∀ {A B} � A⇒ B � Func J A K J B K

A combinator term from A to B is interpreted as a distance-preserving function from J A K
to J B K. The implementation is about 90 lines of code, which we excerpt briefly here. The
underlying functions are what one would expect if you ignore the metrics and read the types of
the combinators intuitionistically. The proofs of distance-preservation are not difficult, but they
do involve a bit of arithmetic and equality manipulation. The case for eval is typical:

J eval {A} {B} K2 = record {
und = λ fa � und (fst fa) (snd fa);
pres = (λ {fa1 fa2 r} d �

IdM.subst (λ z � J B K� und (fst fa1) (snd fa1) ∼ und (fst fa2) (snd fa2) 6 z)
(+twist (ι d))
(J B K� pres (fst fa1) (δ2 d) ◦ (δ1 d)))}

The underlying function is given by function application. The proof of distance preservation
uses (1) the distance between the two functions on any single argument (δ1 d), (2) the distance
between the arguments (δ2 d), (3) distance preservation for (fst fa1), and (4) an equality coercion
using a proof that addition is commutative (+twist).

Primitives, like cmpswp, are interpreted by implementing the desired function on the carrier—
in this part of the semantics, one is free to use boolean-valued less-than, etc.—and then doing
the arithmetic to prove the implementation preserves distances.

Finally, we tie it all together by composition:

J_K12 : ∀ {Γ A} � Γ ` A � Func J Γ Kc J A K
J e K12 = J J e K1 K2

4.4 Examples
First, we need a type of lists:

rlist : Ty

nil : ∀ {Γ} � Γ ` rlist

cons : ∀ {Γ} � Γ ` (real -o rlist -o rlist)

listrec : ∀ {r Γ1 Γ2 Γ3 C} � Γ1 ` rlist
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� Γ2 ` C
� (real [r] :: C [r ] :: Γ2 ` C)
� Join (r *c Γ1) Γ2 Γ3
� Γ3 ` C

This type can either be added to the language and its semantics, or implemented using Σ-types
and recursion as ‘Σ nat (λ n � vec n real) where vec 0 A = ‘1 and vec (S n) A = A ⊗ vec A n.

As an example, we implement a function to insert a real number in order into a list of real
numbers, which is assumed to be sorted in increasing order. The type system proves that this
function is 1-sensitive; Reed and Pierce (2010) use this function to define insertion sort, which
shows that sorting can be used in a 1-sensitive function. In concrete syntax, insert is implemented
as follows:

insert : rlist -o real -o rlist
insert = λ l �

listrec l of
[ ] � λ new � (cons new [ ])
x :: r � λ new �
let (smaller, bigger) = cmpswap x new in smaller :: r bigger

insert is 1-sensitive because it uses variables linearly, and relies on only one primitive, cmpswap,
which is proved sound in the semantics.

To use Agda as a type checker for this term, we must first translate the concrete syntax into
abstract syntax, and the variables into de Bruijn form:

insert : [ ] ` rlist -o real -o rlist
insert =

lam (listrec (var i0 6refl)
(lam (app (app cons (var i0 6refl) ?) nil ?))
(lam (letpair (app (app (const cmpswp) (var i0 6refl) ?) (var (iS i0) 6refl) ?)

((app (app cons (var (iS i0) 6refl) ?)
(app (var (iS (iS (iS (iS i0)))) 6refl) (var i0 6refl) ?) ?)) ?)) ?)

Next, we must annotate each rule with more than one premise with a proof of Join, which
shows how to split the context:

insert : [ ] ` rlist -o real -o rlist
insert = lam (listrec (var i0 6refl)

(lam (app (app cons
(var i0 6refl)
(Cons’ right (Cons’ nw Done)))
nil (Cons’ left (Cons’ nw Done))))

(lam (letpair (app (app (const cmpswp)
(var i0 6refl)
(Cons’ right (Cons’ nw (Cons’ nw (Cons’ nw Done)))))

(var (iS i0) 6refl)
(Cons’ left (Cons’ right (Cons’ nw (Cons’ nw Done)))))
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((app (app cons
(var (iS i0) 6refl)
(Cons’ nw (Cons’ right (Cons’ nw (Cons’ nw (Cons’ nw (Cons’ nw Done)))))))

(app (var (iS (iS (iS (iS i0)))) 6refl)
(var i0 6refl)
(Cons’ right (Cons’ nw (Cons’ nw (Cons’ nw (Cons’ left (Cons’ nw Done)))))))

(Cons’ right (Cons’ left (Cons’ nw (Cons’ nw (Cons’ right (Cons’ nw Done))))))))
(Cons’ left1 (Cons’ left1 (Cons’ right1 (Cons’ nw1 Done))))))

(Cons’ left1 Done))

In this code, we never split a sensitivity: when splitting a variable A [r ], we assume A [r ]
in one branch and A [0 ] in the other. Thus, the proofs of Join rely on only a simple collection
of arithmetic proofs, corresponding to whether the variable goes into the left branch, the right
branch, or nowhere (for variables whose sensitivity is already 0). To give these directions, we
use left : Id (1 + 0) 1 and right : Id (0 + 1) 1 and nw : Id (0 + 0) 0. left1, right1, and
nw1 additionally cancel a multiplication by 1, which arises in elimination rules that choose an
arbitrary sensitivity for the cut formula. We also use a derived version of Cons, which abstracts
the constraint that the result sensitivity is the sum of the two inputs into an equality premise:

Cons’ : ∀ {Γ1 Γ2 Γ3 r1 r2 r3 A} � Id (r1 + r2) r3 � Join Γ1 Γ2 Γ3
� Join (A [r1] :: Γ1) (A [r2] :: Γ2) (A [r3 ] :: Γ3)

Cons’ Refl p = Cons p

4.5 Discussion
In this chapter, we have an implemented an semantic approach to a programming language for
differential privacy: we implemented metric spaces and distance preserving functions and mech-
anized the translation from Reed and Pierce (2010)’s linear-logic-based type system into this
semantics. The resulting language is easily extensible by new primitives, if they can be proved
sound semantically. The operational behavior of programs is inherited from the host language:
the semantics also functions as a compiler from the affine system to Agda. We are currently in
the process of extending this code with more type constructors, such as Reed and Pierce (2010)’s
monad of probabilistic computations, and primitives. We hope to be able to verify the solution to
Netflix’s privacy bug, where they released anonymized movie rental records that could nonethe-
less be correlated with other databases, such as IMDB (McSherry and Mironov, 2009; Narayanan
and Shmatikov, 2008).

What tools have we used in this implementation? First, we exploited admissibility functions
from the meta-language in a crucial way: a distance-preserving function is a function equipped
with a proof that it preserves distances. This requires dependency on admissibility functions
as well: this example would not be possible in Twelf, Delphin, or Beluga, which either do
not have a type of admissibility functions, or do not allow dependency on them. Second, we
exploited the fact that we were working in a dependently typed host language to add dependent
types (over sets) to the language. Thus far, we have used these dependent types as generalized
additives, though we could also explore using them for expressing, e.g., data structure invariants
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in differentially private code. Because of Π and Σ, the definition of the syntax/typing derivations
of the language uses a mix of admissibility and derivability: e.g. the premise of dletpair binds
two assumptions, one admissibility and the other derivability. We explore such mixed definitions
in Part II.

It is possible, if tedious, to verify programs by writing them directly as an element of the
source language datatype. Agda’s implicit argument mechanism can already be used to infer
types and contexts, but the representation is cluttered by (a) the de Bruijn representation of vari-
ables and (b) the context splitting annotations necessary for the affine logic. We speculate on a
solution to (a) below; for the latter, we could implement resource inference, to infer the Join an-
notations, analogously to the theorem prover in the previous chapter. Given these improvements,
writing elements in the Agda datatype of well-typed terms would be quite close to the desired
concrete syntax.

Categorical Interpretation Another reason we have presented this example is that it fore-
shadows the categorical interpretation of type theory that we present in Part III. The type MetS
of metric spaces is in fact the specification of an enriched category, with the Carrier being the
set of objects, and the distance relation the set of morphisms (enriched by distance). Distance-
preserving functions are analogous to functors. The description of the various type constructors
has a similar feel to construction of a Cartesian closed structure in Cat. The fact that we have
not required distance to be symmetric foreshadows the directed type theory described below.
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Part II

Mixing Derivability and Admissibility
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Chapter 5

An Embedded Logical Framework

The research described in this chapter was conducted jointly with Robert Harper, and published
in ICFP 2009 (Licata and Harper, 2009).

The above examples motivate providing a generic implementation of derivability inside of
MLTT. One option would be to implement a well-known logical framework, such as LF. How-
ever, this would not account for inductive definitions that mix derivability and admissibility as-
sumptions. Admissibility premises are useful because they permit infinitely branching deriva-
tions, as in the differential privacy example above, and allow certain forms of side conditions,
such as negated premises (as J � false). Thus, we instead take the opportunity to explore a
new logical framework that allows such interaction. In this chapter, we focus on the hypothet-
ical judgement, precluding dependency on assumptions. Because of this restriction to “non-
dependent judgements,” our examples focus on simply-typed programming with abstract syntax.
Our goal is to demonstrate that

It is possible to implement, within a dependently typed programming language, a
logical framework that allows derivability and admissibility to be mixed in novel
and interesting ways.

As we discussed briefly in Chapter 2, the reason that mixing admissibility and derivability is
difficult is that rules with admissibility premises are not necessarily pure, and, consequently, the
structural properties do not necessarily hold. For example, in logical frameworks such as LF, it is
always possible to weaken a value of type J to L ` J . However, this is not necessarily possible
when J itself is an admissibility. The reason is that we interpret an admissibility in a derivability
context, Ψ ` (J � K), as essentially the same thing as an admissibility between derivabilities:
(Ψ ` J) � (Ψ ` K). Now, suppose we are given a function f of type Ψ ` (J � K), and we try
to weaken this to a function of type (Ψ, L) ` (J � K). This requires an admissibility function
from (Ψ, L) ` J to (Ψ, L) ` K. Since f is a black box, we can only hope to achieve this by
pre- and post-composing with appropriate functions. The post-composition must take Ψ ` K
to Ψ, L ` K, which is a recursive application of weakening. However, the pre-composition
has a contravariant flip: we require strengthening (Ψ, L) ` J to Ψ ` J in order to call f .
Such a strengthening function does not in general exist, because the derivation of J might be
that assumption of L. Similarly, substitution of terms for variables is not necessarily possible,
because substitution requires weakening.

81
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As a concrete example, consider a closed admissibility function of type · ` (exp � exp),
which is defined by case-analysis over closed λ-calculus expressions, giving cases for functions
and applications—but not for variables, because there are no variables in the empty context.
Weakening such a function to type exp ` (exp � exp) enlarges its domain, asking it to handle
cases that it does not cover. Another example, which is particularly stark, is weakening L � false,
which refutes the existence of any terms of type L, to L ` (L � false), which has one such term
to account for.

Our solution to this problem rests on the observation that there is nothing about the inductive
definition of derivability that requires the structural properties to hold. We saw this in the sim-
ple logical frameworks described in Section 2: the identity principle is taken as a rule, but the
remaining structural properties are proved admissible. Thus, we may give a definition of a frame-
work that allows both admissibility and pre-derivability. Pre-derivability captures the notion of a
scoped assumption, which can be used via the identity principal, but does not necessarily satisfy
the remaining structural properties. Then, we analyze circumstances under which the structural
properties hold, in which case pre-derivability is actually derivability.

More concretely, we implement, in Agda, a logical framework with two function-like type
constructors, ⊃ (for admissibility) and ⇒ (for pre-derivability). A ⊃ B classifies Agda func-
tions, while D ⇒ A classifies values of type A with a free scoped assumption of type D. In
some cases, D ⇒ A represents a derivability, and therefore determines a function given by sub-
stitution, but in some cases it does not. However, rather than leaving it to the programmer to
implement the structural properties, we observe that they are in fact definable generically, not for
every type D ⇒ A, but under certain conditions on the types D and A. For example, returning
to our failed attempt to weaken A ⊃ B above, if variables of type D could never appear in terms
of type A, then the required strengthening operation would exist. As a rough rule of thumb, one
can weaken with types that do not appear to the left of a computational arrow in the type being
weakened, and similarly for substitution. Our framework implements the structural properties
generically but conditionally, providing programmers with the structural properties “for free”
in many cases. We implement ⇒ with well-scoped de Bruijn indices, but another first-order
representation of derivability with explicit contexts could be used instead.

Our framework is implemented as a universe in Agda (we saw a simple example of a uni-
verse in Chapter 4). This means that we (a) give a syntax for the types of the framework and (b)
give a function mapping the types of our language to certain Agda types; the programs of the
framework are then the Agda programs of those types. This implementation strategy allows us
to reuse the considerable implementation effort that has gone into Agda, and to exploit generic
programming within dependently typed programming (Altenkirch and McBride, 2003) to imple-
ment the structural properties. Additionally, it permits programs written using our framework to
interact with existing Agda code.

In particular, we define a universe of contextual types, which permit inference rules to be
written in the local form discussed in Chapter 2: the context of scoped assumptions need not
be mentioned explicitly in rules, but is passed in from the outside. This often permits more
concise specifications. Semantically, a type in the universe is interpreted as a function from
contexts to Agda types. For example, the contextual type A ⊗ B, is interpreted as the function
λΨ. 〈Ψ〉A × 〈Ψ〉B , where 〈Ψ〉A stands for the interpretation of A at Ψ, and × is pairing in
Agda. The universe types are thus “point-free” combinators that generate functions from con-
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texts to types, without mentioning the context argument explicitly. For example, D ⇒ A is
interpreted as λΨ. 〈Ψ,D〉A—it extends the current context without mentioning it by name. That
said, our framework supplies a rich enough set of combinators that contexts can be mentioned
explicitly when this is helpful—for example, the contextual type [Ψ]A represents a constant func-
tion λ_. 〈Ψ〉A which interprets A relative to the given Ψ, ignoring the context supplied by the
interpretation.

Our framework implements a variety of structural properties for the universe, including weak-
ening, substitution, exchange, contraction, and subordination-based strengthening (Virga, 1999),
all using a single generic map function for datatypes that mix binding and computation. The
structural properties’ preconditions are defined computationally, so that our framework can dis-
charge these conditions automatically in many cases. This gives the programmer free access to
weakening, substitution, etc. (when they hold).

In Section 5.1, we introduce our language and its semantics. In Section 5.2, we present
examples. We program a variety of examples, and demonstrate that we can express detailed
invariants about variable usage in a program’s type while still writing clean and clear code.
For example, we implement normalization-by-evaluation (Berger and Schwichtenberg, 1991;
Martin-Löf, 1975) for the untyped λ-calculus, an example considered in FreshML by Shinwell
et al. (2003). Our version of this algorithm makes essential use of a datatype mixing binding and
computation, and our type system verifies that evaluation maps closed terms to closed terms. In
Section 5.3, we discuss the structural properties. In Sections 5.4, we discuss related work.

5.1 Language Definition

5.1.1 Types
The grammar for the types of our language is as follows:

Defined atoms D ::= . . .
Var. Types C ::= (a subset of D)
Contexts Ψ ::= [] | (Ψ, C)
Types A ::= ‘0 | ‘1 | A⊗B | A⊕B | listA | A ⊃ B

D+ D | C# | Ψ⇒∗ A | �A
∀c ψ.A | ∃c ψ.A | ∀6CA | ∃6CA

The language is parametrized by a class of defined atomsD, which are the names of datatypes.
A subset of these names are variable types, which are allowed to appear in contexts. This dis-
tinguishes certain types C which may be populated by variables from other types D which may
not. This definition of VarType permits only variables of base type, not higher-order rules. Our
approach is compatible with higher-order rules, as we show in Chapter 6, but for simplicity we
leave them out of this Agda implementation. Contexts are lists of variable types, written with
’cons’ on the right.

The types on the first line have their usual meaning. The type D+ D is the datatype named
by D. Following Delphin (Poswolsky and Schürmann, 2008), we include a type C# classifying
only the variables of type C. The type Ψ ⇒∗ A of pre-derivabilities classifies inhabitants of



84 CHAPTER 5. AN EMBEDDED LOGICAL FRAMEWORK

A in the current context extended with Ψ. The type �A classifies closed inhabitants of A. The
types ∀c and ∃c classify universal and existential context quantification; ∀6CA and ∃6CA provide
bounded quantification over contexts containing only the type C.

Agda implementation

We now represent these types in Agda. We represent defined atoms, variable types and contexts
as follows:

DefAtom = DefinedAtoms.Atom

data VarType : Set where
. : (D : DefAtom) { : Check (DefinedAtoms.world D)} � VarType

Vars = List VarType

DefinedAtoms.Atom is a parameter that we will instantiate later. DefinedAtoms.world returns
true when D is allowed to appear in the context; Check turns this boolean into a proposition
(Check True is the unit type; Check False is the empty type; see Chapter 2 for an introduction). A
VarType is thus a pair of an atom along with the credentials allowing it to appear in contexts.

We represent the syntax of types in Agda as follows:

data Type : Set where
-- types that have their usual meaning

‘1 : Type
_⊗_ : Type � Type � Type
‘0 : Type
_⊕_ : Type � Type � Type
list_ : Type � Type
_⊃_ : Type � Type � Type

-- datatypes and context manipulation
D+ : DefAtom � Type
_# : VarType � Type
_⇒*_ : Vars � Type � Type
� : Type � Type
∀c : (Vars � Type) � Type
∃c : (Vars � Type) � Type
∀6 : VarType � Type � Type
∃6 : VarType � Type � Type

The only subtlety in this definition is that we represent the bodies of ∀c and ∃c by admissibility
functions in Agda. This choice has some trade-offs: on the one hand, it means that the bodies of
quantifiers can be specified by any Agda computation (e.g. by recursion over the domain). On
the other hand, it makes it difficult to analyze the syntax of Types, because there is no way to
inspect the body of the quantifier. Indeed, this caused problems for our implementation of the
structural properties, which we solved by adding certain instances of the quantifiers (∀⇒ and
∃⇒, discussed below), which would otherwise be derived forms, as separate Type constructors.
In future work, we may pursue a more syntactic treatment of the quantifiers (which would of
course be easier if we had good support for variable binding in Agda).



5.1. LANGUAGE DEFINITION 85

A rule, which is the type of a datatype constructor, pairs the defined atom being constructed
with a single premise type (zero or many premises can be encoded using ‘1 and ⊗):

data Rule : Set where
_⇐_ : DefAtom � Type � Rule

We will make use of a few derived forms:

• We write (∀⇒ A) for ∀c (λ Ψ � Ψ ⇒* A), and similarly for ∃⇒. This type quantifies
over a context Ψ and immediately binds it around A. Similarly, we write [Ψ ] * A for
� (Ψ ⇒* A)

• We write (C ⇒ Ψ) for⇒* with a single premise.
• We write (C +) for (D+ C) when C is a variable type.
• We write bool for ‘1 ⊕‘1 and A option for A ⊕‘1.

5.1.2 Semantics
In Figure 5.1, we define the semantic interpretation of a Type, a function <_>_ which maps each
Type to a function from contexts to sets. We write an application of this function as < Ψ > A,
where Ψ is a context and a A is a Type. The first six cases interpret the basic types of the simply-
typed λ-calculus as their Agda counterparts, pushing the context inside to the recursive calls.

The next two cases interpret datatypes. We define an auxiliary datatype called Data which
represents all of the data types defined in the universe. Data is indexed by a context and a defined
atom, with the idea that the Agda set Data Ψ D represents the values of datatype D in context Ψ.
There are two ways to construct a datatype: (1) apply a datatype constructor to an argument and
(2) choose a variable from Ψ. Constants are declared in a signature, represented with a predicate
on rules InΣ : Rule � Set, where InΣ R is inhabited when the rule R is in the signature. The first
constructor, written as infix ·, pairs a constant with the interpretation of the constant’s premise.
The second constructor, ., injects a variable from Ψ into Data; the type of well-scoped de Bruijn
indices _∈_ was discussed in Chapter 2. A DefAtom D is in the context if there exist credentials
c for which the VarType formed by (. D {c}) is in the list Ψ.

Finally, we provide a collection of types that deal with the context: Ψ ⇒* A extends the
context (we write + for append); � A clears the context. The quantifiers ∀c and ∃c are interpreted
as the corresponding Agda dependent function and pair types. Finally, the types ∀6 D A and
∃6 D A quantify over contexts Ψ’ for which AllEq Ψ’ D holds. The type AllEq says that every
variable type in Ψ is equal to the given type D (List.all is true when its argument is true on all ele-
ments of the list; eqVarType is a boolean-valued equality function for variable types). (We could
internalize AllEq Ψ’ D as a type alleq D—given meaning by < Ψ > (alleq D) = AllEq Ψ D—in
which case the bounded quantifier could expressed as a derived form, but we have not needed
alleq D in a positive position in the examples we have coded so far.)

An Agda datatype is strictly positive if it does not appear to the left of an Agda (admissibility)
function type (�) in its own definition; this positivity condition ensures that the user does not
define general recursive types (e.g. µD.D → D), which can be used to inhabit any type and
to write non-terminating code. The above type Data does not pass the positivity checker: it is
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AllEq : Vars � VarType � Set
AllEq Ψ D = Check (ListM.all (eqVarType D) Ψ)

mutual
data Data (Ψ : Vars) (D : DefAtom) : Set where

_·_ : {A : Type} � InΣ (D⇐ A) � < Ψ > A � Data Ψ D
. : {c : } � (. D {c}) ∈ Ψ � Data Ψ D

<_>_ : Vars � Type � Set
-- basic types

< Ψ >‘1 = Unit
< Ψ >‘0 = Void
< Ψ > (A ⊗ B) = (< Ψ > A) × (< Ψ > B)
< Ψ > (A ⊕ B) = Either (< Ψ > A) (< Ψ > B)
< Ψ > (list A) = List (< Ψ > A)
< Ψ > (A ⊃ B) = (< Ψ > A) � (< Ψ > B)

-- data types
< Ψ > (D+ D) = Data Ψ D
< Ψ > (D #) = D ∈ Ψ

-- context manipulation
< Ψ > (Ψnew⇒* A) = < Ψ + Ψnew > A
< > (� A) = < [ ] > A
< Ψ > (∃c τ) = Σ λ Ψ’ � < Ψ > (τ Ψ’)
< Ψ > (∀c τ) = (Ψ’ : Vars) � < Ψ > (τ Ψ’)
< Ψ > (∀6 D A) = (Ψ’ : Vars) � AllEq Ψ’ D � < Ψ + Ψ’ > A
< Ψ > (∃6 D A) = Σ (λ (Ψ’ : Vars) � AllEq Ψ’ D × < Ψ + Ψ’ > A)

Figure 5.1: Interpretation of the universe
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defined mutually with <_>_, and <_>_ occurs to the left of an Agda function type in the
meaning of ⊃. In this chapter, we wish to program with general recursive types, so we will
ignore this failure of positivity checking. An interesting direction for future work would be to
consider a total variant of our framework, which admits only strictly positive types. This would
require a more refined explanation of the construction of the defined atoms in the universe, e.g.
using containers (Abbott et al., 2005), because the positivity of a defined atom D depends on the
rules for D in the signature InΣ.

We also define versions of � and ∀⇒ that construct Agda Sets:

� : Type � Set
� A = < [ ] > A

∀V_ : Type � Set
∀V_ A = (Ψ : Vars) � < Ψ > A

The first is more concise than < [ ] > � A, but means the same thing. The second is morally
the same as < [ ] > ∀⇒ A, but this expands to (Ψ : Vars) � < Ψ + [ ] > A, which is morally the
same but intensionally different.

5.1.3 Structural Properties
In Figure 5.2, we present the type signatures for the structural properties; this is the interface that
users of our framework see.

For example, the type of substitution should be read as follows: for any A and D, if the
conditions for substitution hold, then there is a function of type (∀V (D ⇒ A) ⊃ (D +) ⊃ A)
(for any context, given a term of type A with a free variable, and something of type D + to plug
in, there is a term of type A without the free variable). Weakening coerces a term of type A to a
term with an extra free variable; strengthening does the reverse; exchange swaps two variables;
contraction substitutes a variable for a variable. We also include an n-ary version of weakening
for use with the bounded quantifier: if A can be weakened with D, then A can be weakened with
a whole context comprised entirely of occurrences of D.

We discuss the meaning of the conditions (canSubst, etc.) below; in all of our examples, they
will be discharged automatically by our implementation.

5.2 Examples
In this section, we illustrate programming in our framework, adapting a number of examples that
have been considered in the literature (Pientka, 2008; Poswolsky and Schürmann, 2008; Shin-
well et al., 2003). Throughout this section, we compare the examples coded in our framework
with how they are/might be represented in Twelf, Delphin, Beluga, FreshML, and “raw Agda”
(without using our framework). We endeavor to keep these comparisons objective, focusing on
what invariants of the code are expressed, and what auxiliary functions the programmer needs
to define. Several additional examples are available in the companion Agda code, including a
translation from λ-terms to combinators, a type checker for simply-typed λ-calculus terms, an
evaluator for λ-calculus with mutable references (using variables to represent locations), and
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subst : (A : Type) {D : VarType}
{ : Check (canSubst (un. D) A)}
� (∀V (D⇒ A) ⊃ (D +) ⊃ A)

weaken : (A : Type) {D : VarType}
{ : Check (canWeaken (un. D) A)}
� (∀V A ⊃ (D⇒ A))

strengthen : (A : Type) {D : VarType}
{ : Check (canStrengthen (un. D) A)}
� ∀V (D⇒ A) ⊃ A

exchange2 : (A : Type) {D1 D2 : VarType}
� (∀V (D2⇒ D1⇒ A) ⊃ (D1⇒ D2⇒ A))

contract2 : (A : Type) {D : VarType}
� (∀V (D⇒ D⇒ A) ⊃ (D⇒ A))

weaken*/bounded : (A : Type) (Ψ : Vars) {D : VarType}
� (AllEq Ψ D)
� {canw : Check (canWeaken (un. D) A)}
� (∀V A ⊃ (Ψ⇒* A))

Figure 5.2: Type signatures of structural properties

an alternate version of normalization-by-evaluation, which has simpler types at the expense of
slightly more-complicated code.

To use our framework, we give a type DefAtom representing the necessary datatypes names,
along with a datatype

data InΣ : Rule � Set where

defining the datatype constructors.
We use the following naming convention: Defined atoms are given names that end in A. For

types of variables, we define atomC to be atomA injected into VarType. Finally, we define atom
to be the Type constructed by D+atomA. E.g. for a type of expressions exp, we will make the
following definitions:

expA : DefAtom
expC = . arithA
exp = D+ natA

5.2.1 Evaluating Arithmetic Expressions
As a simple example of mixing admissibility and derivability, we consider the syntax of a pro-
gramming language with primitives specified by arbitrary meta-language functions. In particu-
lar, we consider arithmetic expressions constructed out of (1) variables, (2) numeric constants,



5.2. EXAMPLES 89

(3) let binding, and (4) arbitrary binary primitive operations, represented by functions of type
nat ⊃ nat ⊃ nat.

In a concrete syntax, we might specify a signature for this datatype as follows:

num : arith⇐ nat
letbind : arith⇐ arith⊗ (arith⇒ arith)
binop : arith⇐ arith⊗ (nat ⊃ nat ⊃ nat)⊗ arith

Recall that the symbol⇐ is used for datatype constructors, or rules. We use⇒ (derivability) to
represent the body of the letbind, and ⊃ (admissibility) to represent the primops. In Agda, this
signature is rendered as constructors for the datatype InΣ:

zero : InΣ (natA⇐‘1)
succ : InΣ (natA⇐ nat)

num : InΣ (arithA⇐ nat)
letbind : InΣ (arithA⇐ arith ⊗ (arithC⇒ arith))
binop : InΣ (arithA⇐ arith ⊗ (nat ⊃ nat ⊃ nat) ⊗ arith)

Next, we define an evaluation function that reduces an expression to a number:

eval : � (arith ⊃ nat)
eval (num · n) = n
eval (letbind · (e1, e2)) = eval (subst arith e2 e1)
eval (binop · (e1, f, e2)) = f (eval e1) (eval e2)
eval (. ())

Evaluation maps closed arithmetic expressions to natural numbers (the type � (arith ⊃ nat)
reduces to the Agda function type Data [ ] arithA � Data [ ] natA). Constants evaluate to them-
selves; binops are evaluated by applying their code to the values of the arguments; let-binding
is evaluated by substituting the expression e1 into the letbind’s body e21 and then evaluating the
result. A simple variation would be to evaluate e1 first and then substitute its value into e2. The
final clause covers the case for variables with a refutation pattern: there are no variables in the
empty context.

Comparison. This example provides a nice illustration of the benefits of our approach: Sub-
stitution is provided “for free” by the framework, which infers that it is permissible to substitute
for arithC variables in arith—this improves on implementing the example in raw Agda, where
substitution would need to be implemented by hand. The type system enforces the invariant that
evaluation produces a closed natural number.

It is not possible to define the type arith in Twelf/Delphin/Beluga, as LF representations
cannot use computational functions. One could program this example in FreshML, but it would

1The arith argument to subst is the type A in the D⇒ A argument to substitution; Agda’s type reconstruction
procedure requires this annotation. The underscore is the context argument instantiating the ∀V in the type of
subst; this could be eliminated by adding an implicit context quantifier (whose meaning is {Ψ : Vars} � ...) to
the universe. The credentials for performing substitution are marked as an implicit argument, so there is no evidence
of it visible in the call to subst.
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be necessary to implement substitution directly for arith, as FreshML does not provide a generic
substitution operation.

Agda checks that eval’s pattern matching is exhaustive. However, Agda is not able to verify
the termination of this function (even setting aside the positivity problems—which are not really
problematic here, as nat is morally defined prior to arith, so the definition is iterated), as it recurs
on a substitution-instance of one of the inputs. Setting aside the computational functions in binop,
it would be possible to get the call-by-value version of this code to pass Twelf’s termination
checker, which recognizes certain substitution instances as smaller. We have not yet investigated
how to explain this induction principle to Agda.

5.2.2 Reduction
Next, we implement small-step reduction for the λ-calculus. This example illustrates recur-
sion over open terms, as well as additional uses of the structural properties provided by our
framework. We represent the λ-calculus with the following signature, which is familiar from
higher-order abstract syntax:

lam : InΣ (expA⇐ expC⇒ exp)
app : InΣ (expA⇐ exp ⊗ exp)

Next, we define a function red implementing small-step reduction. As a first cut, we might try
assigning red the type� (exp ⊃ exp ⊕‘1), which is interpreted as Data [ ] exp � Either (Data [ ] exp) Unit.
That is, red e returns an option, with Inl e’ signaling that e steps to e’, and Inr <> signaling that
e cannot be reduced further. However, because reduction proceeds under binders, it is necessary
to generalize red so that it works on open terms. Thus, we instead give it the type

red : ∀V exp ⊃ exp ⊕‘1

which works in any context. This type is interpreted as

(Ψ : Ctx) � Data Ψ exp � Either (Data Ψ exp) Unit

red is implemented as follows:



5.2. EXAMPLES 91

red Ψ (. x) = Inr <>
red Ψ (app · (lam · e, e2)) = Inl (subst exp Ψ e e2)
red Ψ (app · (e1, e2)) with red Ψ e1 | red Ψ e2
... | Inl e1’ | = Inl (app · (e1’, e2))
... | Inr <> | Inl e2’ = Inl (app · (e1, e2’))
... | Inr <> | Inr <> = Inr <>
red Ψ (lam · e) with red (expC :: Ψ) e
... | Inl e’ = Inl (lam · e’)
... | Inr <> = Inr <>

The variable case (. x) says that variables do not reduce. The second line reduces a β-redex
using substitution; the fact that subst is available for exp is inferred by our framework. For any
other application, we try reducing the function position. If this succeeds, we have a reduction;
otherwise, we try reducing the argument position. For a lam, we try reducing the body, which is
an example of making a recursive call in an extended context expC :: Ψ, which extends Ψ with
an additional assumption of type exp.

Comparison. If a programmer were to implement this example in raw Agda, the signature
would be more verbose, as it would need to mention contexts explicitly, and he would have to
implement subst by hand. In Twelf, reduction would be written as a logic program, so the failure
cases would not need to be described explicitly. In Twelf and Delphin, the context is managed
implicitly, so the Ψ arguments would be elided. In Beluga, the code would look quite similar to
the above.

5.2.3 Type checking
Next, we implement a type checker for the simply-typed λ-calculus. The function red above
worked for any context Ψ, because the variable case simply returned a constant. In contrast, to
implement a type checker, we need to maintain extra information about the context, associating
a type with each term variable. To maintain this information, we use a function whose domain
is the variables of a given type, a technique inspired by Delphin (Poswolsky and Schürmann,
2008).

We represent the STLC with the following signature:

arr : InΣ (tpA⇐ tp ⊗ tp)
unit : InΣ (tpA⇐‘1)

fn : InΣ (tmA⇐ � tp ⊗ (tmC⇒ tm))
ap : InΣ (tmA⇐ tm ⊗ tm)
mt : InΣ (tmA⇐‘1)

For simplicity, we make the fact that all types are closed explicit, using a � in the type of the
constant fn to say that the type annotation is closed. This saves us from having to weaken and
strengthen term variables in types (see size below).

To implement the type checker, we first need equality of types, which is implemented by a
simple recursion over closed types:

eqtp : � (tp ⊃ tp ⊃ bool)
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Next, we define an environment to be a function that gives a closed type for each term vari-
able; recall that the type tmC # means the variables of type tm:

env : Type
env = tmC # ⊃ � tp

Type synthesis takes a term and an environment and optionally returns a closed type:

synth : (∀V tm ⊃ env ⊃ (� tp) ⊕‘1)

It is implemented as follows:

synth Ψ (. x) env = Inl (env x)
synth Ψ (fn · (A, e)) env with synth (tmC :: Ψ) e (extend {� tp} {tmC} Ψ env A)
... | Inl B = Inl (arr · (A,B))
... | Inr <> = Inr <>
synth Ψ (ap · (e1, e2)) env with synth Ψ e1 env | synth Ψ e2 env
... | Inl (arr · (A1,A2)) | Inl B1 with eqtp A1 B1
... | Inl <> = Inl A2
... | Inr <> = Inr <>
synth Ψ (ap · (e1, e2)) env | | = Inr <>
synth Ψ (mt · <>) env = Inl (unit · )

A variable has the type given in the environment; the framework already ensures well-scopedness,
so there is no possibility of getting a variable out of scope. The clause for ap check the function
and argument positions and then check that the domain of the function is the type of the argu-
ment. The case for fn is interesting because it must extend the environment env by mapping the
last variable mapped to the type A. We do this using the function extend:

extend : ∀ {A D} � (∀V (D # ⊃ A) ⊃ A ⊃ (D⇒ D #) ⊃ A)
extend Ψ σ new i0 = new
extend Ψ σ new (iS i) = σ i

If we had made a mistake and forgotten to extend the environment, the Agda type checker would
helpfully complain that (tmC :: Ψ) != Ψ.

Comparison. We have included this example mainly to introduce the environment technique;
it would not be very different in raw Agda, as we have not made use of any of the structural
properties. In Twelf, the failure cases could be elided, unification could be used for type equality,
and the LF context could be used to represent the environment implicitly. In Delphin, the context
Ψ would be implicit, but the environment would be passed explicitly. In Beluga, the LF context
could be used to associate variables with types, but it is passed explicitly.

5.2.4 Closure-based Evaluator
Next, we implement a closure-based evaluator for the untyped λ-calculus. Like the type checker
above, this example illustrates the use of functions to maintain invariants about the context;
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additionally, it shows how to use existential quantification over contexts. We gave the signature
for λ-terms above; closures are represented by a type clos as follows:

closure : InΣ (closA⇐ (∃⇒ (expC⇒ exp) ⊗ (expC # ⊃ � clos)))

The type of closures, clos, is a recursive type with one constructor closure. The premise of closure
should be read as follows: a closure is constructed from a triple (Ψ, e, σ), where (1) Ψ is an
existentially quantified context; (2) e is an expression in Ψ with an extra free variable, which
represents the body of a λ-abstraction; and (3) σ is a substitution of closed closures for all the
variables in Ψ. We represent a substitution as a function that maps each expression variable in the
context (classified by the type expC #) to a closure. The type of the premise provides a succinct
description of all of this: ∃⇒ introduces the variables in the existentially quantified context into
scope without explicitly naming the context;⇒ extends the context with an additional variable;
(expC #) ranges over all of the variables in scope. For comparison, in Ψ this type reduces to the
Agda type

Σ (λ (Ψ’ : Vars) � (Data (Ψ + Ψ’, , expC) expA) × (expC ∈ (Ψ + Ψ’) � Data [ ] closA))

(where we write , , for cons on the right).
As in the type checker example we recur over open expressions, so eval is quantified over an

unknown context Ψ using ∀⇒. Evaluation takes two further arguments: (1) an expression with
free variables in Ψ, and (2) an environment, represented by a function that yields a closed closure
for each expression variable in Ψ; eval returns a closed closure.

env : Type
env = expC # ⊃ � clos

eval : � (∀⇒ exp ⊃ env ⊃ � clos)
eval Ψ (. x) σ = σ x
eval Ψ (lam · e) σ = closure · (Ψ, e, σ)
eval Ψ (app · (e1, e2)) σ
with eval Ψ e1 σ

... | closure · (Ψ’, e’, σ’) = eval (Ψ’, , expC) e’ (extend {(� clos)} σ’ (eval Ψ e2 σ))

... | . x = impossible x

A variable is evaluated by applying the substitution. A lam evaluates to the obvious closure. To
evaluate an application, we first evaluate the function position. Case-analyzing the evaluation
of e1 gives two cases: (1) the value is constructed by the constructor closure; (2) the value is a
variable.

In the first case, we evaluate the body of the closure in an extended environment. The call to
the function extend, described in the type checker example above, extends the environment σ’ so
that the last variable is mapped to the value of e2. At the call site of extend, we must explicitly
supply the type A (in this case � clos) to help out type reconstruction. The underscore stands
for the instantiation of the ∀V, which is marked as an explicit argument, but can in this case be
inferred.

The second case is contradicted using the function impossible, which refutes the existence of
a variable at a non-VarType—which clos is, because we never wish to have clos variables.
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The context argument Ψ to eval does not play an interesting role in the code, but Agda’s type
reconstruction requires us to supply it explicitly at each recursive call. Agda is unable to verify
the termination of this evaluator for the untyped λ-calculus, as one would hope.

When writing this code, one mistake a programmer might make is to evaluate the body of
the closure in σ instead of σ’, which would give dynamic scope instead of static scope. If we
make this mistake, Agda highlights the occurrence of σ and helpfully reports the type error
that Ψ’ != Ψ, indicating that the context of the expression does not match the context of the
substitution.

Comparison. In Twelf, one cannot represent substitutions σ using admissibility functions, be-
cause these are not available for use in LF encodings. However, because the domain of the
substitution is finite, a first-order representation of substitutions could be used. Additionally,
Twelf does not provide the � and ∃⇒ connectives that we use here to describe the contexts
of closures. While it should be possible for the programmer to express the necessary context
invariants using explicit contexts (Crary, 2008), this is a fairly heavy encoding technique. Be-
cause of these two limitations, the resulting Twelf code would be more complicated than the
above. One would hope for better Delphin and Beluga implementations than a port of the Twelf
code, but Delphin lacks existential context quantification and �, and Beluga lacks the param-
eter type exp #, so our definition of clos cannot be straightforwardly ported to either of these
languages. Beluga provides a built-in type of substitutions, written [Ψ’]Ψ, so one might hope
to represent closures as ∃ψ.([ψ, x : exp]exp) × [.]ψ; however, the second component of this pair
associates an expression with each expression variable in ψ, whereas, in this example, we need
to associate a closure with each expression variable in ψ. One could implement this example in
FreshML (Shinwell et al., 2003), but the type system would not enforce the invariant that clo-
sures are in fact closed. To our knowledge, a proof of this property for this example has not been
attempted in Pure FreshML (Pottier, 2007), though we know of no reason why it would not be
possible. The only improvement over raw Agda in this case is that the types are more concise
when specified in our point-free notation.

5.2.5 Variable Manipulation
Next, we consider some common examples that involve manipulation of variables. None of these
examples are very different than what one would write in raw Agda; instead, we show them to
illustrate how dependent de Bruijn indices compare with other representations of variables.

Size

First, we compute the size of a λ-term. Addition is defined as usual, with a contradictory variable
case because no natA variables are allowed.

plus : � (nat ⊃ nat ⊃ nat)
plus (zero · ) m = m
plus (succ · n) m = succ · (plus n m)
plus (. ())
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size : (∀V exp ⊃ � nat)
size Ψ (. x) = succ · (zero · )
size Ψ (app · (e1, e2)) = succ · (plus (size Ψ e1) (size Ψ e2))
size Ψ (lam · e) = succ · (size (Ψ, , expC) e)

Agda successfully termination-checks these functions.
The type of size expresses that it returns a closed natural number. For comparison, we imple-

ment a second version that does not make this invariant explicit:

size’ : � (∀6 expC (exp ⊃ nat))
size’ Ψ bound (. x) = succ · (zero · )
size’ Ψ bound (app · (e1, e2)) =

succ · (plus’ Ψ bound (size’ Ψ bound e1) (size’ Ψ bound e2)) where
plus’ : � (∀6 expC (nat ⊃ nat ⊃ nat))
plus’ Ψ b = weaken*/bounded (nat ⊃ nat ⊃ nat) Ψ {expC} b [ ] plus

size’ Ψ bound (lam · e) = strengthen nat (size’ (Ψ, , expC) bound e)

Without the �, size must return a number in context Ψ: in the application case, we must weaken
plus into Ψ, and in the lam case we must strengthen the extra expC variable out of the recursive
call. Strengthening expression variables from natural numbers is permitted by our implementa-
tion of the structural properties because natural numbers cannot mention expressions; we use a
subordination-like analysis to determine this (Virga, 1999). To ensure that these weakenings and
strengthenings are permitted, we type size’ with a bounded quantifier over exp.

Comparison. The first version is similar to what one writes in FreshML, except in that
setting there is no need to pass around a context Ψ. In the second version, the strengthening of
the recursive result in the lam case is analogous to the need, in FreshML 2000 (Pitts and Gabbay,
2000), to observe that nat is pure (always has empty support); FreshML (Shinwell et al., 2003)
does not require this.

In Beluga, one can express either the first or second versions. In Twelf and Delphin, one
can only express the second variation, as these languages do not provide �. However, the
Twelf/Delphin/Beluga syntax for weakening and strengthening is terser than what we have been
able to construct in Agda: weakening is not marked in the proof term; strengthening is marked
by pattern-matching the result of the recursive call and marking those variables that do occur,
which in this case does not include the expression variable. For example, the lam case of size in
Twelf looks like this:

- : size (lam ([x] E x)) (succ N)
← ({x : exp} size (E x) N) ◦

Twelf’s coverage checker verifies that expression variables can be strengthened out of natural
numbers when checking this case.

Counting occurrences of a variable

A simple variation is to count the number of occurrences of a distinguished free variable. The
input to this function has type (expC ⇒ exp), and we count the occurrences of the bound variable:
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cnt : ∀V (expC⇒ exp) ⊃ � nat
cnt Ψ (. i0) = succ · (zero · )
cnt Ψ (. (iS )) = zero ·
cnt Ψ (app · (e1, e2)) = plus (cnt Ψ e1) (cnt Ψ e2)
cnt Ψ (lam · e) = cnt (Ψ, , expC) (exchange2 exp Ψ e)

In the first two cases, we pattern-match on the variable: when it is the last variable, the last
variable occurs once; when it is not, it occurs zero times. The lam case recurs on the exchange
of e, so that the last variable remains the one we are looking for. Agda fails to termination-check
this example because it recurs on the result of exchange.

Comparison. Pattern-matching on variables is represented using higher-order metavariables
in Twelf/Delphin/Beluga and using equality tests on names in FreshML. The exchange needed
in the lam case is written as a substitution in the Twelf/Delphin/Beluga version of this clause. In
Twelf one would write:

- : cnt ([x] lam ([y] E x y)) N
← ({y:exp} cnt ([x] E x y) N) ◦

In the input to this clause, the metavariable E, which stands for the body of the function, refers
to the last variable in the context (the lam-bound variable) as y and the second-last variable (the
variable being counted) as x. In the recursive call, y is exchanged past the binding of x, so the
instantiation E x y swaps “last” and “second-last”.

Computing free variables

Next, we consider a function computing the free variables of an expression. This function has the
following type: (∀V exp ⊃ list (expC #))—in any context, this function accepts an expression
in that context and produces a list of variables in that context. This typing ensures that we do not
accidentally return a bound variable.

remove : {D : VarType}
� (∀V (D⇒ list (D #)) ⊃ list (D #))

remove Ψ [ ] = [ ]
remove Ψ (i0 :: ns) = (remove Ψ ns)
remove Ψ ((iS i) :: ns) = i :: (remove Ψ ns)

fvs : (∀V exp ⊃ list (expC #))
fvs Ψ (. x) = [x]
fvs Ψ (lam · e) = remove Ψ (fvs (Ψ, , expC) e)
fvs Ψ (app · (e1, e2)) = append (fvs Ψ e1) (fvs Ψ e2)

In the lam case, we use the helper function remove to remove the lam-bound variable from the
recursive result. The function remove takes a list of variables, itself with a distinguished free
variable, and produces a list of variables without the distinguished variable. If the programmer
were to make a mistake in the second clause by accidentally including i0 in the result, he would
get a type error. Agda successfully termination-checks this example.

Comparison. For comparison with FreshML (Shinwell et al., 2003), the type given to remove
here is analogous to their Figure 6:
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remove : (<name> (name list)) � name list

where <a>τ is a nominal abstractor. The authors comment that they prefer the version of remove
in their Figure 5:

remove : name � (name list) � name list

where the name to removed is specified by the first argument, rather than using a binder.
Using dependent types, we can type this second version of remove as follows:

remove : (Ψ : Vars) (i : exp ∈ Ψ)
� List (exp ∈ Ψ) � List (exp ∈ (Ψ - i))

where Ψ - i removes the indicated element element from the list. This type is of course express-
ible in Agda, but not in the simply-typed universe that we consider in this chapter.

In Twelf, this example can be coded with two differences from the above. The first is that
remove pattern-matches on derivability functions, rather than pattern-matching to distinguish dif-
ferent variables in the (extended) context, as we do above:

remove : (var � list) � list � type.
- : remove ([x] cons x (L x)) L’
← remove L L’.

- : remove ([x] cons Y (L x)) (cons Y L’)
← remove L L’.

- : remove ([x] nil) nil.

Second, to enforce the invariant that the output list contains only variables, it is necessary to
modify the encoding to identify variables. One option is to use a separate type var for variables, as
we have done here (though this necessitates a manual proof that an expression can be substituted
for a variable); another is to define a predicate isvar E which holds when E is a variable. Without
this invariant, remove is not total, though it could be extended to a total relation by adding cases
for the remaining expressions.

In Delphin, one would need to match on a derivability function, as Delphin does not support
matching against individual free variables, but the # type could be used to define a list of vari-
ables (if Delphin were extended with non-LF inductive types). Complementarily, in Beluga, one
can match against individual variables by restricting a pattern by a substitution, but the encoding
would need to explicitly provide a type of variables.

η-Contraction

In Twelf/Delphin/Beluga, one can recognize η-redices by writing a meta-variable that is not
applied to all enclosing locally bound variables. E.g. in Twelf one would write

- : contract (lam [x] app F x) F.

The metavariable F:exp is bound outside the scope of x, and thus stands only for terms that do not
mention x. (To allow it to mention x, we would bind F:exp � exp and write (F x) in place of F.)
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Unfortunately, Agda does not provide this sort of pattern matching for our encoding—pattern
variables are always in the scope of all enclosing local binders—so we must explicitly call a
strengthening function that checks whether the variable occurs:

strengthen? : ∀V (expC⇒ exp) ⊃ exp option
strengthen? Ψ (. i0) = Inr
strengthen? Ψ (. (iS i)) = Inl (. i)
strengthen? Ψ (app · (e1, e2)) with strengthen? Ψ e1 | strengthen? Ψ e2
... | Inl e1’ | Inl e2’ = Inl (app · (e1’, e2’))
... | | = Inr
strengthen? Ψ (lam · e) with strengthen? (Ψ, , expC) (exchange2 exp Ψ e)
... | Inl e’ = Inl (lam · e’)
... | = Inr

contract-η : ∀V exp ⊃ exp option
contract-η Ψ (lam · (app · (f, . i0))) = strengthen? Ψ f
contract-η Ψ = Inr <>

We conjecture that strengthen? could be implemented datatype-generically for all purely pos-
itive types (no⊃ or ∀c or ∀6)—it is not possible to decide whether a variable occurs in the values
of these function types (cf. FreshML, where it is not possible to decide whether a name is in the
support of a function). This strengthening function is not an instance of the generic map that we
define below, as it changes the type of the term (exp to exp option); though there may be a more
general traversal that admits this operation.

5.2.6 Combinators
Another place where the strengthening issue discussed with size above comes up is in translations
between languages. A standard example is translation from λ-terms to combinators, which we
represent as follows:

comb/s : InΣ (combA⇐‘1)
comb/k : InΣ (combA⇐‘1)
comb/i : InΣ (combA⇐‘1)
comb/app : InΣ (combA⇐ comb ⊗ comb)

First, we define bracket-abstraction, which takes a combinator with a free variable, and ab-
stracts over it, using combinators to pass the value of the variable to its use sites:

bracket : ∀V ((combC⇒ comb) ⊃ comb)
bracket Ψ (. i0) = comb/i · <>
bracket Ψ (. (iS x)) = comb/app · (comb/k · <>, . x)
bracket Ψ (comb/i · <>) = comb/app · (comb/k · <>, comb/i · <>)
bracket Ψ (comb/s · <>) = comb/app · (comb/k · <>, comb/s · <>)
bracket Ψ (comb/k · <>) = comb/app · (comb/k · <>, comb/k · <>)
bracket Ψ (comb/app · (a1, a2)) =

comb/app · (comb/app · (comb/s · <>, bracket Ψ a1), bracket Ψ a2)
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If the combinator is the distinguished last variable (i0), then the result is the I combinator. If it
is any other variable, the result is the constant K combinator applied to that variable. Similarly,
the result for any constant among I, S, and K is K applied to that constant. Application bracket-
abstracts the two pieces and combines them with S. The type of bracket ensures that the variable
being abstracted is not free in the result.

The translation from expressions to combinators maintains an environment mapping each
expression variable to a combinator variable:

combw = (expC # ⊃ combC #)

extend-combenv : ∀V combw ⊃ (expC⇒ combC⇒ combw)
extend-combenv Ψ σ (iS i0) = i0
extend-combenv Ψ σ (iS (iS i)) = iS (iS (σ i))

The function extend-combenv shows how to extend an environment in Ψ to an environment in
Ψ, , exp, , comb, where the new expression variable is mapped to the new combinator variable,
and all other results are shifted so that they make sense in the new environment.

The translation is defined as follows:

tr : ∀V (combw ⊃ exp ⊃ comb)
tr Ψ σ (. x) = . (σ x)
tr Ψ σ (app · (e1, e2)) = comb/app · (tr Ψ σ e1, tr Ψ σ e2)
tr Ψ σ (lam · e) =
let

r : < Ψ, , expC, , combC > comb
r = tr (Ψ, , expC, , combC) (extend-combenv Ψ σ) (weaken exp (Ψ, , expC) e)

s : < Ψ, , combC > comb
s = strengthen/anywhere comb (iS i0) r

in
bracket Ψ s

The interesting case is lam, where we first let r stand for the result of a recursive call in an
extended context. Prior to the recursive call, we must weaken e, which is in context Ψ, , expC,
with the new combinator variable. r is then a combinator in context Ψ, , expC, , combC. Next, we
can strengthen away the expC assumption, as expressions cannot occur in combinators. Finally,
bracket abstraction gives the result.

An alternative is to use different contexts for the expression and the combinator term, in
which case no weakening and strengthening are necessary:

combw’ : Vars � Vars � Type
combw’ Ψ Ψ’ = ([Ψ] * expC #) ⊃ ([Ψ’] * combC #)

tr’ : � (∀c (λ Ψ � ∀c (λ Ψ’ � combw’ Ψ Ψ’ ⊃ ([Ψ] * exp) ⊃ ([Ψ’] * comb))))
tr’ Ψ Ψ’ σ (. x) = . (σ x)
tr’ Ψ Ψ’ σ (app · (e1, e2)) = comb/app · (tr’ Ψ Ψ’ σ e1, tr’ Ψ Ψ’ σ e2)
tr’ Ψ Ψ’ σ (lam · e) = bracket Ψ’ (tr’ (Ψ, , expC) (Ψ’, , combC) newσ e) where

newσ : � (combw’ (Ψ, , expC) (Ψ’, , combC))
newσ i0 = i0
newσ (iS i) = (iS (σ i))
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The price is that the type is more verbose, because the context can no longer be treated implicitly.
Comparison. An implementation in both Twelf and Delphin is more similar to tr than tr’, in

that both the expression and the combinator term exist in the same ambient LF context. When
writing this code in Twelf, the LF context can be used to represent the environment, weakening
is tacit, and strengthening is represented by pattern-matching, as discussed above. In Delphin,
the environment is represented as a function, as we have done here, but weakening and strength-
ening are treated as in Twelf. In Beluga, one can implement the function in the tr style, but the
environment is represented in the LF context, and weakening and strengthening are notated using
substitutions, as in Twelf. One can almost write the type of the tr’-style implementation, but it
is unclear how to represent the environment (Pientka (2006) suggests using the tr style instead).
Relative to raw Agda, the type of tr is more concise because the context does not need to be
mentioned explicitly; tr’ is no different.

5.2.7 Normalization by Evaluation
In Figure 5.3, we present an interesting example that mixes derivability and admissibility, β-
normalization-by-evaluation for the untyped λ-calculus. Normalization-by-evaluation (NBE) is
a method for evaluating λ-terms using the evaluator of the meta-language, rather than defining
normalization syntactically, using substitution. The idea of NBE is to interpret the syntax of
an object language into the meta-language, interpreting derivability functions in the syntax as
admissibility functions in the meta-language. The obvious way to do this is to interpret the
object-language type A arrow B as the meta-language type J A K � J B K. However, with
this interpretation, it is impossible to read off a syntactic normal form, because functions are
interpreted as black-box admissibility functions. The solution is to interpret into a space of
meta-language functions that can be applied to syntactic, as well as semantic, arguments. A
syntactic normal form can then be read off by applying such a function to a variable.

For the untyped λ-calculus, our semantic domain sem consists of syntactic neutral terms of
the form x e1 ... en as well as admissibility functions from sem ⊃ sem. However, in implementing
NBE, it is necessary to weaken values of type sem into bigger contexts, and the type sem ⊃ sem
is not weakenable with variables of type sem. The solution is to consider admissibility functions
that explicitly quantify over all future extensions of the context, which we represent with the
type (∀⇒ sem ⊃ sem). This is similar to a Kripke semantics, or an interpretation into presheaves.
However, for the argument to go through, we must ensure that the context extension Ψ’ consists
only of variables of a specific type neu, so we use a bounded context quantifier below.

We represent the semantics by the datatypes neu and sem in Figure 5.3.2 The type neu (neutral
terms) consists of variables or neutral terms applied to semantic arguments (napp); these are the
standard neutral proofs in natural deduction. A sem (semantic term) is either a neutral term or
a semantic function. A semantic function of type (∀6 neuC (sem ⊃ sem)) is an admissibility
function that works in any extension of the context consisting entirely of neutral variables.

2In a previous account of this work (Licata and Harper, 2009), we wrote the types in this example in a more
concise, but also less intuitive, way: One can choose to use the ambient context as either the syntactic or semantic
context, rather than mentioning both explicitly. However, the choice is arbitrary, and the asymmetry makes the code
hard to read. Additionally, one can abstract out the definitions of the environment types and environment extension,
but we inline these definitions here for simplicity.
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napp : InΣ (neuA⇐ neu ⊗ sem)
neut : InΣ (semA⇐ neu)
slam : InΣ (semA⇐ (∀6 neuC (sem ⊃ sem)))

reifyenv : Vars � Vars � Type
reifyenv Ψe Ψs = ([Ψs] * (neuC #) ⊃ [Ψe ] * (expC #))

reifyn : ∀C (λ Ψe � ∀c (λ Ψs � reifyenv Ψe Ψs ⊃ [Ψs] * neu ⊃ [Ψe] * exp))
reifyn Ψe Ψs σ (. x) = . (σ x)
reifyn Ψe Ψs σ (napp · (n, s)) =

app · (reifyn Ψe Ψs σ n, reify Ψe Ψs σ s)

reify : ∀C (λ Ψe � (∀c λ Ψs � reifyenv Ψe Ψs ⊃ [Ψs] * sem ⊃ [Ψe ] * exp))
reify Ψe Ψs σ (slam · ϕ) =

lam · reify (Ψe, , expC) (Ψs, , neuC) σ’ (ϕ [neuC] (neut · (. i0))) where
σ’ : � (reifyenv (Ψe, , expC) (Ψs, , neuC))
σ’ i0 = i0
σ’ (iS x) = iS (σ x)

reify Ψe Ψs σ (neut · n) = reifyn Ψe Ψs σ n
reify Ψe Ψs σ (. x) = impossible x

appsem : ∀V sem ⊃ sem ⊃ sem
appsem (slam · ϕ) s2 = ϕ [ ] s2
appsem (neut · n) s2 = neut · (napp · (n, s2))
appsem (. x) = impossible x

evalenv : Vars � Vars � Type
evalenv Ψe Ψs = [Ψe ] * (expC #) ⊃ ([Ψs] * sem)

eval : ∀C (λ Ψe � ∀c (\Ψs � evalenv Ψe Ψs ⊃ [Ψe ] * exp ⊃ [Ψs ] * sem))
eval Ψe Ψs σ (. x) = σ x
eval Ψe Ψs σ (app · (e1, e2)) = appsem Ψs (eval Ψe Ψs σ e1) (eval Ψe Ψs σ e2)
eval Ψe Ψs σ (lam · e) = slam · ϕ where
ϕ : < Ψs > (∀6 neuC (sem ⊃ sem))
ϕ Ψ’ ctxinv s’ = eval (Ψe, , expC) (Ψs + Ψ’) σ’ e where
σ’ : < [ ] > evalenv (Ψe, , expC) (Ψs + Ψ’)
σ’ i0 = s’
σ’ (iS i) = weaken*/bounded sem Ψ’ {neuC} ctxinv Ψs (σ i)

Figure 5.3: Normalization by evaluation
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We define reification first, via two mutually recursive functions, reifyn (for neutral terms) and
reify (for semantic terms). It is typical in logical relations arguments to use two independent
contexts, one for the syntax and one for the semantics. Thus, we parametrize these functions by
two contexts, one consisting for neu variables for the semantics, and the other consisting of exp
variables for the syntax. We will write Ψs for the former and Ψe for the latter. The type of reify
then says that, given an environment mapping neutral variables in Ψs to expression variables in
Ψe, reify maps semantics in the semantic context to expressions in the expression context

Even though reify is given a precise type describing the scoping of variables, its code is as
simple as one could want. To reify neutral terms: The reification of a variable is the variable
given in the substitution. The reification of an application is the application of the reifications.
To reify semantic terms: The reification of a function (slam · ϕ) is the λ-abstraction of the
reification of an instance of ϕ. In the recursive call, the expression context is extended with a
new exp variable (which is bound by the lam) and the semantic context is extended with a new
neu variable. We instantiate the semantic function ϕ, which anticipates extensions of the context,
with this one-variable extension ([x ] constructs a singleton list), and apply it to the variable.
σ’ makes the "parallel" extension of σ, mapping the one new variable to the other. This could
be abstracted into a library function if one wished. The neutral-to-semantic coercion is reified
recursively, and we disallow sem variables from the context.

To define evaluation, we first define an auxiliary function appsem that applies one semantic
term to another. This requires a case-analysis of the function term: when it is an slam (i.e.
the application is a β-redex), we apply the embedded computational function, choosing the nil
context extension, and letting the argument be s2. When the function term is neutral, we make a
longer neutral term.

The type of eval is symmetric to reify, except the environment that we carry along in the
induction maps expression variables to semantic terms rather than just variables. A variable is
evaluated by looking it up; an application is evaluated by combining the recursive results with
semantic application. A lam is evaluated to an slam whose body ϕ has the type indicated in the
figure. When given a context extension Ψ’ and an argument s’ in that extension, ϕ evaluates the
original body e in an extended substitution. The new substitution σ’ maps the λ-bound variable
i0 to the provided semantic value, and defers to σ on all other variables. However, σ provides
values in Ψs, which must be weakened into the extension Ψ’. Fortunately, the bounded quantifier
provides sufficient evidence to show that weakening can be performed in this case, because sem’s
can be weakened with neu variables.

Normalization is defined by composing evaluation and reification. We define a normalizer
for closed λ-terms as follows:

emptyreifyenv : � (reifyenv [ ] [ ])
emptyreifyenv ()

emptyevalenv : � (evalenv [ ] [ ])
emptyevalenv ()

norm : � (exp ⊃ exp)
norm e = reify [ ] [ ] emptyreifyenv (eval [ ] [ ] emptyevalenv e)

Our type system has verified the scope-correctness of this code, proving that it maps closed
terms to closed terms. Amusingly, Agda accepts the termination of this evaluator for the untyped



5.2. EXAMPLES 103

reifyn : ∀V neu ⊃ (neuC # ⊃ expC #) ⊃ exp
reifyn Ψ (. x) σ = . (σ x)
reifyn Ψ (napp · (n, s)) σ = app · (reifyn Ψ n σ, reify Ψ s σ)

reify : ∀V sem ⊃ (neuC # ⊃ expC #) ⊃ exp
reify Ψ (slam · ϕ) σ =

lam · (strengthen/anywhere exp (iS i0)
(reify (Ψ, , neuC, , expC)

(weaken/irrel sem (ϕ [neuC] (neut · (. i0))))
σ’)) where

σ’ : < Ψ, , neuC, , expC > (neuC # ⊃ expC #)
σ’ (iS i0) = i0
σ’ (iS (iS x)) = iS (iS (σ x))

reify Ψ (neut · n) σ = reifyn Ψ n σ
reify Ψ (. x) σ = impossible x

eval : ∀V exp ⊃ ((expC #) ⊃ sem) ⊃ sem
eval Ψ (. x) σ = σ x
eval Ψ (app · (e1, e2)) σ = appsem (eval Ψ e1 σ) (eval Ψ e2 σ)
eval Ψ (lam · e) σ = slam · ϕ where
ϕ : < Ψ > (∀6 neuC (sem ⊃ sem))
ϕ Ψ’ bnd s’ = strengthen/middle sem Ψ’

(eval ((Ψ, , expC) + Ψ’)
(weaken*/bounded exp Ψ’ {neuC} bnd e)
σ’) where

σ’ : < (Ψ, , expC) + Ψ’ > (expC # ⊃ sem)
σ’ x with ListM.In.splitappend Ψ’ (Ψ, , expC) x
... | Inl x’ = Sums.abort (ListM.In.in-all bnd x’)
... | Inr i0 = weaken/irrel/middle sem Ψ’ s’
... | Inr (iS x’) = weaken*/bounded sem Ψ’ {neuC} bnd

(weaken/irrel sem (σ x’))

Figure 5.4: Normalization by evaluation with a single context
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λ-calculus, provided that we have told it to ignore its issues with our universe itself—a nice
illustration of the need for the positivity check on datatypes.

As with the combinator example, it is possible to give an alternate version of this code where
both expressions and semantic terms live in the same context, at the expense of various ap-
peals to weakening and strengthening are necessary. For comparison, we include this version
in Figure 5.4. As with the combinators example, the binder cases require weakening before the
recursive call, and strengthening afterwards. Additionally, the substitution extension σ’ in eval is
more complicated, as it must handle the potential additional exp variables in Ψ’—which do not
in fact exist, as Ψ’ is made up of only neu variables.

Comparison. The type sem mixes derivability and admissibility in an essential way: it must
use admissibility to inherit evaluation from Agda, and it must use derivability to make it possible
to read off a normal form. The premise (∀6 neuC (sem ⊃ sem)) uses both⇒ and ⊃ (recall that
there is a⇒ buried in the definition of ∀6). Because it uses ⊃ in a recursive datatype, it is not
representable in LF. Because it uses ⇒, it would not even be representable in Delphin/Beluga
extended with standard recursive types (that did not interact with the LF part of the language).
Despite the fact that our implementation enforces strong invariants about the scope of variables,
the code is essentially as simple as the FreshML version described by Shinwell et al. (2003),
aside from the need to pass the contexts Ψe and Ψs along. Invariants about variable scoping
can be proved in Pure FreshML (Pottier, 2007), but we enforce these invariants within a type
system, not using an external specification logic. Relative to a direct implementation in Agda
(see Pouillard and Pottier (2010)) our framework provides the weakening function needed in the
final case of eval for free.

5.3 Structural Properties
Next, we describe our implementation of the structural properties. Like the theorem prover in
Chapter 4, this is a nice example of using a dependently typed programming language as its own
tactic language.

The structural properties are implemented by instantiating a generic traversal for < Ψ > A.
The generic traversal has the following type:

map : (A : Type) {Ψ Ψ’ : Vars} � (Co A Ψ Ψ’) � < Ψ > A � < Ψ’ > A

This should be read as follows: for all A, Ψ, and Ψ’, under the condition Co A Ψ Ψ’, there is a
map from terms of type A in Ψ to terms of type A in Ψ’.

Co : Type � Vars � Vars � Set is a variable relation, a type-indexed family of
relations between two contexts. Co is in fact a (module-level) parameter to the generic map; it
must provide (1) a variable or term in Ψ’ for each variable in Ψ that the traversal runs into; and
(2) enough information to keep the traversal going inductively. We will instantiate Co with a
specific relation for each traversal; e.g., for weakening with a variable of type D, Co will relate Ψ

to (Ψ, ,D) under appropriate conditions on D and A.
For expository purposes, we present a slightly simplified version of the traversal first; the

generalization is described with weakening below.
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5.3.1 Compatibility
We ensure that Co provides the two pieces of information mentioned above using the notion of
compatibility. Suppose that Co and Contra are variable relations. We say that Co and Contra are
compatible iff there is a term

compat : {A : Type} {Ψ Ψ’ : Vars} � Co A Ψ Ψ’ � Compat A Ψ Ψ’

where Compat is defined as follows:

Compat : Type � Vars � Vars � Set
Compat (D #) Ψ Ψ’ = (D ∈ Ψ) � (D ∈ Ψ’)
Compat (D+ D) Ψ Ψ’ = ({A : Type} � (c : InΣ (D⇐ A)) � Co A Ψ Ψ’)

× ({ch : } � (. D {ch}) ∈ Ψ � < Ψ’ > D+ D)
Compat (A ⊃ B) Ψ Ψ’ = Contra A Ψ’ Ψ × Co B Ψ Ψ’
Compat (Ψ0⇒* A) Ψ Ψ’ = Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat (list A) Ψ Ψ’ = Co A Ψ Ψ’
Compat (� A) Ψ Ψ’ = Unit
Compat (‘1) Ψ Ψ’ = Unit
Compat (‘0) Ψ Ψ’ = Unit
Compat (A ⊗ B) Ψ Ψ’ = Co A Ψ Ψ’ × Co B Ψ Ψ’
Compat (A ⊕ B) Ψ Ψ’ = Co A Ψ Ψ’ × Co B Ψ Ψ’
Compat (∀c τ) Ψ Ψ’ = (Ψ0 : ) � Co (τ Ψ0) Ψ Ψ’
Compat (∀6 D A) Ψ Ψ’ = (Ψ0 : ) � AllEq Ψ0 D � Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat (∃c τ) Ψ Ψ’ = (Ψ0 : ) � Co (τ Ψ0) Ψ Ψ’
Compat (∃6 D A) Ψ Ψ’ = (Ψ0 : ) � AllEq Ψ0 D � Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat (∀⇒ A) Ψ Ψ’ = (Ψ0 : ) � Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat (∃⇒ A) Ψ Ψ’ = (Ψ0 : ) � Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat ([Ψ] * A) = Unit

Compat imposes certain conditions on Co and Contra. For example, for variable types D #, it
says that Co (D #) Ψ Ψ’ induces a map from variables of type D in Ψ to variables in Ψ’. For
defined atoms D+ D, Compat says that Co (D+ D) Ψ Ψ’ induces a map from variables in Ψ to
terms in Ψ’, and that Co A Ψ Ψ’ holds for every premise A of every constant inhabiting D. In all
other cases, Compat provides enough information to keep the induction going in map below. This
amounts to insisting that Co (or Contra) holds on the subexpressions of a type in all appropriate
contexts. For example, the condition for Ψ0 ⇒* A is that Co holds for A in the contexts extended
with Ψ0. As mentioned briefly in Section 5.1, ∀⇒ and ∃⇒ and [\_ ] * are actually built-in types,
so they can be handled specially by the structural property tactics, though their semantics is the
same as if they were derived forms.

In the usual monadic traversals of syntax (Altenkirch and Reus, 1999), Co \_ Ψ Ψ’ is taken
to be (D : VarType) � D ∈ Ψ � < Ψ’ > D—i.e. a realization of every variable in Ψ
as a term in Ψ’. In our setting, this does not suffice to define a traversal, because (1) it does
not provide for the contravariant flip necessary to process the domains of admissibility functions
and (2) it does not allow us to express a conditional traversal, where conditions on the types
ensure that the traversal will only find certain variables, and thus that only those variables need
realizations. Compatibility ensures that Co provides enough information for Contra to process the
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map : (A : Type) {Ψ Ψ’ : Vars} � (Co A Ψ Ψ’) � < Ψ > A � < Ψ’ > A
map (D+ Dat) co (. x) = (snd (compat co) x)
map (Dat #) co x = ((compat co) x)
map (A ⊃ B) co e = λ y � (map B (snd (compat co)) (e (map’ A (fst (compat co)) y)))
map (Ψ0⇒* A) co e = map A (compat co) e
map (list A) co [ ] = [ ]
map (list A) co (x :: xs) = map A (compat co) x :: map (list A) co xs
map (D+ Dat) co (_·_ {A} c e) = c · map A (fst (compat co) c) e
map (� A) co e = e
map (‘1) co t = <>
map (‘0) co ()
map (A ⊗ B) {Ψ} {Ψ’} co (e1, e2) = (map A (fst (compat co)) e1,

map B (snd (compat co)) e2)
map (A ⊕ B) co (Inl e1) = Inl (map A (fst (compat co)) e1)
map (A ⊕ B) co (Inr e1) = Inr (map B (snd (compat co)) e1)
map (∀c τ) co e = λ Ψ0 � map (τ Ψ0) ((compat co) Ψ0) (e Ψ0)
map (∀6 D A) co e = λ Ψ0 ev � map A ((compat co) Ψ0 ev) (e Ψ0 ev)
map (∃6 D A) co (Ψ0, ev, e) = (Ψ0, ev,map A ((compat co) Ψ0 ev) e)
map (∃c τ) co (Ψ0, e) = Ψ0,map (τ Ψ0) ((compat co) Ψ0) e
map (∀⇒ A) co e = λ Ψ0 � map A ((compat co) Ψ0) (e Ψ0)
map (∃⇒ A) co (Ψ0, e) = Ψ0,map A ((compat co) Ψ0) e
map ([Ψ] * A) co e = e

Figure 5.5: Map

contravariant positions to the left of a computational arrow. Additionally, it permits conditional
traversals: below, we will instantiate Co so that it is uninhabited for certain A.

5.3.2 Map
Suppose that Co and Contra are compatible, and assume a function

map’ : (A : Type) {Ψ Ψ’ : Vars} � (Contra A Ψ Ψ’) � < Ψ > A � < Ψ’ > A

that is the equivalent of map for the Contravariant positions.
Then we implement map in Figure 5.5. In the first and second cases, the compatibility of Co

induces the map on variables that we need. In the third case, we pre-compose the function with
map’ and post-compose with map. In all other cases, map simply commutes with constructors, or
stops early if it hits a boxed term.

5.3.3 Exchange/Contraction
Exchange and contraction are implemented by one instantiation of map. In this case, we take

Co A Ψ Ψ’ = Contra A Ψ Ψ’ = (Ψ ⊆ Ψ’ × Ψ’ ⊆ Ψ)
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where ⊆ means every variable in one context is in the other. It is simple to show that these
relations are compatible, because Co (a) provides the required action on variables directly and (b)
ignores its type argument, so the compatibility cases for the type constructors are easy. Exchange
is defined by instantiating the generic map with Co, where map’ is taken be map itself, which
works because Co = Contra.

5.3.4 Strengthening
Next, we define a traversal that strengthens away variables that, based on type information, can-
not possibly occur. The invariant for strengthening is the following:3

Co : Type � Vars � Vars � Set
Co A Ψ Ψ’ = Σ (λ (D : VarType) � Σ (λ (i : D ∈ Ψ)

� Check (irrel (un. D) A) × Id Ψ’ (Ψ - i)))

Here i, a pointer into the initial context Ψ is the variable to be strengthened away; the proposi-
tional equality constraint represented by the Identity says that the final context Ψ’ is the initial
context with i removed. The type Check (irrel (un. D) A) computes to Unit when strengthening is
possible, and Void when it is not. Here un. simply peels off the injection of a defined atom into
a VarType.

The crucial property of irrel is that Check (irrel (un. D) (D+ D)) computes to Void. This
forbids strengthening a variable of type D out of a term of type D. This is necessary because we
cannot satisfy the usual compatibility condition for (D+ D), which would require mapping all
variables—including the variable-to-be-strengthened i—to a term of type D that does not mention
i.

More generally, Check (irrel (un. D) A) means that variables of type D can never be used to
construct terms of type A, which ensures that strengthening never runs into variables of the type
being strengthened. The function irrel D A is defined by traversing the graph structure of types
(i.e., it unrolls the definitions of defined atoms) and checks ¬ (DefinedAtoms.eq D Dat) for each
defined atom Dat it finds.

To account for contravariance, we must define strengthening simultaneously with weakening
by irrelevant assumptions, which is similar. About 250 lines of Agda code shows that these two
relations together are compatible. Their traversals are then defined by instantiating map twice,
mutually recursively—each is passed to the other as map’ for the contravariant recursive calls.

5.3.5 Weakening
In addition to weakening by irrelevant types (e.g. weakening a nat with an exp), we can weaken
by types that do not appear to the left of a computational arrow (e.g., weakening an exp with an
exp).

For a simple version of weakening, the variable relation is similar to strengthening, but uses
a different computed condition, and flips the role of Ψ and Ψ’ (now Ψ’ is bigger):

3For concision, we suppress some details arising from the implementation of irrel, which takes a visited list as
an extra argument; see the companion code for details.
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Co : Type � Vars � Vars � Set
Co A Ψ Ψ’ = Σ λ (D : VarType) �

Σ λ (i : D ∈ Ψ’) �
Check (canWeaken (un. D) A) × Id Ψ (Ψ’ - i)

The function canWeaken is a different graph traversal than before: we check irrel (un. D) A
for the left-hand side of each computational arrow A ⊃ B. Weakening can then be defined
using strengthening in contravariant positions, as irrel is exactly the condition that strengthening
requires.

This suffices for a simple version of weakening. However, we can be more clever, and ob-
serve that types of the form ∀⇒ A are always weakenable, because their proofs are explicitly
parametrized over arbitrary extensions of the context. Similarly, ∀6 C A is weakenable with any
context composed entirely of C’s. Capitalizing on this observation requires a slight generalization
of the traversal described above: computationally, weakening ∀⇒ A does not recursively traverse
the proof of A, like map usually does, but stops the traversal and instantiates the context quantifier
appropriately. Thus, our actual implementation of map is parametrized so that, for each type A, ei-
ther it is given sufficient information to transform A directly (a function < Ψ > A � < Ψ’ > A),
or it has enough information to continue recursively, as in the compatibility conditions described
above. We use the former only for weakening the quantifiers (map < Ψ - i > (∀⇒ A) to
< Ψ > (∀⇒ A)). We refer the reader to our Agda code for details. All told, weakening takes
about 210 lines of Agda code to define and prove compatible.

5.3.6 Substitution
Substitution is similar to weakening and strengthening. Its invariant has the same form, using a
condition canSubst (un. D) A. This condition ensures two things: (1) that D is irrelevant to the
left-hand-sides of any computational arrow, so that substitution can be defined using weakening-
with-irrelevant-assumptions in the contravariant position, and (2) that D is weakenable with all
variable types bound by A, so that the term being plugged in for the variable can be weakened as
substitution goes under binders. Substitution takes about 220 lines to define and prove compati-
ble.

5.4 Discussion
The main point of this chapter is to show that we can embed in Agda a logical framework that
allows mixing of admissibility and derivability. These mixed definitions are not possible in
LF-based systems, or in other tools or frameworks for representing binding in MLTT (Ambler
et al., 2002; Capretta and Felty, 2007; Chlipala, 2007; Hickey et al., 2006; Momigliano et al.,
2007). Though they can be coded by hand in MLTT, our framework improves on this by provid-
ing datatype-generic implementations of the structural properties of the hypothetical judgement.
Derivability is represented in a pronominal, contextual manner, so the type system can be used
to reason about the scoping of variables. We have used the framework to program a number
of examples, including a scope-correct version of the normalization-by-evaluation problem dis-
cussed by Shinwell et al. (2003). Mixed definitions are not as difficult to handle in systems based
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on nominal logic, where all functions assume an infinite set of names, and therefore anticipate
extensions of the context—the failure of weakening does not occur. However, because contexts
are not tracked in the type system, reasoning about scoping invariants in these systems requires
an external specification logic (Pottier, 2007).

It is interesting to consider where our implementation using dependent de Bruijn indices
stands relative to LF-based systems for programming with binding. We hope to have demon-
strated that, when equipped generically with the structural properties, dependent de Bruijn in-
dices are not that bad. The reason is that recursive functions over syntax typically do one of three
things when they hit a binder: make a recursive call in an extended context, apply a structural
property such as substitution, or continue pattern-matching under the binder. Our framework
supports all of these operations. That said, there are certainly some benefits of LF-based systems
that we were unable to mimic directly. First, these systems’ termination checkers are aware that
the structural properties do not change the size of a term, but our Agda implementation does
not make this obvious. Second, it is much easier to write and read pronominal variables with a
named syntax. Third, LF-based systems have a more convenient syntax for applying the struc-
tural properties. For example, the syntax of weakening and strengthening is relatively heavy in
our setting. In Twelf and Delphin, weakening is silent, and strengthening (including strengthen?
used in the η-contraction example) is marked by saying which variables do occur, using a non-
linear higher-order pattern. In our Agda implementation, weakening must be marked explicitly,
and strengthening requires one to enumerate those variables that do not occur instead. In Beluga,
weakening and strengthening are written as substitutions.

Achieving the same convenience is an interesting and important direction for future work.
One option would be to try to do this inside of the type theory, by switching to a different im-
plementation of derivability. For example, by using a named form for free variables, weakening
would need to adjust the proof that all the free variables of a term are in a context, but would not
change the term itself—and hopefully these proof obligations could be handled automatically.
Of course, named free variables have their own problems, as judgements cannot be freely α-
converted. An alternative would be to extend the proof assistant with special syntax for writing
down de Bruijn terms—e.g. elaborating a Beluga-like syntax to de Bruijn form. A challenge is
that, because Beluga distinguishes the LF level from the Beluga level, there is a natural place
to put the substitutions that mediate between different scopes. Without this distinction, it would
require some thought to decide what the syntax should be.

Of course, one way in which all of the LF-based systems outpace ours is that they support
dependent types–generic judgements as well as hypotheticals. In the dependently typed case,
even getting as far as we have gotten here is quite tricky, as we discuss in Part III.
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Chapter 6

Logical Foundations

The research described in this chapter was conducted jointly with Noam Zeilberger and Robert
Harper, and published in LICS 2008 (Licata et al., 2008).

In this chapter, we describe the origins of the logical framework described above. This pro-
vides a more abstract presentation, which is divorced from the details of the Agda embedding.
Additionally, the formal system we use, intuitionistic higher-order focusing, is interesting in its
own right, independently of the application. Moreover, the Agda formalization of this system is
itself a nice example of mixing admissibility and derivability.

As we discussed with BL0 above, polarity (Girard, 1993) is a way of dividing up the logical
connectives into two camps, called positive and negative. A positive connective, such as disjunc-
tion, requires making choices on the right (inl or inr?) but is invertible on the left—the left rule
can be applied eagerly, independently of the rest of the sequent. Dually, a negative connective,
such as implication, requires choices on the left (what do I apply it to?), but is invertible on the
right. In general, inductive types are positive, whereas coinductive types are negative. Focus-
ing (Andreoli, 1992a) is a proof discipline that involves chaining together choice and inversion
steps. It is unsurprising that all inversion steps can be applied eagerly. What is more surprising
is that that choice steps of like-polarity connectives can also be chained together, without loss
of completeness. A focused sequent calculus forces all inversions to be applied eagerly, and all
choices for a string of like-polarity connectives to be made at once.

Operationally, polarity and focusing can be given an intuitive explanation in terms of pattern-
matching (Zeilberger, 2008a): Values of positive polarity are introduced by choosing a construc-
tor, and eliminated by pattern-matching against their constructors. On the other hand, values
of negative polarity are introduced by pattern-matching against their destructors, and eliminated
by choosing a destructor. This is why, for example, in ordinary functional programming, func-
tions can be defined by pattern-matching, but it is impossible to pattern-match against a func-
tion (except with a variable pattern)—implication (meaning admissibility) is a negative connec-
tive. The resulting calculus resembles A-normal form, and makes evaluation order explicit in
the program text. Restricting the calculus in this way is useful for proof search (it limits the
non-determinism) and for proof equality (focused proofs are canonical representatives of certain
equivalence classes (Zeilberger, 2009)). Additionally, describing a logic within the strictures of
focusing generally improves one’s understanding of it.

111
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This raises the following question: what is the polarity of derivability? On the one hand, it
has a positive character, as one can pattern-match against a derivability. On the other, it has a
negative character, as a derivability can be eliminated by substitution (choosing a term to substi-
tute). Our investigation of this question leads to the notion of pre-derivability described above:
we take the positive aspect of derivability as fundamental, and define a connective⇒ that is elim-
inated by pattern-matching. The negative aspect is then a definable notion, which corresponds to
implementing the structural properties. Moreover, because the definition of⇒ involves only the
identity principle (use of an assumption) and pattern-matching, the calculus is compatible with
situations where the structural properties do not hold.

While this story—pre-derivability is positive, admissibility is negative—is appealingly di-
chotomous, the reality is more complicated. Pre-derivability is not inherently positive, but, rather,
maintains the polarity of whatever connective it is applied to. For example, when used in an in-
ductive definition, pre-derivability stays positive—in contrast to admissibility, which forces a po-
larity shift. But when used around a negative connective, pre-derivability also stays negative—as
we saw above, D ⇒ (A ⊃ B) can be applied to anA in an extended context to produce aB in an
extended context. We express this in a focused calculus by defining two connectives, positive⇒
and negative f, which are the positive and negative versions of pre-derivability. These satisfy a
“some/any” theorem (Pitts, 2003) which says that they are interprovable in an appropriate sense.

In our Agda implementation, we implemented the structural properties using generic pro-
gramming in the meta-language. An ordinary presentation of a sequent-calculus does not pro-
vide this opportunity for integrating meta-programs into the language. However, Zeilberger’s
higher-order presentation of focusing does (Zeilberger, 2008a,b, 2009). The idea of higher-order
focusing is to represent inversion phases, or pattern-matching, by meta-level admissibility func-
tions from patterns to expressions. In particular, these meta-level admissibility functions may
exploit meta-level implementations of the structural properties, which proceed by induction on
types. Higher-order focusing is also an extremely clean and concise system, where connectives
are specified by their patterns, from which both the focusing and inversion phases are derived.
Moreover, it enables connective-independent proofs of cut and identity. In this work, we extend
higher-order focusing from classical logic (Zeilberger, 2008a) and positive-only intuitionistic
logic (Zeilberger, 2008b) to full intuitionistic logic. This has since been shown to be a subsys-
tem of a logic that admits both classical and intuitionistic connectives (Zeilberger, 2010), but the
direct presentation of the intuitionistic part is somewhat more accessible.

In Section 6.1, we present a focused sequent calculus for intuitionistic higher-order focusing,
and show how it can be used to define pre-derivability. We define the identity and cut-elimination
procedures, and prove they are total under assumptions about the class of connectives. In Sec-
tion 6.2, we show an Agda representation of this sequent calculus.

6.1 Sequent Calculus
A higher-order focused sequent calculus is defined in two stages. First, the polarized connec-
tives are defined by axiomatizing the structure of patterns. Positive connectives are defined by
constructor patterns, and negative connectives by destructor patterns. Second, there is a general
focusing framework that is independent of the particular connectives of the logic.
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We begin by defining a focused sequent calculus for polarized intuitionistic logic, including
the simple structure of patterns and the general focusing rules.

6.1.1 Simple contexts and patterns
We write X+, Y +, Z+ and X-, Y -, Z- to stand for positive and negative propositional variables
(atomic propositions), and A+, B+, C+ and A-, B-, C- to stand for arbitrary positive and negative
formulas. We use α to range over assumptions X+ or C-, and dually γ to range over conclusions
X- or C+. A linear context ∆ is a list of assumptions.

The positive connectives are defined through the judgement ∆  C +, which corresponds to
applying only linear right-rules to show C+ from ∆. For example, the rules for atoms, conjunc-
tion, and disjunction are as follows:

X+  X +

∆1  A+ ∆2  B +

∆1,∆2  A+ ⊗ B +
∆  A+

∆  A+ ⊕ B +
∆  B +

∆  A+ ⊕ B +

Foreshadowing the Curry-Howard interpretation, we refer to derivations of this judgement as
constructor patterns; linearity captures the restriction familiar from functional programming
that a pattern binds a variable just once.

Negative connectives are defined by ∆  C- > γ, which corresponds to using linear left-
rules to decompose C - into the conclusion γ. A proof term for this judgement is a destructor
pattern, which gives the shape of an elimination context (continuation) for negative types:

∆1  A+ ∆2  B- > γ

∆1,∆2  A+ → B - > γ

∆  A- > γ

∆  A-NB - > γ

∆  B- > γ

∆  A-NB - > γ

Observe that a destructor pattern for A+ → B - includes a constructor pattern for A+, as well as
a destructor pattern for B -, matching the possible observations on a function type. We have
adopted linear logic notation by writing ⊗ for positive and N for negative conjunction. In the
present setting, both of these connectives encode ordinary intuitionistic conjunction with respect
to provability, but they have different proof terms: positive conjunction is introduced by an eager
pair whose components are values, and eliminated by pattern-matching against both compo-
nents; negative conjunction is eliminated by projecting one of the components, and introduced
by pattern-matching against either possible observation, i.e. by a lazy pair.

6.1.2 Focusing Judgements
In Figure 6.1, we present the focusing rules. In these rules, Γ stands for a sequence of linear
contexts ∆, but Γ itself is treated in an unrestricted manner (i.e., variables are bound once in a
pattern, but may be used any number of times within the pattern’s scope).

The first two judgements concern the positive connectives. The judgement Γ ` [C +] defines
right-focus on a positive formula, or positive values: a positive value is a constructor pattern
under a substitution for its free variables. Focus judgements make choices: to prove C + in
focus, it is necessary to choose a particular shape of value by giving a constructor pattern, and
then satisfy the pattern’s free variables. Values are eliminated with the left-inversion judgement
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Assumption α ::= X+ | C-

Conclusion γ ::= X- | C+

Linear context ∆ ::= · | ∆, α
Unrestricted context Γ ::= · | Γ,∆

Right Focus Γ ` [C +]
∆  C + Γ ` ∆

Γ ` [C +]

Left Inversion Γ ` γ0 > γ Γ ` X- > X -
(∆  C + −→ Γ,∆ ` γ)

Γ ` C+ > γ

Left Focus Γ ` [C -] > γ

∆  C- > γ0 Γ ` ∆ Γ ` γ0 > γ

Γ ` [C -] > γ

Right Inversion Γ ` α
(∆  C- > γ −→ Γ,∆ ` γ)

Γ ` C -
X+ ∈ Γ
Γ ` X +

Neutral Γ ` γ
Γ ` [C +]

Γ ` C +

C- ∈ Γ Γ ` [C -] > γ

Γ ` γ

Assumptions Γ ` ∆ Γ ` ·
Γ ` ∆ Γ ` α

Γ ` ∆, α

Figure 6.1: Focusing rules
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Γ ` γ0 > γ, which defines a positive continuation by case-analysis. Inversion steps respond
to all possible choices that the corresponding focus step could make: the rule for C + quantifies
over all constructor patterns for that formula, producing a result in each case. By convention,
we tacitly universally quantify over metavariables such as ∆ that appear first in a judgement that
is universally quantified, so in full the premise reads “for all ∆, if ∆  C + then Γ,∆ ` γ.”
The positive connectives are thus introduced by choosing a value (focus) and eliminated by
continuations that are prepared to handle any such value (inversion). For atoms, the only case-
analysis is the identity.

The next two judgements concern the negative connectives, where the relationship between
introduction/elimination and focus/inversion is reversed. A negative formula is eliminated by
the left-focus judgement Γ ` [C -] > γ, which chooses how to observe C - by giving a nega-
tive continuation. A negative continuation consists of a destructor pattern, a substitution, and
a case-analysis. The destructor pattern and substitution decompose a negative type C - to some
conclusion γ0, for instance a positive type C+. However, it may take further case-analysis of
this positive type to reach the desired conclusion γ. Dually, negative types are introduced by
inversion, which responds to left-focus by giving sufficient evidence to support all possible ob-
servations. The right-inversion judgement Γ ` α, where assumptions α are negative formula or
positive atoms, specifies the structure of a negative value. A negative value for C - must show
that for all destructors of C -, the conclusion is justified by the variables bound by the patterns in
it.

The judgement Γ ` γ, defines a neutral sequent, or an expression: from a neutral sequent, one
can either right-focus and return a value, or left-focus on an assumption in Γ and apply a negative
continuation to it. Finally, a substitution Γ ` ∆ provides a negative value for each hypothesis.

Instantiating these rules using the above pattern rules, we see that they give the expected
derived rules for the connectives; e.g.:

Γ ` X - Γ ` Y - Γ ` Z -

Γ ` (X -NY -)NZ -
Γ, X+ ` Z - Γ, Y + ` Z -

Γ ` (X + ⊕Y +)→ Z -

6.1.3 Patterns for Pre-derivability
In Section 6.1.1, we gave a fixed set of rules for constructing the patterns of some simple connec-
tives. We now generalize this by making a context of rules a pattern of the pattern judgement. A
rule R takes the form P ⇐ A+

1 · · · ⇐ A+
n , where A+

1, . . . , A
+
n are positive formulas and P is a de-

fined atom. Rules are collected in a rule context Ψ. The rule context is carried through the pattern
judgements: ∆  A+ becomes ∆  〈Ψ〉A+ and ∆  A- > γ becomes ∆  〈Ψ〉A- > γ. The
rule context represents both the signature of constructors, and the local assumptions introduced
by binders. This encompassed both InΣ and Ψ from Chapter 5, but is more general, because
binders can locally introduce higher-order rules.

A rule P ⇐ A+
1 · · · ⇐ A+

n ∈ Ψ can be applied to produce a constructor pattern for P :
∆1  〈Ψ〉A+

1 . . . ∆n  〈Ψ〉A+
n

∆1, . . . ,∆n  〈Ψ〉P
Note that rules are unrestricted, in the sense that they can be applied an arbitrary number of times
while constructing a pattern. This pattern typing rule corresponds to the definition of the datatype
Data in Chapter 5.
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Pos. formula A+ ::= X+ | ↓A- | 1 | A+ ⊗ B + | 0 | A+ ⊕ B + | P | R ⇒ B +

Rule R ::= P ⇐ A+
1 · · · ⇐ A+

n

Neg. formula A- ::= X- | ↑A+ | A+ → B - | > | A-NB - | R f B -

Rule Context Ψ ::= · | Ψ, R
Contextual form. C± ::= 〈Ψ〉A±

∆  〈Ψ〉A+

X+  〈Ψ〉X + 〈Ψ〉A-  〈Ψ〉 ↓A-

·  〈Ψ〉 1
∆1  〈Ψ〉A+ ∆2  〈Ψ〉B +

∆1,∆2  〈Ψ〉A+ ⊗ B +

(no rule for 0)
∆  〈Ψ〉A+

∆  〈Ψ〉A+ ⊕ B +

∆  〈Ψ〉B +

∆  〈Ψ〉A+ ⊕ B +

∆  〈Ψ,R〉B +

∆  〈Ψ〉R ⇒ B +

P ⇐ A+
1 · · · ⇐ A+

n ∈ Ψ
∆1  〈Ψ〉A+

1 . . . ∆n  〈Ψ〉A+
n

∆1, . . . ,∆n  〈Ψ〉P

∆  〈Ψ〉A- > γ

·  〈Ψ〉X - > X- ·  〈Ψ〉 ↑A+ > 〈Ψ〉A+

(no rule for >)
∆  〈Ψ〉A- > γ

∆  〈Ψ〉A-NB - > γ

∆  〈Ψ〉B - > γ

∆  〈Ψ〉A-NB - > γ

∆1  〈Ψ〉A+ ∆2  〈Ψ〉B - > γ

∆1,∆2  〈Ψ〉A+ → B - > γ

∆  〈Ψ,R〉B - > γ

∆  〈Ψ〉R f B - > γ

Figure 6.2: Patterns
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Pre-derivability is represented by two connectives,⇒ and f:
∆  〈Ψ,R〉B +

∆  〈Ψ〉R ⇒ B +

∆  〈Ψ,R〉B - > γ

∆  〈Ψ〉R f B - > γ

Both connectives expand the rule context, introducing a scoped constructor of type R. The rule
for R ⇒ B + builds a constructor pattern for B+ under assumption of R and essentially (if we
ignore structural punctuation) looks like an implication right-rule, while the rule for R f B -

builds a destructor pattern for B- and looks like a conjunction left-rule. However, as we will
see in Section 6.1.5, these connectives behave quite differently from ordinary implication and
conjunction, in part due to their non-standard polarity.

Most of the remaining rules (see Figure 6.2) for the connectives of polarized logic are unre-
markable, since they simply carry the rule context through unchanged. The “shift” connectives ↑
and ↓ deserve explanation, though. Following Girard (2001), these mark the boundary between
positive and negative polarity, and correspondingly they mark the point where pattern-matching
must end (Zeilberger, 2008a). Because the rule context can change during the course of pattern-
matching, it is necessary to associate assumptions and conclusions with a specific rule context.
We indicate this with contextual formulas 〈Ψ〉A+ and 〈Ψ〉A-, so that the rules for the shift con-
nectives are:

〈Ψ〉A-  〈Ψ〉 ↓A- ·  〈Ψ〉 ↑A+ > 〈Ψ〉A+

For example, pattern-matching on 〈Ψ〉R ⇒ ↓A- produces a variable of contextual type 〈Ψ,R〉A-.
The same phenomenon occurs in Chapter 5, when pattern-matching on 〈Ψ〉D ⇒ A yields an
Agda variable of type 〈Ψ,D〉A.

In spite of this richer notion of patterns, the generic focusing rules of Figure 6.1 remain un-
changed if we adopt a notational sleight-of-hand: we now takeC+ andC- to range over contextual
formulas.

6.1.4 Identity and Cut

The context Ψ can be used to define arbitrary recursive types. For example, consider an atom D
defined by one constant

d : D⇐ ↓(D→ ↑D)

D is essentially the recursive type µX.X → X , which can be used to write non-terminating
programs.

Because the rule context permits the definition of general recursive types, it should not be
surprising that the identity and cut principles are not admissible in general. Through the Curry-
Howard interpretation, however, we can still make sense of the identity and cut principles as
corresponding, respectively, to the possibly infinite processes of η-expansion and β-reduction.
We now state these principles, “prove” them by operationally sound but possibly non-terminating
procedures, and then discuss criteria under which these proofs are well-founded.
PRINCIPLE 6.1.1: IDENTITY.

1. (neg. identity) If C- ∈ Γ then Γ ` C -.
2. (pos. identity) Γ ` C+ > C +

3. (identity substitution) If ∆ ⊆ Γ then Γ ` ∆.
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Procedure. The first identity principle reduces to the second and third as follows:

∀(∆  C- > γ) :

C- ∈ Γ

∆  C- > γ
ID3

Γ,∆ ` ∆
ID2

Γ ` γ > γ

Γ,∆ ` [C -] > γ

Γ,∆ ` γ
Γ ` C -

The second identity reduces to the third as follows:

∀(∆  C +) :

∆  C +
ID3

Γ,∆ ` ∆

Γ,∆ ` [C +]

Γ,∆ ` C +

Γ ` C+ > C +

Finally, the third identity reduces to the first applied over all hypotheses C- ∈ ∆.

PRINCIPLE 6.1.2: CUT.
1. (neg. reduction) If Γ ` C - and Γ ` [C -] > γ then Γ ` γ.
2. (pos. reduction) If Γ ` [C +] and Γ ` C+ > γ then Γ ` γ.
3. (composition)

(a) If Γ ` γ0 and Γ ` γ0 > γ then Γ ` γ.
(b) If Γ ` [C -] > γ0 and Γ ` γ0 > γ then Γ ` [C -] > γ.
(c) If Γ ` γ1 > γ0 and Γ ` γ0 > γ then Γ ` γ1 > γ.

4. (substitution) For all six focusing judgements J , if Γ ` ∆ and Γ,∆ ` J then Γ ` J .

Procedure. Consider the first cut principle. The two derivations must take the following form:

∀(∆  C- > γ0 ) : Γ,∆ ` γ0

Γ ` C -
∆  C- > γ0 Γ ` ∆ Γ ` γ0 > γ

Γ ` [C -] > γ

By plugging ∆  C- > γ0 from the right derivation into the higher-order premise of the left
derivation, we obtain Γ,∆ ` γ0 . Then Γ ` γ0 by substitution with Γ ` ∆, whence Γ ` γ by
composition with Γ ` γ0 > γ. The case of positive reduction is analogous (but appeals only to
substitution).

In all cases of composition, if γ0 = X- then the statement is trivial. Otherwise, we examine
the last rule of the left derivation. For the first composition principle, there are two cases: either
the sequent was derived by right-focusing on the conclusion γ0 = C+, or else by left-focusing on
some hypothesis C- ∈ Γ. In the former case, we immediately appeal to positive reduction. In the
latter case, we apply the second composition principle, which in turn reduces to the third, which
then reduces back to the first.

Likewise, to show substitution we examine the rule concluding Γ,∆ ` J . Dually to the
composition principle, the only interesting case is when the sequent was derived by left-focusing
on C- ∈ ∆, wherein we immediately apply a negative reduction.
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Observe that we have made no mention of particular connectives or rule contexts, instead
reasoning uniformly about focusing derivations. As we alluded to above, however, in general
these procedures are not terminating. Here we state sufficient conditions for termination. They
are stated in terms of a strict subformula ordering, a more abstract version of the usual structural
subformula ordering.
DEFINITION 6.1.3: STRICT SUBFORMULA ORDERING. We define an ordering C±1 A C±2 be-
tween contextual formulas as the least transitive relation closed under the following properties:
• If ∆  C-

1 > γ and C-
2 ∈ ∆ then C-

1 A C-
2

• If ∆  C-
1 > γ and C+

2 = γ then C-
1 A C+

2

• If ∆  C +
1 and C-

2 ∈ ∆ then C+
1 A C-

2

For any contextual formula C±, we define AC to be the restriction of A to formulas below C±.
The strict subformula ordering does not mention atoms X+ or X-, since they only play a

trivial role in identity and cut.
DEFINITION 6.1.4: WELL-FOUNDED FORMULAS. We say that a contextual formula C± is
well-founded if AC is well-founded.
PROPOSITION 6.1.5. Positive and negative identity are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative identity are proved by mutual
induction using the order AC , with a side induction on the length of ∆ to show substitution
identity.

PROPOSITION 6.1.6. Positive and negative reduction are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative reduction are proved by
mutual induction using the order AC , with a side induction on the left derivation to show com-
position, and a side induction on the right derivation to show substitution.

DEFINITION 6.1.7: PURELY POSITIVE RULES. A rule R is called purely positive if it con-
tains no shifted negative formulas ↓A- as premises (or structural subformulas of premises). For
example, exp⇐ (exp⇒ exp) is pure, but D⇐ ↓(D→ ↑D) is not.
LEMMA 6.1.8. Suppose 〈Ψ〉A± contains only purely positive rules (i.e., in Ψ, or as structural
subformulas of A±). Then 〈Ψ〉A± is well-founded.

Proof. By induction on the structure of A±. Every pattern typing rule (recall Figure 6.2) exam-
ines only structural subformulas of A±, except when A+ = P . But any P defined by purely posi-
tive rules P ⇐ A+

1 · · · ⇐ A+
n in fact has no strict subformulas, since the ∆i such that ∆i  〈Ψ〉A+

i

can contain only atomic formulas X+.

The restriction to pure rules precludes premises involving admissibility. However, it in-
cludes all inference rules definable in the LF logical framework, generalizing Schroeder-Heister’s
proof of cut-elimination for the fragment of definitional reflection with→-free rules (Schroeder-
Heister, 1993) (since purely positive rules do not exclude⇒’s). Moreover, as we explained, the
identity and cut principles are always operationally meaningful, even in the presence of arbi-
trary recursive types. Technically, we could adopt a coinductive reading of the focusing rules
(cf. (Girard, 2001)), in which case identity is always productive, and cut-elimination is a partial
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operation that attempts to build a cut-free proof bottom-up. We conjecture that cut-elimination
is total given a positivity restriction for rules.

6.1.5 Shock therapy

In §6.2 of “Locus Solum”, Girard (2001) considers several “shocking equalities”—counterintuitive
properties of the universal and existential quantifiers that emerge when they are given non-
standard polarities. For example, positive ∀ commutes under ⊕, while negative ∃ commutes
over N. In our setting,⇒ behaves almost like a positive universal quantifier, and f almost like
a negative existential. These would become real quantifiers in an extension to dependent types.
And indeed, we can reproduce analogues of these commutations.

DEFINITION 6.1.9. For two positive contextual formulas C+
1 and C+

2 , we say that C+
1 . C+

2 if
· ` C+

1 > C +
2 . For negative C-

1 and C-
2, we say C-

1 . C-
2 if C-

1 ` C -
2 . We write C±1 ≈ C±2

when both C±1 . C±2 and C±2 . C±1 . These relations are extended to (non-contextual) polarized
formulas if they hold under all rule contexts.

PROPOSITION 6.1.10: “SHOCKING” EQUALITIES.

1. R ⇒ (A+ ⊕ B +) ≈ (R ⇒ A+)⊕ (R ⇒ B +)

2. (R f A-)N(R f B -) ≈ R f (A-NB -)

Proof. Immediate—indeed, in each case, both sides have an isomorphic set of patterns.

Why are these equalities shocking? If we ignore polarity and treat all the connectives as
ordinary implication, disjunction, and conjunction, then (2) is reasonable but (1) is only valid
in classical logic. And if we interpret⇒ and f as ∀ and ∃, then both equations are shockingly
anticlassical:

1. ∀x.(A⊕ B) ≈ (∀x .A)⊕ (∀x .B)

2. (∃x .A)N(∃x .B) ≈ ∃x.(ANB)

On the other hand, from a computational perspective, these equalities are quite familiar. For
example, (1) says that a value of type A⊕ B with a free variable is either the left injection of an
A with a free variable or the right injection of a B with a free variable.

We can state another pair of surprising equivalences between the connectives⇒ and f under
polarity shifts:

PROPOSITION 6.1.11: SOME/ANY.

1. ↓(R f A-) ≈ R ⇒ ↓A-

2. ↑(R ⇒ A+) ≈ R f ↑A+

Again, this coincidence under shifts is not too surprising, since it recalls the some/any quan-
tifier Nx .A of nominal logic (Pitts, 2003), as well as the self-dual∇ connective of Miller and Tiu
(2003). Nx .A can be interpreted as asserting either that A holds for some fresh name, or for all
fresh names—with both interpretations being equivalent.
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6.1.6 Relationship to modal logic
Though we did not originally recognize it as such, the above system in fact corresponds to a
hybrid modal logic presented in the style of Simpson (Simpson, 1993), where the rule context
Ψ is the world. We can define the hybrid connectives A@Ψ (which we called [Ψ]∗A above) and
↓ ψ.A by pattern rules as follows:

∆  〈Ψ′〉A+

∆  〈Ψ〉A+@+Ψ′
∆  〈Ψ〉 [Ψ/ψ]A+

∆  〈Ψ〉 ↓+ψ.A+

∆  〈Ψ′〉A- > γ

∆  〈Ψ〉A-@-Ψ′ > γ

∆  〈Ψ〉 [Ψ/ψ]A- > γ

∆  〈Ψ〉 ↓-ψ.A- > γ

Then R ⇒ A+ is definable as ↓ ψ.A+@(ψ,R): the pattern rule for⇒ has the same premise as
the single derived rule for this composition of connectives. A similar result holds for f.

This connection with modal logic sheds more light on the some/any theorem described above,
once we observe that both @ and ↓ also satisfy this equivalence under shifts. Our explanation for
this ambipolar nature of f, @, and ↓ is that they are “macro” connectives, which can in fact be
interpreted away—as we exploited in our Agda implementation above. The interpretation of each
of these connectives (R ⇒ A, A@Ψ, ↓ ψ.A) is defined to be the interpretation of A in a modified
context or under a substitution, so, after interpretation, the outer structure of the proposition is
the structure of A.

This connection with modal logic also provides new insight into the Agda implementation
of our framework: the interpretation of Types as functions from Ctx→ Set corresponds to im-
plementing the Kripke semantics of the modal logic. This observation suggests a way of repre-
senting modal logic in a dependently typed programming language, which we have exploited in
a formalization of the ML5 programming language (Licata and Harper, 2010).

6.2 Agda Representation of Focusing
In this section, we show how to represent higher-order focusing in Agda. Higher-order focus-
ing is itself a nice example of mixing admissibility and derivability: the context of negative
assumptions Γ requires derivability, but the higher-order representation of inversion requires ad-
missibility. For simplicity, we show only non-contextualized patterns, though the contextualized
case is no more difficult to represent.

In Figure 6.3, we represent the types as a straightforward inductive definition. We combine
the mutually inductive definitions of positive and negative types into one inductive definition
indexed by a polarity; this makes it easier to define operations that work on both polarities of
types.

Next, we represent contexts:

data Hyps : Set where
· : Hyps
, : Hyps � Hyps � Hyps

_true- : Type- � Hyps
_atom+ : Atom � Hyps

Ctx : Set
Ctx = List Hyps
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Atom : Set
Atom = String

data Pol : Set where
Pos : Pol
Neg : Pol

mutual
Type- : Set
Type- = Type Neg

Type+ : Set
Type+ = Type Pos

data Type : (p : Pol) � Set where
X+ : Atom � Type+

↓ : Type- � Type+

‘1 : Type+

_⊗_ : Type+ � Type+ � Type+

‘0 : Type+

_⊕_ : Type+ � Type+ � Type+

nat : Type+

X- : Atom � Type-

↑ : Type+ � Type-

_⊃_ : Type+ � Type- � Type-

> : Type-

_&_ : Type- � Type- � Type-

Figure 6.3: Agda Representation of Polarized Types
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data Conc : Set where
_true+ : Type+ � Conc
_atom- : Atom � Conc

data _∈∆_ : (∆ : Hyps) � Hyps � Set where
iX : ∀ {X} � (X atom+) ∈∆ (X atom+)
iT : ∀ {A- : Type-} � (A- true-) ∈∆ (A- true-)
i1 : ∀ {∆ ∆1 ∆2} � ∆ ∈∆ ∆1 � ∆ ∈∆ (∆1,∆2)
i2 : ∀ {∆ ∆1 ∆2} � ∆ ∈∆ ∆2 � ∆ ∈∆ (∆1,∆2)

data _∈∈_ : Hyps � Ctx � Set where
, : ∀ {∆ ∆’ Γ} � ∆’ ∈ Γ � ∆ ∈∆ ∆’ � ∆ ∈∈ Γ

Contexts are lists of hypotheses, where hypotheses are join-lists of atomic assumptions of the
form A true+ and X atom-. Dually, conclusions are of the form A true+ or X atom-—intuitionistic
logic admits only a single conclusion. The type ∈∆ represents de Bruijn indices into ∆, and the
type ∈∈ represents a de Bruijn index ∆ ∈ Γ paired with an index into ∆.

Patterns are defined in Figure 6.4 by a straightforward inductive definition, directly transcrib-
ing the above rules.

We show the focusing rules in Figure 6.5. We define a sum type Judge for the right-hand
sides of all of the focusing judgements, so that we can define the focusing rules with a single
judgement Γ ` J. It is convenient to break out Γ ` γ > γ’ as a separate judgement, and to
move the right rule for positive atoms from the inversion judgement (in the rules in Section 6.1)
to the substitution judgement. This way the value judgements (right focus and inversion) and
the continuation judgements (left focus and inversion) both operate on a type, rather than an
assumption or conclusion. This also necessitates the new rule UseT, which passes from Use to
inversion. Other than these changes, each datatype constructor is a straightforward transcription
a sequent rule from Section 6.1. Val- and Cont+ use both admissibility (to quantify over patterns)
and derivability (to extend the context with the negative variables they produce).

In the companion code, we give a simple implementation of the identity and cut principles
described above. We do not prove termination of these functions, though one could do so by
proving well-foundedness of the structural subformula order.

6.3 Discussion
Zeilberger (Zeilberger, 2009) argues that polarity and focusing provide a logical account of both
evaluation order and pattern-matching. It is the latter that facilitated our original investigation
of a proof theory mixing pre-derivability and admissibility: higher-order focusing allows a con-
cise but high-level description of inductive types, off-loading the hard work of describing in-
duction principles on meta-level admissibility functions. Its account of evaluation order makes
focusing a promising technique for studying programming languages with effects—for example,
in the presence of certain effects, focused proofs are normal forms of contextual equivalence
classes (Zeilberger, 2009). However, we have not exploited this aspect of focused proofs in
this dissertation, where we have concentrated on derivability and admissibility in pure type the-
ory. Thus, our initial investigation into mixing derivability and admissibility was exploiting the
“pattern-matching” but not “evaluation order” aspects of focusing.
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data __ : Hyps � Type+ � Set where
Cx+ : ∀ {X} � (X atom+)  (X+ X)
Cx- : ∀ {A-} � (A- true-)  (↓ A-)
C<> : · ‘1
Cpair : ∀ {∆1 ∆2 A+ B+}

� ∆1  A+ � ∆2  B+

� (∆1,∆2)  (A+ ⊗ B+)
Cinl : ∀ {∆ A+ B+}

� ∆  A+

� ∆  (A+ ⊕ B+)
Cinr : ∀ {∆ A+ B+}

� ∆  B+

� ∆  (A+ ⊕ B+)
Czero : ·  nat
Csucc : ∀ {∆}

� ∆  nat
� ∆  nat

data __>_ : Hyps � Type- � Conc � Set where
De- : ∀ {X} � ·  (X- X) > (X atom-)
De+ : ∀ {A+} � ·  (↑ A+) > (A+ true+)
Dapp : ∀ {∆1 ∆2 A+ B-} {γ : Conc}

� ∆1  A+ � ∆2  B- > γ
� (∆1,∆2)  (A+ ⊃ B-) > γ

Dfst : ∀ {∆ A- B-} {γ : Conc}
� ∆  A- > γ
� ∆  (A- & B-) > γ

Dsnd : ∀ {∆ A- B-} {γ : Conc}
� ∆  B- > γ
� ∆  (A- & B-) > γ

Figure 6.4: Agda Representation of Patterns
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data FocJudg : Set where
Val : {p : Pol} � Type p � FocJudg
Cont : {p : Pol} � Type p � Conc � FocJudg
Use : Conc � Conc � FocJudg
Sub : Hyps � FocJudg
Exp : Conc � FocJudg

data _`_ : Ctx � FocJudg � Set where
Val+ : ∀ {Γ ∆} {C+ : Type+}

� ∆  C+ � Γ ` Sub ∆
� Γ ` Val C+

Val- : ∀ {Γ} {C- : Type-}
� (∀ {∆ γ} � ∆  C- > γ � ∆ :: Γ ` Exp γ)
� Γ ` Val C-

Cont+ : ∀ {Γ γ} {C+ : Type+}
� (∀ {∆} � ∆  C+ � ∆ :: Γ ` Exp γ)
� Γ ` Cont C+ γ

Cont- : ∀ {∆0 γ0 γ Γ} {A- : Type-}
� ∆0  A- > γ0 � Γ ` Sub ∆0 � Γ ` Use γ0 γ
� Γ ` Cont A- γ

UseX : ∀ {Γ X}
� Γ ` Use (X atom-) (X atom-)

UseT : ∀ {Γ γ} {A+ : Type+}
� Γ ` Cont A+ γ
� Γ ` Use (A+ true+) γ

SubX : ∀ {Γ X}
� (X atom+) ∈∈ Γ
� Γ ` Sub (X atom+)

SubT : ∀ {Γ} {C- : Type-}
� Γ ` Val C-

� Γ ` Sub (C- true-)
· : ∀ {Γ}

� Γ ` Sub ·
, : ∀ {∆1 ∆2 Γ}

� Γ ` Sub ∆1 � Γ ` Sub ∆2
� Γ ` Sub (∆1,∆2)

R : ∀ {Γ} {C+ : Type+}
� Γ ` Val C+

� Γ ` Exp (C+ true+)
L : ∀ {Γ γ} {A- : Type-}

� (A- true-) ∈∈ Γ � Γ ` Cont A- γ
� Γ ` Exp γ

Figure 6.5: Agda Representation of Focusing Rules
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Another way to achieve the same ends is to use inductive types inside of an existing type
theory—where someone has similarly already done the hard work of describing induction prin-
ciples. This led to the approach described above in Chapter 5, which was more immediately
practical, as it allowed us to exploit an existing proof assistant more directly. Programming in
the encoded focused proof system described above offers no real advantages until one considers
effects.
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Directed Dependent Type Theory
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Chapter 7

2-Dimensional Directed Type Theory

The research described in this part was conducted jointly with Robert Harper.

7.1 Motivation and Background

To make the embedded logical framework described above useful for programming with logics,
rather than just syntax, we need general, as well as hypothetical, judgements. As discussed in
Chapter 2, the structural properties of the generic judgements are more subtle than those of the
hypothetical. For example, recall the rule for substitution:

Γ ` e : τ Γ, x : τ,Γ′ ` J
Γ,Γ′[e/x] ` J [e/x]

subst

This rule says that the substitution into the derivation proves the substitution into the context
and judgement. When implemented with de Bruijn indices, weakening, exchange, and contrac-
tion exhibit similar phenomena: stating them for derivations requires a corresponding action on
judgements.

To achieve these substitution principles, it is necessary that each inference rule commutes
with the structural properties, in the sense that the substitution into the conclusion of the rule is
the conclusion of the substitution into the premises. This permits substitution to be implemented
by reapplying the rule to the substitution instances of the premises. For example, consider elim-
ination for the universal quantifier:

Γ, x : term ` A prop Γ ` ∀x.A true Γ ` t : term

Γ ` A[t/x] true

Suppose Γ = y : term, and that s is a closed term. Then substituting for y in the premises gives:

x : term ` A[s/y] prop
∀x.(A[s/y]) true
t[s/y] : term

129
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and we are to show that A[t/x][s/y] is true. To put the substituted premises together to yield the
conclusion, we need to know that substitutions compose in the following sense:

A[t/x][s/y] = A[s/y][t[s/y]/x]

This raises the question of which terms commute with substitution. Clearly datatype con-
structors do, and, as we have just argued, substitutions themselves do as well. What about
functions defined recursively? If the index is an admissibility function, what does it mean to
commute with substitution at higher type?

In this chapter, we develop a framework for answering these questions. Our approach is to
view the structural properties as an instance of a much more general idea, that of directed phe-
nomena in dependent type theory. This has several benefits: First, it gives a clear account of what
constraints must be placed on the indices of structural judgements. Moreover, this account is not
tied to a specific embedded logical framework. This is useful because, even in this dissertation,
we have used a variety of notions of entailment, including standard hypotheticals (Chapter 5), as
well as modal logic (in Chapter 3) and affine logic (in Chapter 4). Second, our approach sug-
gests that with a little more work we will able to automatically equip all of these logics with the
structural properties, just by writing down the datatype definitions.

7.1.1 Structural properties as functoriality
To illustrate what we mean by directed phenomena, we recast the structural properties in the
language of category theory, following Altenkirch and Reus (1999); Fiore et al. (1999); Hofmann
(1999). We assume the reader is familiar with categories, functors, and natural transformations,
but will define the other concepts we need.

The universe of contextual Types defined in Chapter 5 are interpreted as functions Ctx → Set.
Our first observation is that the structural properties endow these functions with the structure of
a functor from a category of contexts to the category of sets. To cover the structural properties of
weakening, exchange, and contraction, we can define Ctx to be the category where an object is
a context Ψ, and a morphism −→ Ψ1Ψ2 is a variable-for-variable substitution, represented using
the type Ψ1 ⊆ Ψ2 defined above. A functor Ctx −→ Sets consists of a family of sets FΨ, which
preserves context maps: if Ψ ⊆ Ψ′ then there is a function FΨ → FΨ′ . Of course, functoriality is
exactly the definition of weakening (for a whole context at once), as used e.g. in Chapter 3.

The Types of our universe show that the collection of functors Ctx −→ Sets is closed under
various type-forming operations, whose action on morphisms is given in the definition of map.
• F ⊗G is the product functor, whose action on an object Ψ is given by the product of FΨ

and GΨ, and action on morphisms is given componentwise.
• F ⊕G is the sum functor, whose action on an object Ψ is given by the sum of FΨ and GΨ,

and action on morphisms is given by case-analysis.
• �A is a constant functor, with trivial action on morphisms.
• D# says that the type D ∈ − is functorial, with action on morphisms given by applying

the substitution.
• D+D says that the recursive type Data − D is functorial, with action on morphisms given

for variables, by applying the substitution, or for constants, recursively.
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In contrast, the type F ⊃ G defines an action on objects (Ψ goes to FΨ → GΨ), but is
not functorial, because the → is contravariant in its domain. Given a contravariant functor
F : Ctxop −→ Sets and a covariant functor G : Ctx −→ Sets , we can form F ⊃ G with action
on morphisms given by pre- and post-composition. However, given a covariant functor for the
domain, then the intended pre-composition faces the wrong direction (we have FΨ1 → FΨ2 when
we need FΨ2 → FΨ1). This provides another explanation for why the structural properties fail
for admissibility functions: the structural properties are implemented by the functorial actions of
the type constructors, but ⊃ does not determine a functor.

It also explains the co- and contravariant weave in the definition of the structural properties
above: the tactics defined above sort out, after the fact, whether a type defines a functor, and
out of what category. That is, the remaining structural properties can be defined by looking
at different notions of morphism for the category of contexts. If we define Ctx≥D to have,
as morphisms Ψ −→ Ψ′, proofs that Ψ and Ψ′ only differ by variables not subordinate to D,
then a functor Ctx≥D −→ Sets is a type that is weakenable and strengthenable by variables
not subordinate to D. If we define the morphisms to be term-for-variable substitutions, then
functoriality gives substitution as well as weakening, exchange, and contraction. Of course,
these notions can be combined as well.

7.1.2 Structural Properties of the Generic Judgement

The advantage of this categorical view is that it extends cleanly to the dependently typed case.
A simple type, like a type Prop of propositions, determines a functor Ctx � Sets . An indexed
judgement like Γ ` A true determines a functor (Σ Ψ :Ctx .Prop(Ψ)) −→ Sets , whose action on
objects gives the set of derivations, and action on morphisms corresponds exactly to the structural
properties of the generic judgement. Thus, our next task is to understand Σ-types in category
theory.

Given a category C and a functor F : C −→ Sets , the category of elements of F, or total
category of the Grothendieck construction on F, is the category-theoretic analogue of the type
Σ A:C.F A. It is written

∫
C F :

• an object of
∫
C F is a pair (o, a) where o ∈ Ob C, and a ∈ F (o).

• a morphism from (o, a) to (o′, a′) is a pair (c, f) where c : o −→C o′ and f is a proof that
A(c)o = o′ as elements of the set A(o′).

• id(o,a) = (ido, refl). This is well-typed because A(id) = id, so the second component
requires a proof that a = a.

• (c, f) ◦ (c′, f ′) = (c ◦ c′, f ◦ A(c)f ′). In the second component we write ◦ for transitivity
on equality proofs; this composition proves the goal because A preserves compositions.

Thus, the set of objects of
∫
C F is exactly Σ A:Ob C .Ob (FA). A morphism is a morphism

of the first component that is respected by the assignment of elements given by the second com-
ponent. Specializing this definition to Σ Ψ :Ctx .Prop(Ψ), a morphism from (Ψ, A) to (Ψ′, A′)
is a morphism w : Ψ −→ Ψ′ such that A′ = mapwA. Thus, if a type family ` is a func-
tor (Σ Ψ :Ctx .Prop(Ψ)) −→ Sets , then a context map w : Ψ −→ Ψ′ determines a function
`(Ψ, A)→ `(Ψ′,mapwA). The substitution into the derivation proves the substitution into the
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judgement, just as we desired.
This discussion motivates studying categories Ctx and

∫
and functors from them into Sets .

However, more generality is required. Consider a first-order logic with judgements of the form
Ω; Γ ` A, where Ω is an individual context, and Γ is dependent on Ω. As a first cut, we might
represent this situation by a category ICtx whose objects are Ω’s and whose morphisms give
their structural properties, as well as a functor TCtx : ICtx −→ Sets giving the the truth
contexts for each individual context. However, the truth contexts themselves should not be a set,
but a category, with morphisms representing their structural properties. Thus, we need functors
into Cat, the category of categories, not just Sets .

Second, when writing inference rules, we need to mention elements of these sets and cat-
egories (e.g. particular proposition constructors). These elements cannot be arbitrary objects,
but, as discussed above, must commute with the structural properties. This condition falls out
naturally when we consider a categorical interpretation not just of types, but also of terms.

However, once we are at the point where we are considering a categorical interpretation of
both types and terms, what we are doing is of course defining a programming language with
a category-theoretic semantics. This connects our work with recent investigations in higher-
dimensional type theory.

7.1.3 Higher-dimensional type theory
One of the most cherished ideas in programming languages is the correspondence between logic,
type theory, and category theory. Recent research has suggested a second holy trinity, between
dependent type theory, higher-dimensional category theory, and homotopy theory (Awodey and
Warren, 2009; Garner, 2009; Hofmann and Streicher, 1998; Lumsdaine, 2009; van den Berg
and Garner, 2010; Voevodsky, 2010). The homotopy hypothesis (Baez and Shulman, 2007)
postulates a correspondence between higher-dimensional categories and higher-dimensional ho-
motopy types, and recent work has extended this to a correspondence with type theory.

On the type theoretic side, this correspondence suggests enriching dependent type theories
with higher-dimensional types. Type theory is traditionally thought of as talking about sets,
which are types of dimension 0: sets have elements (objects, or 0-cells), which may or may not
be equal. Types of dimension 1 are like categories: they have elements, but also have a no-
tion of map between elements (morphisms, or 1-cells), and every function on such a type must
respect this notion of map. A setoid—a set equipped with an equivalence relation—is an ex-
ample of a 1-dimensional type, but in general the notion of morphism can have computational
content. An example is a category of sets with isomorphisms as morphisms—in this case, there
can be many distinguishable maps between two sets. The type of contexts and structural prop-
erties is 1-dimensional as well. Types of dimension 2 have elements, maps, and maps between
maps (2-cells)—an example is the collection of all categories, with functors as maps and natu-
ral transformations as maps between maps. This is an example of a 2-category. In general, an
n-dimensional type corresponds to an n-category, or, equivalently, a homotopy n-type.

One important reason to identify the dimension of a type is that different notions of equality
are appropriate for types of different dimensions. For sets (0-types), there is nothing but equality
of elements. For categories (1-types), elements can be equal, but they might also be isomor-
phic, if there are maps (1-cells) between them that compose to the identity. For categories, the
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appropriate notion of equality is equivalence: maps back and forth, whose compositions are iso-
morphic to the identity, using the 2-cells (two categories are equivalent if there are functors back
and forth that are naturally isomorphic to the identity). The goal of higher-dimensional type
theory is to provide support for n-equivalence in full generality: n-equivalent terms should be
provably equal in the theory, and all families of types and objects should respect n-equivalence.

On the category-theoretic and homotopy-theoretic side, this correspondence suggests using
a higher-order type theory as a meta-language, both for category theory and homotopy theory
themselves, and through them for all formalized mathematics—as has recently been espoused by
Voevodsky (Voevodsky, 2010). In such a theory, mathematicians will always be able to reason
up to equivalence, no matter the appropriate notion of equivalence for the objects in question.

The next question is what higher-dimensional type theory should look like. Dependent type
theories distinguish two different notions of equality: definitional equality (M ≡ N : A), which
is a judgement, and propositional equality (IdA M N ), which is a type. Semantically, the right
interpretation is that definitional equality means equality, but propositional equality means n-
equivalence—and we will sometimes use this terminology for the two. In Martin-Löf’s exten-
sional type theory, definitional and propositional equality are identified, and all proofs of propo-
sitional equality are trivial; this is expressed by the equality reflection and uniqueness of identity
proofs rules.

P : IdA M N
M ≡ N : A

reflect
P : IdA M N
P ≡ reflM : A

uip

Note that the second rule requires the first to type-check. These rules are not sound for the
aforementioned interpretation, as they say that equivalent objects are equal, and all equivalences
are the identity. This is true for sets (0-types), but not for higher dimensions.

What is perhaps surprising is that Martin-Löf’s intensional type theory is in fact sound for
higher-dimensional types: there is nothing in intensional type theory that restricts the dimension
of a type. Instead of equality reflection, propositional equality is eliminated by subst

x :A ` C type P : IdA M N Q : C [M /x ]

substC P Q : C [N /x ]

(or, more generally, the J rule, which allows a motive C that is dependent on the equivalence
P as well). This rule says that any dependent type respects equivalence, which is true in any
dimension. The lack of UIP has sometimes been seen as a problem, addressed by axioms such
as Streicher’s K, which is equivalent to asserting uniqueness of identity proofs propositionally:
uip-prop : (x y : A) (p q : Id A x y) -> Id (Id A x y) p q
or by making all equality proofs definitionally equal, as in OTT (Altenkirch et al., 2007). How-
ever, it can now be seen as a feature, which allows intensional type theory to be interpreted in
higher-dimensional structures.

Higher-dimensional interpretations were pioneered in Hofmann and Streicher’s groupoid in-
terpretation (Hofmann and Streicher, 1998), which interprets intensional type theory in the 2-
category of groupoids, functors, and natural transformations: A closed type denotes a groupoid,
whose objects are the terms of the type, and whose morphisms are the (1-)equivalences between
them. Identity and composition ensure that propositional equality is reflexive and transitive,
while the groupoid structure, which demands that every map be invertible, ensures symmetry.
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The hom-sets of a type A are presented in the syntax as the inhabitants of the identity type
IdA M N . Open types and terms are interpreted as functors, whose object parts are (roughly)
the usual sets and elements of the set-theoretic semantics, and whose morphism parts show how
those types and terms preserve equivalence. When the context is not a discrete groupoid, the
functorial action on equivalences is computationally relevant. For example, consider a universe
set of sets and isomorphisms, by taking the propositional equalities between S1 and S2 to be
invertible functions El(S1)→ El(S2). The rule subst states that all type families respect isomor-
phism: for any x : set ` C : set, A ∼= B implies C[A] ∼= C[B]. Computationally, the lifting of
the isomorphism is given by the functorial action of the type family C.

Recent work has generalized this to higher dimensions. On the categorical side, Garner
(2009) generalizes the groupoid interpretation to a class of 2-categories, rather than justGroupoid.
Lumsdaine (2009) and van den Berg and Garner (2010) show that the syntax of intensional type
theory forms a weak ω-category. On the homotopy-theoretic side, Awodey and Warren (2009)
show how to interpret intensional type theory into abstract homotopy theory (Quillen model cat-
egories).

However, while intensional type theory is sound for higher dimensions, it is definitely incom-
plete: First, there is no way to introduce an identity type by writing down a higher equivalence.
This is a shame, as every type constructor has an action on equivalences, but this action cannot be
exploited in the syntax. Second, there is no way to observe the dimension of types—e.g. certain
types that do satisfy UIP cannot be proved to do so. Voevodsky’s univalence axiom (Voevodsky,
2010) is one way to rectify this. While theoretically sufficient, the axiomatic approach ignores
the definitional behavior of the functorial action of each type constructor, and thus, there is still
some work to be done to understand a syntactic treatment of higher-dimensional type theory.

7.1.4 Directed Type Theory
Intensional type theory is inherently groupoidal, in that propositional equality is provably sym-
metric. However, in our motivating application of programming with logics, the category Ctx
is not a groupoid: weakening and substitution are asymmetric. This motivates the study of
directed dependent type theory, which relaxes the symmetry requirement on proofs of equiva-
lence to obtain a directed notion of transformation between elements of a type. Directedness
has many other applications, as well: First, it extends the correspondence between type theory,
ω-groupoids, and homotopy theory to directed type theory, ω-categories, and directed homotopy
theory. A directed type theory would provide a more general meta-language for higher category
theory and homotopy theory, allowing the expression of non-symmetric notions. While directed
homotopy theory is not as well studied, it may have applications in physics, due to the directed
aspects of space-time. On a more practical level, programming language semantics is full of
directed notions—reduction, monotone functions on domains—and directed type theory may
have applications in mechanization of these languages. It may also shed light on the problem of
combining dependent types with concurrency, which has been analyzed in homotopy-theoretic
terms (Gaucher, 2003).

Another reason to study directed type theory is that, as George Mallory would say, the fa-
miliar dependent type constructors have an action on directed transformations, and with a few
simple changes to the theory we can expose this nature. Relaxing symmetry requires two main
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changes to the type theory: First, the type theory makes the variances of type families explicit,
so that we have the language to say, e.g., that Π is contravariant in its domain, but covariant in
its range. Second, the type theory exposes higher-dimensional structure at the judgemental level,
not through a propositional equality type. The reason for this is that a propositional equality
type, in its standard formulation, relies subtly on the symmetry of equivalence. This comes up
when proving that the type Γ ` IdA M N type is functorial in Γ. The crux of the matter is
implementing the following function:

idfunc : Id M1 M2 → Id N1 N2 → Id M1 N1 → Id M2 N2

idfunc = λ(a, b, c).b ◦ c ◦ a−1

This is possible for equivalence, using inverses. However, given a transformation M1 =⇒ M2

this function is not implementable. One solution to this problem, which we discuss below, is
to investigate directed hom types that relate two terms of opposite variance. However, a more
fundamental approach is to express the structure we want—transformations between two terms
of the same variance—as a judgemental notion, which is not required to be functorial.

This judgemental approach to equality is arguably a better presentation even for symmetric
type theory: The standard definition of the identity type is incomplete even for sets, as it does not
allow one to prove that two functions are equal if they agree on all arguments (and similarly for
other negative types). This can be patched by adding functional extensionality as an axiom (Hof-
mann, 1995), or by defining the identity type in a type-directed manner (Altenkirch et al., 2007).
In either case, the definition of IdA M N is no longer parametric in the type A. Thus, the rules
for the identity type violate the principle that all propositional connectives should be indepen-
dent. The common way to restore orthogonality is to analyze the offending type constructor as
a judgement, not as a type. Additionally, the judgemental approach offers more freedom than
the approach taken in OTT, where identity is a type defined in terms of other types: there is no
reason to insist that the 2-cells be definable as 1-cells.

In this chapter, we take a first step in the investigation of directed type theory, considering
the simplest non-trivial case, that of a 2-dimensional theory. 2-dimensional directed dependent
type theory, or 2DTT, has three layers: types (0-cells), terms (1-cells), and transformations (2-
cells), and can be interpreted in a 2-category. Each type itself denotes a 1-category, with terms
as objects and transformations as morphisms. For simplicity, the syntax reflects the structure of
a strict 2-category, where the associativity and unit laws of 1-cells are definitional equalities, not
a weak 2-category (bicategory), where they hold only up to equivalence. Additionally, we treat
equality (but not equivalence) as in extensional type theory—for example, we define a universe
of extensional sets, with reflect and uip. We validate 2DTT by an interpretation in the strict
2-category Cat of categories, functors, and natural transformations, generalizing the groupoid
interpretation—though we conjecture that this semantics should extend to a class of 2-categories
with the appropriate structure.

In Section 7.2, we present the proof theory of 2DTT, followed by its semantics in Section 7.3.

Additional Related Work An early connection between λ-calculus and 2-categories was made
by Seely (1987), who shows that simply-typed λ-calculus forms a (non-groupoidal) 2-category,
with terms as 1-cells and reductions as 2-cells.
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Variance annotations on variables are common in simply-typed subtyping systems (Cardelli,
1990; Duggan and Compagnoni, 1999; Steffen, 1998). In the dependently typed case, vari-
ance annotations have been used to support termination-checking using sized types, as in Mini-
Agda (Abel, 2010).

Functoriality of simple and polymorphic type constructors has been studied in previous work
on generic traversals of data structures (Bellè et al., 1996; Laemmel and Peyton Jones, 2003)
and compilation of subtyping (Crary, 2000); our work generalizes this to the dependently typed
case. In tactic-based proof assistants, it is possible to construct a library of tactics for showing
that types and terms respect equivalence relations and order relations, such as Jackson’s library
for NuPRL (Jackson, 1996) and setoid rewriting in Coq (Coq Development Team, 2009). Our
approach here is akin to building these tactics into the language, equipping every type and term
with an action on transformations. This allows the computational content and equational behav-
ior of these actions to be drawn out. Jackson (Jackson, 1995) also describes several examples
of computationally relevant notions of equality that arise when formalizing algebra, such as per-
mutations on lists, the associate relation in the factorization theory of integral domains, and the
equality relation on a group quotiented by a computationally interesting normal subgroup. Port-
ing these examples will be an interesting test of a higher-dimensional type theory.

7.2 Base Theory

In this section, we give a proof theory for 2DTT. But first, we discuss a few general methodolog-
ical points:

Admissible versus derivable rules First, 2DTT requires several involution, identity, and com-
position (substitution) principles. These could potentially be made admissible and defined as
meta-operations, but we have instead chosen to internalize them as syntactic forms and explain
their meaning via definitional equality rules. For example, we make use of explicit substitutions,
rather than treating substitution as a meta-level operation. That said, we leave weakening admis-
sible, as the de Bruijn form that results from explicit weakening is difficult to read. The treatment
of dependent types in Pitts (2000)’s survey article provides an introduction to this style of syntax,
with an explicit substitution judgement and internalized composition principles. Presentationally,
this style makes it easier to comprehend the entire theory. Semantically, it constrains the models
of the theory to strict 2-categories, because these principles and equations must hold not just in
the syntax, but in any extension of the theory.

That said, an alternative presentation using meta-operations will be a helpful guide to imple-
mentation, and our current formalism anticipates this alternative to some extent. In particular,
we set out a methodology for defining types and contexts in 2DTT, which ensures that the in-
volution, identity, and composition principles are defined (via definitional equality) in terms of
other constructs in the theory. Because of this goal, some of the equations in the present theory
are redundant, in that they can be derived from others, but these redundant equations would be
necessary if these principles and their equations were made admissible.
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Intrinsic versus extrinsic encodings Thus far in this thesis, we have made heavy use of
intrinsic encodings, where programs are identified with typing derivations, and there are no
raw/untyped programs. Such a presentation is undesirable for a syntactic presentation of a de-
pendent type theory, because the type equality rule says that the same term has two different
types:

Γ ` M : A Γ ` A ≡ B type
Γ ` M : B

If we identified terms with derivations, then this cast would show up in the syntax of a program,
and therefore have to be reasoned about.

The right way of thinking about intrinsic encodings for dependent types is that the indices are
not syntax, but semantics: The intrinsically typed set of terms Tm Γ A is indexed by a semantic
type for which the equations proscribed by Γ ` A ≡ B type are true. This way, type conversion
is inherited from the meta-language. One way to realize this is to view the syntax of the theory as
an abstract specification of a structure with certain operations, e.g. in the style of categories with
families (Dybjer, 1996). However, in this style of presentation the syntax is defined abstractly
to be the least structure with these operations, rather than by a concrete inductive definition. An
alternative is define the syntax inductively, but indexed by semantics, not syntax—Tm Γ A is
defined inductively, but Γ and A are semantic entities (McBride, 2010). This requires defining
the syntax mutually recursively with its interpretation, using induction-recursion (Dybjer, 2000).

Because we would like a concrete description of the syntax, and would like this presentation
to be accessible to those without grounding in advanced techniques such as induction-recursion,
we opt for a traditional extrinsic formulation. However, this decision forces us to confront some
syntactic questions that we might have otherwise avoided: When the typing judgements are
indexed by syntax, there is a question of whether the rules presuppose or guarantee that their
subjects are well-formed. For example, in Γ ` M : A, A is syntactically a type, but is it well-
formed in the sense of the judgement Γ ` A type? There are several possible answers to this
question:

1. Whenever we write Γ ` M : A, we will presuppose the existence of a separate derivation
of Γ ` A type. So the judgement Γ ` M : A can (potentially) be formally derived when A
is not well-formed, but we never consider such cases.

2. The subject of the judgement Γ ` M : A is really a well-formed A: there is an extra
argumentD :: Γ ` Atype (perhaps treated proof-irrelevantly, so the identity of derivations
does not matter).

3. The judgement Γ ` M : A ensures that Γ ` A type holds, in the sense that the theorem “if
Γ ` M : A then Γ ` A type” is provable by induction.

4. The judgement Γ ` M : A ensures that Γ ` A type holds, in that Γ ` A type is directly
derivable from the premises of each rule, without assuming an invariant about the system
as a whole.

5. The judgement Γ ` M : A ensures that Γ ` A type is a premise of the rule.
A related issue is which type annotations are present in the syntax of terms: are the domains of
λ annotated? Is type information available at every level in the syntax tree?

When answering these questions, there is a tension between parsimony, convenience (of writ-
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ing down terms), and implementation efficiency—generally pushing towards fewer premises and
annotations—and the truth (or provability by a particular technique) of meta-theoretic proper-
ties on the other—generally pushing towards more. For example, it is sometimes the case that a
premise is unnecessary, but this can only be seen after developing the meta-theory of the calculus.

In this work, our main meta-theoretic result is a soundness theorem interpreting the syntax
in Cat. This theorem is akin to translating the extrinsic syntactic formulation into a (particular)
intrinsic semantic formulation. Of course, not every syntactic term has a meaning—only the
well-typed ones—so the interpretation is only total on well-typed terms. However, because the
only non-syntax-directed rules are equality rules, which are interpreted as real semantic equality,
the interpretation is proof-irrelevant in the derivation: the meaning of a term under any two
derivations is the same. Indeed, it is helpful to know that this uniqueness property holds while
proving the semantic interpretation total.

One way to achieve this is to first define a partial interpretation on raw terms, so that it is obvi-
ously independent of the derivation, and then prove this relation total on well-typed terms (Hof-
mann, 1995; Streicher, 1991). However, because the output of the semantics is an intrinsically
typed notion, it must be possible to generate not just the meaning of a term, but its semantic
type, from the term itself, independently of the typing derivation. This can be achieved by adopt-
ing the following stance: First, the context is treated as a presupposition in the sense of option
1 above: the rules never explicitly judge the context to be well-formed, but supply enough in-
formation to maintain this invariant. Second, every other meta-variable free in a rule must be
an explicit argument to the proof-term; as a consequence, terms are explicitly annotated with
type annotation at each level of the tree. For example, the function and application constructors
for Π x :A.B are λ x :A.M B and appA,x.B(M,N). Second, each rule has a formation premise
for each meta-variable appearing in the rule, such that under these premises the premise and
conclusion judgements are well-formed (option 4 above). For example,

Γ ` A type Γ , x :A ` B type Γ ` M : Σ x :A.B

Γ ` sndA,x .B M : B [fst M /x ]

However, to make the syntax and rules more readable, we adopt an informal convention that
these extra arguments and premises are suppressed. For example, we write the usual

Γ ` M : Σ x :A.B
Γ ` snd M : B [fst M /x ]

to mean the above. Additionally, though every equation is a rule for a typed definitional equality
judgement Γ ` t = t′ : J , we elide the contexts, types, and formation premises, and present the
rules as simple equations. The formation premises can be reconstructed by unrolling the typing
rules of the left-hand side of the equation.

This syntax is more verbose than the standard natural deduction formulation—but, on the
other hand, the standard natural deduction formulation is more verbose than necessary, as it
fails to differentiate between situations where type information flows from the conclusion to the
premises, and situations where it flows from the premises to the conclusion. A bidirectional
presentation of 2DTT is an interesting subject for future work.
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Involution

Γ ctx
Γop ctx

Γop ` θ : ∆op

Γ ` θop : ∆

Γop ` δ : θ′op =⇒∆op θop

Γ ` δop : θ =⇒∆ θ′

(Γop)op ≡ Γ 0-involution
(θop)op ≡ θ 1-involution
(δop)op ≡ δ 2-involution

Identity and composition for Γ ` θ : ∆

Γ ⊇ ∆
Γ ` id∆ : ∆

Γ2 ` θ2 : Γ3 Γ1 ` θ1 : Γ2

Γ1 ` θ2 [θ1] : Γ3

Γ ` θ : ∆ Γ0 ` δ : θ1 =⇒Γ θ2

Γ0 ` θ[δ] : θ[θ1] =⇒∆ θ[θ2]

θ0 [θ[θ′]] ≡ θ0 [θ][θ′] 1-subst assoc/unit
θ0 [idΓ] ≡ θ0

idΓ
Γ[θ] ≡ θ

θ[δ[δ′]] ≡ θ[δ][δ′] 1-resp assoc
θ[reflθ′ ] ≡ reflθ[θ′] 1-resp preserves refl.
θ[θ′][δ] ≡ θ[θ′[δ]] 1-resp for 1-subst

idop
Γ ≡ idΓop

op interactions
(θ1 [θ2])op ≡ θop1 [θop2 ]
(θ[δ])op ≡ θop[δop]

Identity and Composition for Γ ` δ : θ =⇒∆ θ′

Γ ` refl∆
θ : θ =⇒∆ θ

Γ ` δ1 : θ1 =⇒∆ θ2

Γ ` δ2 : θ2 =⇒∆ θ3

Γ ` δ2 ◦ δ1 : θ1 =⇒∆ θ3

Γ ` δ : θ =⇒∆ θ′

Γ0 ` δ0 : θ0 =⇒Γ θ
′
0

Γ0 ` δ[δ0] : θ[θ0] =⇒∆ θ′[θ′0]

(δ3 ◦ δ2) ◦ δ1 ≡ δ3 ◦ (δ2 ◦ δ1) trans assoc/unit
(δ ◦ refl) ≡ δ
(refl ◦ δ) ≡ δ

δ0 [δ[δ′]] ≡ δ0 [δ][δ′] 2-resp assoc/unit
δ0 [reflid] ≡ δ0

reflidΓ
Γ
[δ] ≡ δ

(δ1 ◦ δ2 )[δ3 ◦ δ4] ≡ δ1 [δ3] ◦ δ2 [δ4] interchange
reflθ[δ] ≡ θ[δ] delegate

reflop
θ ≡ reflθop

op interactions
(δ1 ◦ δ2)op ≡ δop2 ◦ δ

op
1

(δ1 [δ2])op ≡ δop1 [δop2 ]

Figure 7.1: 2DTT: Identity, Composition, and Involution Principles (1)
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Composition for Γ ` A type

Γ ` θ : ∆ ∆ ` A type

Γ ` A[θ] type

∆ ctx ∆ ` C type Γ ` δ : θ1 =⇒∆ θ2 Γ ` M :C [θ1 ]

Γ ` map∆.C δ M :C [θ2 ]

A[θ[θ′]] ≡ A[θ][θ′] 0-subst assoc/unit
A[idΓ] ≡ A

map∆.C reflθ M ≡ M 0-resp functoriality
map∆.C (δ2 ◦ δ1) M ≡ map∆.C δ2 (map∆.C δ1 M)

(map∆.C δ M )[θ0] ≡ map∆.C δ[reflθ0 ] M [θ0] 1-subst for map
(mapC (δ : θ1 =⇒ θ2 ) M )[δ′ : θ′1 =⇒ θ′2] ≡ resp1 (x.mapC (δ[reflθ′2 ]) x) (M [δ′]) 1-resp for map

map∆.C [θ : ∆′] δ M ≡ map∆′.C reflθ[δ] M def. map for A[θ]

Composition for Γ ` M :A

Γ ` θ : ∆ ∆ ` M :A
Γ ` M [θ] :A[θ]

∆ ` M :A Γ ` δ : θ1 =⇒∆ θ2

Γ ` M [δ] : (map∆.A δ (M [θ1])) =⇒A[θ2] M [θ2]

M [θ[θ′]] ≡ M [θ][θ′] 1-subst assoc/unit
M [idΓ] ≡ M

M [δ[δ′]] ≡ M [δ][δ′] 1-resp assoc/unit
M [reflθ] ≡ reflM [θ] 1-resp preserves refl.
M [θ][δ] ≡ M [θ[δ′]] 1-resp for 1-subst

Identity and Composition for Γ ` α : M =⇒A N

Γ ` reflAM : M =⇒A M

Γ ` α1 : M1 =⇒A M2

Γ ` α2 : M2 =⇒A M3

Γ ` α2 ◦ α1 : M1 =⇒A M3

Γ0 ` δ0 : θ0 =⇒Γ θ
′
0

Γ ` α : M =⇒A N

Γ0 ` α[δ0] : (mapΓ.A δ0 (M [θ0])) =⇒A[θ′0] N [θ′0]

(α3 ◦ α2) ◦ α1 ≡ α3 ◦ (α2 ◦ α1) trans assoc/unit
(α ◦ refl) ≡ α
(refl ◦ α) ≡ α

α[δ[δ′]] ≡ α[δ][δ′] 2-resp assoc/unit
α[reflid] ≡ α

(α1 ◦ α2 )[δ3 ◦ δ4] ≡ α1 [δ3] ◦ resp1 (x.map δ3 x) (α2 [δ4]) interchange
reflM [δ] ≡ M [δ] delegate

Figure 7.2: 2DTT: Identity, Composition, and Involution Principles (2)
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All judgements respect equality:

Γ ≡ Γ′ ∆ ≡ ∆′ Γ′ ` θ : ∆′

Γ ` θ : ∆

Γ ≡ Γ′ Γ′ ` A type

Γ ` A type

Γ ≡ Γ′ Γ ` A ≡ A′ type Γ′ ` M :A′

Γ ` M :A

Γ ≡ Γ′ ∆ ≡ ∆′ Γ ` θ1 ≡ θ′1 :A Γ ` θ2 ≡ θ′2 :A Γ′ ` δ : θ′1 =⇒∆′ θ
′
2

Γ ` δ : θ1 =⇒∆ θ2

Γ ≡ Γ′ Γ ` A ≡ A′ type Γ ` M ≡ M ′ :A Γ ` N ≡ N ′ :A Γ′ ` α : M ′ =⇒A′ N
′

Γ ` α : M =⇒A N

Equality respects equality: Each equality judgement has an analogous respect-for-equality rule, which
says that it respects equality in the context and classifier.

Congruence: Each equality judgement is a congruence, specified by reflexivity, symmetry, transi-
tivity rules, and a compatibility rule for each term constructor.

Figure 7.3: 2DTT: General equality rules
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Empty context:

· ctx Γ ` · : · Γ ` · : · =⇒· ·

θ ≡ · 1-η
δ ≡ · 2-η
·op ≡ · 0,1,2-involution
id· ≡ · identity
·[θ] ≡ · 1-subst
·[δ] ≡ · 1-resp
refl· ≡ · reflexivity
· ◦ · ≡ · trans
·[δ] ≡ · 2-resp

Covariant term variables:

Γ ctx Γ ` A type

Γ , x :A+ ctx
x :A+ ∈ Γ
Γ ` x :A

Γ ` θ : ∆ Γ ` M :A[θ]

Γ ` θ,M +/x : ∆, x :A+

Γ ` δ : θ =⇒∆ θ′

Γ ` α : (map∆.A δ M) =⇒A[θ′] N

Γ ` (δ, α+/x) : (θ,M +/x) =⇒∆,x :A+ (θ′,N +/x)

idΓ,x :A+

Γ [θ,M +/x] ≡ θ 1-β
x [θ,M +/x] ≡ M 1-β
θ : (Γ , x :A+) ≡ idΓ[θ], x [θ]+/x 1-η

idΓ,x :A+

Γ [δ, α+/x] ≡ δ 2-β
x [δ, α+/x] ≡ α 2-β

δ : θ =⇒(Γ,x :A+) θ
′ ≡ idΓ[δ], x [δ]+/x 2-η

idΓ,x :A+ ≡ idΓ, x
+/x 1-id

(θ,M +/x )[θ0] ≡ θ[θ0],M [θ0 ]+/x 1-subst
(θ,M +/x )[δ0] ≡ θ[δ0],M [δ0 ]+/x 1-resp

reflθ,M +/x ≡ reflθ, reflM +/x refl
(δ2, α2

+/x) ◦ (δ1, α1
+/x) ≡ (δ2 ◦ δ1), (α2 ◦ resp1 (x .map∆.A δ2 x ) α1 )

+
/x trans

(δ, α+/x )[δ0] ≡ δ[δ0], α[δ0 ]+/x 2-resp

(Γ , x :A+)op ≡ Γop , x :A- 0-invol
(θ,M +/x)op ≡ θop,M -/x 1-invol
(δ, α+/x)op ≡ δop, α-/x 2-invol

Figure 7.4: 2DTT: Contexts (1)
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Contravariant term variables:

Γ ctx Γop ` A type

Γ , x :A- ctx

Γ ` θ : ∆ Γop ` M :A[θop]

Γ ` θ,M -/x : ∆, x :A-

Γ ` δ : θ =⇒∆ θ′

Γop ` α : (map∆op.A (δop) N) =⇒A[θ] M

Γ ` (δ, α-/x) : (θ,M -/x) =⇒∆,x :A- (θ′,N -/x)

idΓ,x :A-
Γ [θ,M -/x] ≡ θ 1-β
θ : (Γ , x :A-) ≡ idΓ[θ], x [θop]-/x 1-η

idΓ,x :A-
Γ [δ, α-/x] ≡ δ 2-β

δ : θ =⇒(Γ,x :A-) θ
′ ≡ idΓ[δ], x [δop]-/x 2-η

idΓ,x :A- ≡ idΓ, x
-/x 1-id

(θ,M -/x )[θ0] ≡ θ[θ0],M [θop0 ]
-
/x 1-subst

(θ,M -/x )[δ0] ≡ θ[δ0],M [δop0 ]
-
/x 1-resp

reflθ,M -/x ≡ reflθ, reflM
-/x refl

(δ2, α2
-/x) ◦ (δ1, α1

-/x) ≡ (δ2 ◦ δ1), (α2 ◦ resp1 (x .map∆op.A δop2 x ) α1 )
-
/x trans

(δ, α-/x )[δ0] ≡ δ[δ0], α[δop0 ]
-
/x 2-resp

(Γ , x :A-)op ≡ Γop , x :A+ 0-invol
(θ,M -/x)op ≡ θop,M +/x 1-invol
(δ, α-/x)op ≡ δop, α+/x 2-invol

Figure 7.5: 2DTT: Contexts (2)
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Dependent functions:

Γop ` A type
Γ , x :A- ` B type

Γ ` Π x :A.B type

Γ , x :A- ` M :B

Γ ` λ x .M : Π x :A.B

Γ ` M1 : Π x :A.B Γop ` M2 :A

Γ ` M1 M2 :B [M2/x ]

Γ , x :A- ` α : (M x ) =⇒B (N x )

Γ ` λ x . α : M =⇒Π x :A.B N

Γ ` α : M =⇒Π x :A.B N Γop ` β : N1 =⇒A M1

Γ ` α β : map1
B β (MM1) =⇒B[N1/x] (NN1)

(λ x .M ) N ≡ M [N -/x] 1-β
M : Π x :A.B ≡ λ x .M x 1-η
(λ x . α1 ) α2 ≡ α1 [refl, α2

-/x] 2-β
α : M =⇒Π x :A.B N ≡ λ x . α (reflx ) 2-η

(Π x :A.B)[θ0] ≡ Π x :A[θop0 ].B [θ0 , x
-/x ] 0-subst

map∆.Π x :A.B δ M ≡ λ x .map∆,x :A-.B (δ, refl) (M (map∆op.A δop x )) 0-resp

(λ x .M )[θ0] ≡ λ x .M [(θ0 , x
-/x )] 1-subst

(M1 M2 )[θ0] ≡ (M1 [θ0 ]) (M2 [θ0 ]) 1-subst
(λ x .M )[δ] ≡ λ x .M [δ, refl] 1-resp
(M N )[δ] ≡ M [δ] N [δ] 1-resp

reflM ≡ λ x . reflM x refl
(λ x . α2 ) ◦ (λ x . α1 ) ≡ λ x . α2 ◦ α1 trans
(λ x :A. α)[δ0] ≡ λ x :A[θ′]. α[δ0 , refl/a] 2-resp
α1 α2 [δ0] ≡ (α1 [δ0 ]) (α2 [δ0 ]) 2-resp

Figure 7.6: 2DTT: Dependent Function Types
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Dependent pairs:

Γ ` A type
Γ , x :A+ ` B type

Γ ` Σ x :A.B type

Γ ` M1 :A Γ ` M2 :B [M1/x ]

Γ ` (M1 ,M2 ) : Σ x :A.B
Γ ` M : Σ x :A.B

Γ ` fst M :A
Γ ` M : Σ x :A.B

Γ ` snd M :B [fst M /x ]

Γ ` α1 : fst M =⇒A fst N
Γ ` α2 : (map1

B α1 (snd M )) =⇒B[fst N/x] snd N

Γ ` (α1 , α2 ) : M =⇒Σ x :A.B N

Γ ` α : M =⇒Σ x :A.B N

Γ ` fst α : fst M =⇒A fst N

Γ ` α : M =⇒Σ x :A.B N

Γ ` snd α : (map1
B (fst α) (snd M )) =⇒B[fst N/x] snd N

fst (M ,N ) ≡ M 1-β
snd (M ,N ) ≡ N 1-β
M : Σ x :A.B ≡ (fst M , snd M ) 1-η
fst (α1 , α2 ) ≡ α1 2-β
snd (α1 , α2 ) ≡ α2 2-β
α : M =⇒Σ x :A.B N ≡ (fst α, snd α) 2-η

(Σ x :A.B)[θ0] ≡ Σ x :A[θ0 ].B [θ0 , x
+/x ] 0-subst

map∆.Σ x :A.B δ M ≡ (map∆.A δ (fst M ),map∆,x :A+.B (δ, reflmap δ (fst M )) (snd M )) 0-resp

((M1 ,M2 ))[θ0] ≡ (M1 [θ0 ],M2 [θ0 ]) 1-subst
(fst M )[θ0] ≡ fst (M [θ0 ]) 1-subst
(snd M )[θ0] ≡ snd (M [θ0 ]) 1-subst
(M ,N )[δ] ≡ (M [δ],N [δ]) 1-resp
(fst M )[δ] ≡ fst M [δ] 1-resp
(snd M )[δ] ≡ snd M [δ] 1-resp

reflM ≡ (reflfst M , reflsnd M ) refl
(α2 , α

′
2 ) ◦ (α1 , α

′
1 ) ≡ (α2 ◦ α1 , α

′
2 ◦ resp1 (x .map∆.A (refl, α1 ) x ) α′1 ) trans

(α1 , α2 )[δ0] ≡ (α1 [δ0 ], α2 [δ0 , refl]) 2-resp
(fst α)[δ0] ≡ fst α[δ0 ] 2-resp
(snd α)[δ0] ≡ snd α[δ0 ] 2-resp

Figure 7.7: 2DTT: Dependent Pairs
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Sets and elements:

Γ ` set type
Γ ` S : set

Γ ` T(S ) type

Γ , x :T(S )+ ` M :T(S ′)

Γ ` x .M : S =⇒set S
′ Γ ` ? : M =⇒T(S) M

Γ ` α : M =⇒T(S) N

Γ ` M ≡ N :T(S )

mapT(S) δ M [θ1] ≡ M [θ2] def. T(−)

α : S =⇒set S
′ ≡ x .mapa:Set .T(a) (·, α) x 2-η

α : M =⇒T(S) N ≡ ? 2-η

set[θ0] ≡ set 0-subst
(T(S ))[θ0] ≡ T(S [θ0])

map∆.set δ M ≡ M 0-resp
map∆.T(S) δ M ≡ N [id,M +/x] if S [δ] ≡ x .N

reflS : set ≡ x .x refl
reflM :T(S) ≡ ? refl

(x .M1 ) ◦ (x .M2 ) ≡ x .M2 [M1/x ] trans
? ◦ ? ≡ ? trans

(x .M )[δ0] ≡ x .map∆.S ′ δ0 M [θ, x +/x ] if ∆ , x :T(S )+ ` M :T(S ′) and δ0 : θ =⇒ θ′ 2-resp
?M [δ0] ≡ M [δ0] 2-resp

Figure 7.8: 2DTT: General Rules for Sets and Elements
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Γop ` S : set
Γ , x :T(S )- ` S ′ : set

Γ ` Π x :S .S ′ : set

Γ ` S : set
Γ , x :T(S )+ ` S ′ : set

Γ ` Σ x :S .S ′ : set Γ ` 0, 1, 2 : set

Γ ` S : set Γ ` M ,N :T(A)

Γ ` IdS M N : set

Γ ` M : Σ x :T(S ).T(S ′)

Γ ` inM :T(Σ x :S .S ′)

Γ ` M :T(Σ x :S .S ′)

Γ ` outM : Σ x :T(S ).T(S ′)

Γ ` M : Π x :T(S ).T(S ′)

Γ ` inM :T(Π x :S .S ′)

Γ ` M :T(Π x :S .S ′)

Γ ` outM : Π x :T(S ).T(S ′)

Γ ` () :T(1) Γ ` true :T(2) Γ ` false :T(2)

Γ± ` M :T(0)

Γ ` abortM :C

Γ± ` M :T(0)

Γ ` abortM : M1 =⇒C M2

Γ± ` M :T(2)
Γ ` M1 :C [true±/x ]
Γ , x :2± ` C type
Γ ` M2 :C [false±/x ]

Γ ` ifx±.C (M ,M1 ,M2 ) :C [M ±/x ]

Γ± ` M :T(2)
Γ , x :2± ` C type
Γ , x :2± ` M1 ,M2 :C
Γ ` α1 : M1[true±/x] =⇒C[true±/x] M2[true±/x]

Γ ` α2 : M1[false±/x] =⇒C[false±/x] M2[false±/x]

Γ ` ifx±.C(M , α1 , α2 ) : M1[M ±/x] =⇒C[M±/x] M2[M ±/x]

Γ ` α : M =⇒T(S) N

Γ ` idi α : IdS M N

Γ ` P : IdT(S) M N

Γ ` ide P : M =⇒T(S) N

Rules for sets:

Π x :S .S ′[θ] ≡ Π x :S [θ].S ′[θ, x -/x ] 1-subst
Σ x :S .S ′[θ] ≡ Σ x :S [θ].S ′[θ, x +/x ]
{0, 1, 2}[θ] ≡ {0, 1, 2}
IdS M N [θ] ≡ IdA[θ] M [θ] N [θ]

{0, 1, 2}[δ] ≡ x .x 1-resp
(Π x :S .S ′)[δ : θ =⇒ θ′] ≡ x .in (mapΠ x :T(S).T(S ′) δ (outM ))

(Σ x :S .S ′)[δ : θ =⇒ θ′] ≡ x .in (mapΣ x :T(S).T(S ′) δ (outM ))

IdS M N [δ : θ =⇒ θ′] ≡ x .idi ?

Figure 7.9: 2DTT: Some Sets (1)
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Rules for elements:

out (inM) ≡ M βη
in (outM) ≡ M
M :T(1) ≡ ()
M [(N :T(0 ))±/x] ≡ abortN
if(true,M1 ,M2 ) ≡ M1

if(false,M1 ,M2 ) ≡ M2

M [(N :T(2 ))±/x] ≡ if(N ,M [true±/x ],M [false±/x ])
ide (idi α) ≡ α
P : IdS M N ≡ idi (ide P )

(inM )[θ] ≡ inM [θ] 1-subst
(outM )[θ] ≡ outM [θ]
{(), true, false}[θ] ≡ {(), true, false}
ifx : 2±.C (M ,M1 ,M2 )[θΓ

∆] ≡ ifx : 2±.C [θ,x±/x](M [θ],M1 [θ],M2 [θ])

(idi α)[θ] ≡ idi α[reflθ]
(ide P)[δ] ≡ ? 2-resp

(inM )[δ] ≡ ? 1-resp
(outM )[δ] ≡ ?
{(), true, false}[δ] ≡ ?
idi α[δ] ≡ idi ?
if(M ,M1 ,M2 )[δ : θ1 =⇒ θ2] ≡ if(M [θ2 ],M1 [δ],M2 [δ])

Rules for transformation elims for positives:

ifx.C(true, α1 , α2 ) ≡ α1 β
ifx.C(false, α1 , α2 ) ≡ α2

α[(reflM : 0 )±/x] ≡ abortM η
α[(reflM : 2 )±/x] ≡ if(M , α[refltrue/x ], α[reflfalse/x ])

(abortM )[δ : θ1 =⇒ θ2] ≡ abortM [θ2 ] 2-resp
if(M , α1 , α2 )[δ : θ1 =⇒ θ2] ≡ if(M [θ2 ], α1 [δ], α2 [δ])

Figure 7.10: 2DTT: Some Sets (2)
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7.2.1 Two-dimensional Judgements

2DTT has three main judgements, defining contexts Γ, substitutions θ, and transformations δ.
In the semantics given below, these are interpreted as categories (0-cells), functors (1-cells), and
natural transformations (2-cells), respectively. Each of these three levels has a corresponding
contextualized version, which is judged well-formed relative to a context Γ. Contextualized con-
texts and substitutions are dependent typesA and termsM , while contextualized transformations
are transformations between terms. These judgements have the following form:

• Contexts: Γ ctx

• Substitutions: Γ ` θ : ∆ (where Γ ctx and ∆ ctx)
• Transformations: Γ ` δ : θ =⇒∆ θ′ (where Γ ctx and ∆ ctx and Γ ` θ, θ′ : ∆)
• Dependent Types: Γ ` A type (where Γ ctx)
• Terms: Γ ` M : A (where Γ ctx and Γ ` A type)
• Term Transformations: Γ ` α : M =⇒A M ′ (where Γ ctx and Γ ` A type and Γ `

M ,M ′ : A)

7.2.2 Involution, Identity, and Composition Principles

In Figures 7.1 and 7.2, we present the generic involution, identity, and composition principles
that define the basic structure of the theory. These principles and equations provide a contract
that all specific contexts and types must satisfy.

Involution The involution rules say that there is a dualizing operation op on contexts, sub-
stitutions, and transformations. The equations say that this dualization operation is involutive
(self-inverse). The rule for θop says that the opposite of a substitution proves the opposite of
the contexts. To avoid specializing the context in the conclusion of the rules, we phrase this as
an “elimination” rule, removing op from the two premise contexts. However, because op is an
involution, the following “introduction” rule is derivable:

Γ ` θ : ∆
Γop ` θop : ∆op

The dual of a transformation not only dualizes the contexts and substitutions, but also reverses
the direction of the transformation.

Identity and Composition for Substitutions The next three rules define identity and compo-
sition for substitutions.

To make weakening admissible, id is really the composition of the identity substitution with
projections that forget any number of variables (by our convention about implicit formation
premises, there is a tacit premise that ∆ is still well-formed). We write Γ ⊇ ∆ to mean that
∆ is obtained from Γ by dropping some number of variables. For convenience, we specify weak-
enings here for all the contexts we will consider here, though we could associate the clauses of
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weakening with each form of context:

Γ ⊇ · done
Γ ⊇ Γ′

Γ , x :A± ⊇ Γ′
skip Γ ⊇ Γ′

Γ , x :A± ⊇ Γ′ , x :A±
keep

We do not require a rule for op because op can always be expanded away using equalities.
Composition of substitutions θ2 [θ2], which we refer to as 1-substitution, is standard in explicit

substitution calculi. The additional composition operation, θ[δ], forces substitutions to respect
transformation: substitution instances by transformable substitutions are transformable. For this
reason, we refer to it as 1-resp(ect). The first three equations say that 1-substitution is associative
and unital. In the second equation, idΓ can in fact be a weakening, in which case θ is tacitly
weakened in the right-hand side. The third equation only makes sense when Γ ` id : Γ, which
we notate by idΓ

Γ. The next two rules say that 1-resp associates with 2-resp (δ[δ′]), which is
analogous operation for transformations (defined below), and preserves identities refl(defined
below). The next three rules say that op preserves identities (and projections), and distributes
over compositions. As will often be the case, the second rule (for 1-cells) is necessary to type-
check the third (for 2-cells).

Because of explicit substitutions, 2DTT exploits a slightly interesting notion of variable bind-
ing: as is standard in explicit substitution calculi, the substitution operation θ2 [θ1] is a binding
operator, with the range Γ2 of θ1 bound in θ2—and similarly θ[δ] and other composition princi-
ples. Here, we will assume we are working in an informal logical framework that supports this
concept. It will be made precise using de Bruijn indices in the categorical semantics.

Identity and Composition For Transformations The next three rules define identity and com-
position for transformations. Transformations are always reflexive (refl) and transitive (δ2 ◦ δ1).
Additionally, transformations themselves respect transformation (δ[δ0]), which we call 2-resp.
The equations say that: Transitivity is associative and unital with reflexivity. 2-resp is also asso-
ciative and unital. However, the unit of 2-resp is not an arbitrary reflθ—which would still require
adapting a transformation δ : θ =⇒ θ′ to θ[θ0] =⇒ θ[θ0]—but only Γ ` reflidΓ

Γ
: idΓ =⇒Γ idΓ

(by above, θ[idΓ] equals θ). As above, the second rule holds when id is in fact a projection, but
the third requires that it really be the identity. The interchange law relates 2-resp and transitivity:
transitivity followed by 2-resp is the same as 2-resp followed by transitivity. It has a variety of
useful special cases:

θ[δ ◦ δ′] ≡ θ[δ] ◦ θ[δ′] 1-resp preserves transitivities
(δ ◦ δ′)[reflθ] ≡ δ[reflθ] ◦ δ′[reflθ] 2-resp preserves transitivities

(δ : θ1 =⇒ θ2 )[δ′ : θ′1 =⇒ θ′2] ≡ reflθ2 [δ′] ◦ δ[reflθ′1 ] 2-resp interchange 1
(δ : θ1 =⇒ θ2 )[δ′ : θ′1 =⇒ θ′2] ≡ δ[reflθ′2 ] ◦ reflθ1 [δ′] 2-resp interchange 2

The first two equations say that resp preserves transitivities. The next two state that a 2-resp is
equivalent to holding one part fixed while doing one transformation, then holding the other fixed
while doing the other—in either order. Returning to the figure, the rule delegate delegates 2-resp
at reflexivity to 1-resp. The final three rules say that op preserves identities and compositions,
reversing the order of composition in the case of transitivity.
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We do not define 2-subst, δ[θ], directly, as this composition is definable as δ[reflθ]. Alterna-
tively, we could take δ[θ] as primitive and define δ[δ′] using the interchange law. However, it is
in fact no harder to define δ[δ′], as the rules for the binary version also proceed compositionally
in the term, just like ordinary substitution with a single θ would. This fact suggests that it may be
possible to treat 2-resp as a meta-operation, which may be a helpful implementation technique.

Dependent Types In Figure 7.2, we tell the analogous story for dependent types, terms, and
term transformations. A dependent type A can be pre-composed with a substitution, written
A[θ]; and has a functorial action map∆.A δ M , which is the analogue of the subst elimination
rule for propositional equality described above. map says that a transformation θ1 =⇒ θ2 allows
a term of type A[θ1] to be coerced to a term of type A[θ2]. This says that dependent types respect
transformation. We refer to these as 0-subst and 0-resp; there are no 0-subst/resp for contexts
because contexts are not dependent.

The equations say: Substitution into types (0-subst) is associative and unital. map is functo-
rial, preserving reflexivity and transitivity (this could alternatively be phrased as an interchange
law, but the present formulation is simpler because we have not defined a type transformation
judgement A =⇒type B). The next two rules define 1-subst and 1-resp for map, which reasso-
ciate the 1-subst/1-resp with the 0-resp. The next rule defines map for a composition, again by
reassociating.

Interactions between map and 2-resp are derivable from the above equations for transitivity,
using the interchange law:

mapC (δ : θ1 =⇒ θ2 )[δ′ : θ′1 =⇒ θ′2] M ≡ mapC (δ[reflθ′2 ]) (mapC reflθ1 [δ′] M)
mapC (δ : θ1 =⇒ θ2 )[δ′ : θ′1 =⇒ θ′2] M ≡ mapC (reflθ2 [δ]) (mapC δ[reflθ′1 ] M)

The interchange rule, along with the following, form the Godement calculus of functors and
natural transformation composition (Godement, 1958):

(reflθ[θ′])[δ] ≡ reflθ[reflθ′ [δ]]

This rule is derivable because reflθ◦θ′ ≡ reflθ[refl′θ] by 1-resp-preserves-refl and associativity.
There is also a right unit law for resp and reflid:

reflθ[reflid] ≡ reflθ

It is derivable using 1-resp preserves refl. and unit of id.

Terms Like all contextual judgements, terms are closed under substitution (M [θ]) and respect
transformation (M [δ]). Because terms are dependent on the context, the latter requires “adjust-
ing” M [θ1] by δ so that it lives in the same type as M [θ2]. The equality rules are analogous to
those for substitutions: 1-subst is associative and unital, and 1-resp is associative and preserves
reflexivities.

An associativity rule for 1-subst followed by 1-resp in a term is derivable, using 1-resp-
preserves-refl, congruence, and delegate and associativity for 2-resp (see below):

M [θ][δ] ≡ M [reflθ[δ]] 1-resp for M [θ]
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Using interchange, we can derive that M preserves transitivities from the above interaction
with 2-resp:

reflM [δ ◦ δ′] ≡ reflM [δ] ◦ (resp1 (x.map δ x) (reflM [δ′]))

Term Transformations The rules for term transformations are entirely analogous to the rules
for transformations, specifying reflexivity, transitivity, and 2-resp. The equations say that tran-
sitivity is associative and unital, that 2-resp is associative and unital, and that the order of trans
and 2-resp can be interchanged. The interchange rule uses the derived form resp1 , which is
explained below.

General equality rules Figure 7.3 collects a variety of general equality rules: Each judgement,
including equality, respects equality of its indices, and is a congruence.

7.2.3 Contexts
With the basic setup in hand, we are ready to define some concrete context formers. The general
methodology for defining a context is to specify

1. A formation rule for Γ

2. A substitution rule θ : Γ, and a hypothesis rule for one of the other judgements (e.g.
the term rule for x for the context former Γ , x :A+). These function as the introduction
and elimination rules for the context, though we require contexts to be products of some
sort, eliminated by first projections (which are implicit in id) and variables (representing
projections).

3. A transformation rule for δ : θ =⇒Γ θ
′

4. Equations defining
1-βη βη for θ
2-βη βη for δ

0-involution Γop

1-involution θop

2-involution δop

identity idΓ

1-subst θ[θ′]
1-resp θ[δ′]

reflexivity reflθ
transitivity δ ◦ δ′
2-resp δ[δ′]

In general, refl and δ ◦ δ′ are defined in a type-directed manner, by giving one rule that covers
arbitrary arguments. On the other hand, the subst/resp principles are defined in a syntax-directed
manner, giving one rule for each syntactic construct.
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It may seem redundant that we ask that each context to give equations for both idθ and θ[δ], as
idθ ≡ idθ[reflid] ≡ θ[reflid]—so perhaps one operation could be derived from the other. However,
because these definitions are mutually referentially, and we have not yet sorted out whether there
is some induction order that allows one to be defined in terms of the other, we give the rules for
both operations to be safe.

In Figure 7.4 and Figure 7.5 we carry out this methodology for the basic contexts:

Empty context The empty context has a trivial substitution into it, and a trivial transformation
from this substitution to itself. Since the substitutions and transformations are singletons, the
equations are all trivial.

Covariant context extensions Next, we present the rules for covariant context extension: if A
is a type well-formed in Γ, then Γ can be extended with a variable of typeA. A covariant variable
can be used as a term; the typing rule checks that the variable is in the context:

x : A+ ∈ (Γ,A+)
x : A+ ∈ Γ

x : A+ ∈ (Γ , y :B±)

As with weakening, we do not include a rule for op, which can be expanded away. The substitu-
tion into an extended context ∆ , x :A+ is a pair of a substitution θ into ∆ and a term of type A,
adjusted by θ (this is analogous to the usual introduction rule for a Σ-type). A transformation be-
tween such substitutions is a pair of transformations, one between the substitutions, and the other
between the terms (adjusted by the first component). As these substitutions and transformations
are pairs, the first set of rules gives the expected βη rules, for the projections given by idand vari-
ables. The next rules define the identity, composition, and involution operations componentwise.
The involution rules turn covariant context extension into contravariant context extension, which
is defined below.

In the definition of refl, trans, and 2-resp, we cheat a little bit by assuming that the substi-
tutions/transformations are in the form of the intro rules, when in fact these operations must be
defined for arbitrary elements. This cheat is justified by the η-rules, and make the rules somewhat
easier to read. Similarly, in the β-rules, we cheat by assuming that the substitution is in introduc-
tory form for exactly the context in question; this can always be achieved by reassociating. We
also cheat a bit by not defining separate syntactic constructs for projections from context trans-
formations, using reflid and reflx instead—e.g. we should define reflv(x) : x =⇒A x, distinct
from reflx. These would be necessary for refl to be entirely definable in terms of other syntactic
constructs.

The familiar resp congruence rule derives respect for the last variable in the context:

Γ ` α : M =⇒A N Γ ` B type Γ , x :A+ ` F : B

Γ ` resp1 F α : F [M/x] =⇒B F [N/x]

by resp1 F α = F [idid, α
+/x]. This is well-typed because map id cancels.

We will also make use of the corresponding rule for map, a derived form for transforming the
last variable in the context:

Γ, x :A+ ` B type Γ ` α : M1 =⇒A M2 Γ ` M :B [M1
+/x ]

Γ ` map1
x :A+.B αM :B [M2

+/x ]
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This is defined by map1
x :A+.B α M = mapΓ,x :A+.B id, α+/x M .

Contravariant context extensions Next, we present the rules for contravariant context exten-
sion: if A is a type well-formed in Γop, then Γ can be extended with a variable of type A. For
the most part, these are renamings of the rules for covariant context extension, except for the
following: First, there is no rule for using a contravariant variable. This is because we reduce
contravariant terms to covariant terms using op, and using the rules for Γ , x :A-op, a contravariant
variable becomes a covariant variable. Second, the transformation rule reverses the order of M
and N in the premise. Third, various op’s are inserted on substitutions and transformations to
make the types work out.

A contravariant last-variable map rule is also definable:

Γ, x :A- ` B type Γop ` α : M2 =⇒A M1 Γ ` M :B [M1
-/x ]

Γ ` map1
x :A-.B αM :B [M2

-/x ]

by map1
x :A-.B α M = mapΓ,x :A-.B (id, α-/x) M .

7.2.4 Types
With contexts in hand, we can move on to types and terms. In general, a type is specified by:

1. A formation rule for A

2. Introduction and elimination term rules, defining M : A

3. Introduction and elimination transformation rules, defining α : M =⇒A M
′

4. Equations defining
1-βη βη for M
2-βη βη for α

0-substitution A[θ]
0-resp mapA δ M

1-substitution M [θ]
1-resp M [δ]

reflexivity reflM
transitivity α ◦ α′
2-resp α[δ]

Dependent functions In Figure 7.6, we give the rules for dependent functions. The formation
rule is standard, except that the domain is well-formed contravariantly in Γ, and thus assumed as
a contravariant assumption. The intro and elim rules then insert the appropriate op’s. The trans-
formation introduction rule says that a transformation at Π can be introduced by giving a family
of transformations that work for each element—the extensionality rule. A transformation is elim-
inated by applying to transformable arguments. The symmetric variants of these transformation
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rules, and the equations for them described below, have been considered in prior categorically-
motivated accounts of functionally extensional propositional equality (Garner, 2009).

The βη-rules are the expected rules for functions, both at the term and transformation levels.
We write M [N/x] to abbreviate M [id, N/x]. Substitution into a Π-type proceeds composition-
ally, though we always op the substitution in contravariant positions. mapΠ x :A.B is given by
pre- and post-composition. Note that the definition of transformation at ∆, x : A- is just right so
that δ, refl works as the post-composition. 1-subst and 1-resp are both defined compositionally,
as is 2-resp. The rule for refl says that the identity at all elements is the identity. In the definition
of transitivity, we again cheat by assuming the transformations are in introductory form, which
makes sense because of η, but we could equivalently use the elimination rule instead.

Dependent pairs The rules for Σ-types are mostly unsurprising, essentially a contextualized
version of the rules for covariant context extension. The formation rule is analogous to Π, but
the first component is well-formed covariantly, and the typing of the second component uses
covariant context extension. The term rules are standard; the transformation rules say that a
transformation between a pair is a pair of transformations. map is defined componentwise; in this
case, the definition of transformation at ∆, x : A+ is just right so that δ, refl works as the second
component. The βη-rules are standard, and the substitution rules are all defined compositionally.
Identity and composition are defined componentwise.

Sets and elements As our first example of a base type with non-trivial transformations, we
consider a universe set that contains discrete types. That is, each term S : set will represent a
type T(S) whose elements have no non-identity transformations between them. However, set
itself is not a discrete type: we take a transformation from S to S ′ to be a function fromT(S) to
T(S ′). Consequently, any type s : set ` C type will admit a lifting of a function from T(S) to
T(S ′) to a transformation from C[S/s] to C[S ′/s]. This is the common functor interface used in
many programming languages. This universe of sets is extensional, in that transformation at sets
satisfies equality reflection and definitional uniqueness of identity proofs—one can work with
these sets as one would work in extensional type theory.

There are different ways of populating the types T(S) determined by a universe: First, one
may defineT(S) by recursion on S, computing an existing type that represents its elements. Sec-
ond, one may define elements of the universe by giving a signature of constants and equations—
using the type theory in the style of Martin-Löf’s logical framework (Nordström et al., 1990).
Third, one may give inference rules directly defining the members of these types. In what fol-
lows, we opt for the third option. There are two reasons for this choice. The first, which is
somewhat technical, is discussed below—the set- and type-versions of Π and Σ are semantically
isomorphic, but not equal—so defining T(S) by recursion would ignore this isomorphism. The
second reason is that it is more convenient to specify a set, than a type, because the transforma-
tions between elements are always only reflexivity. A set is specified by:

1. A formation rule for S : set, with equations for

1-substitution for S S [θ]
1-resp for S S [δ]
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2. Terms defining M : T(S), as well as equations defining

βη βη-rules forT(S)

1-substitution M [θ]
1-resp M [δ]

For simplicity, we introduce sets by inference rules, though the signature approach would work
as well.

The equations for 1-resp for each S define the functorial action of the set former—which is
used by map. The equations for 1-resp for each term M are often computationally trivial, and
involve only the verification of equations—any transformation at T(S) is reflexivity. However,
we include these equations because the act of seeing that the trivial equation is well-typed is
where one verifies that the appropriate equations hold.

Sets and Elements. In Figure 7.8, we present the generic rules that apply to all sets: set is a
type, as isT(S) if S has type set. A transformation at set is a function from the elements of one
to the elements of the other. The only transformation between elements of sets is reflexivity, and
such transformations are eliminated by equality reflection.

The first equation says that 1-resp action of elements of sets is an equality, which is true
because T(S) is a discrete type: if M :T(S ) then M takes transformable arguments to equal
results. The next two equations η-expand a transformation at set into a map, and a transformation
atT(S) into reflexivity. The rules for 0-subst are compositional.

map at set is a no-op, because set is a constant functor. map at T(S) applies the function
(open term) given by 1-resp of S, S [δ]. We will give rules for each set-former defining S [δ].
There are a couple of different ways in which S [δ] can be equal to a transformation x .N . The first
is by η-expansion using 2-η, but this expansion itself uses map, so the 0-resp equation is trivial.
The second, and more useful, is by applying composition (1-resp) and computation rules (2-β)
until a transformation x .N that does not simply re-introduce the map is computed. In the present
calculus, a transformation at set can always be put into this form. If, however, we introduced
transformation variables (see below), then S [δ] might compute to a variable transformation, in
which case map∆.T(S) δ M would not compute any further. In this case, it would be useful to
add a separate elimination construct for applying a transformation at set to a term, in order to
preserve the property that map can be defined in terms of other operations in the calculus.

Reflexivity and transitivity are defined in the expected way for sets, and trivially for elements.
The 2-resp rule for set says that a function x .M respects a transformation δ by running M at the
source and then applying δ. The 2-resp rule forT(−) is analogous to delegate.

Basic Sets: Rules. In Figures 7.9 and 7.10, we present the rules for some basic sets: Π, Σ,
0 (the empty set), 1 (the unit set), 2 (booleans), and Id (identity between two elements of a set).
Though we leave a general transformation type internalizing⇒ to future work, it is possible to
define an identity type for symmetric types, which every discrete typeT(S) trivially is.

The rules for Π and Σ express that they are isomorphic to Π/Σ types of discrete elements.
We cheat a little here and break orthogonality of the connectives, defining Π and Σ by these
isomorphisms (in fact, giving rules for T(S) at all breaks orthogonality, so perhaps we should
have a separate judgement for the elements of a set)—otherwise we would have to spell out



7.2. BASE THEORY 157

functions, application, pairing and projections again. In fact, the domain of a Π need not be
restricted to a set: Π x :A. S is a set even if A is higher-dimensional. However, in our present
theory types are both higher-dimensional than sets, and of higher size than sets: set itself is a type.
So such a quantifier would not only be higher-dimensional, but impredicative. If additionally we
had a universe typ of small types, then it would be appropriate to allow Π’s to range over A : typ.

0, 1, 2 are introduced by the usual rules. The elimination rules for 0 and 2 have one sub-
tlety: they allow elimination of both co- and contravariantly well-formed terms—we abbreviate
a choice between Γ and Γop by Γ±. The reason for this is that the natural deduction rules for pos-
itive types build in a cut, and the appropriate notion of cut includes both co- and contra-variant
cut formulas (cf. the fact that substitutions allow for both co- and contravariant variables). The
negative types that we have considered thus far do not exhibit this phenomenon because their
elimination rules do not build in a cut. Positives can also be eliminated towards transformation
judgements, so we add rules for eliminatingT(0) andT(2) towards M =⇒A N . We could also
add elimination rules towards other judgements (types, substitutions, transformations between
substitutions), but what we have were is enough to illustrate the idea.

The rules for the identity type express an isomorphism with the corresponding term transfor-
mations.

Basic Sets: Equalities. 1-subst into each set is as expected. 1-resp is the identity for constant
sets, defined in terms of Π and Σ types for Π and Σ, and computationally trivial for identity
(the verification that the right-hand-side is well-typed uses symmetry of equality). Next, in Fig-
ure 7.10, the βη rules express the isomorphisms for Π and Σ and Id, and the usual equations
for 0,1,2. For symmetry, we include the coproduct rules for 0 and 2, but it they can also be
proved using the transformation elimination rules and then reflected. 1-subst (and 2-resp for
ide ) are defined compositionally. The 1-resp rules are computationally trivial, but the fact that
they are well-typed is interesting: e.g. the rule for in M requires showing that if two terms are
transformable at Σ x :T(S ).T(S ′) then they are equal—which is true because the transformation
provides equalities of each component. The rule for if uses the transformation elimination form
for booleans. The transformation elims satisfy similar βη and 2-resp laws.

7.2.5 Weakening

Weakening is admissible for all judgements of the form Γ ` J :

LEMMA 7.2.1. Weakening. If Γ ` J and Γ′ ⊇ Γ then Γ′ ` J .

Additionally, because idΓ includes weakening, the equations allow pruning irrelevant com-
ponents from a substitution. For example:

t [θ,M ±/x] ≡ t [θ] if ∆ ` t : J and Γ ` θ : ∆
t [δ, α±/x] ≡ t [δ] similarly
map∆,x : A±.C (δ, α±/x) M ≡ map∆.C δ M if ∆ ` C type

For the first, by unit t ≡ t [id]Γ; so by associativity t [θ,M ±/x] ≡ t [idΓ [θ,M ±/x]], which β-
reduces to t [θ]. The remaining equations are similar, because reflid acts as a projection on trans-
formations.
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As an extremal case, if a term is closed, then the substitution/map is trivial. For example:

map∆.C δ M ≡ M if ∆#C def. map for constant

C ≡ C [id·], so reassociating using def. map for A[θ] turns the transformation into id·[δ], which
is equal to the identity.

These observations allow us to derive the usual lookup rules for variables:

x [θ] ≡ θ(x) 1-comp for variables
x [δ] ≡ δ(x) 2-comp for variables

where we write θ(x) for the function that extracts the M/x component of θ, and similarly for
δ. This is derivable by first projecting away the irrelevant components and then using the β
rule—x [θ,M +/x] and similarly for δ.

7.3 Semantics
In this section, we give a semantics in Cat, the 2-category of categories, functors, and natural
transformations.

The intuition for this interpretation is that a context, or a closed type, is interpreted as a cate-
gory, whose objects are the members of the type, and whose morphisms are the transformations
between members. Thus, a substitution (an “open object”) is interpreted as a functor—a family
of objects that preserves transformations. A transformation (an “open morphism”) is interpreted
as a natural transformation—a family of morphisms that respects substitution. More formally,
the context, substitution, and transformation judgements are interpreted as follows:
• [[Γ]] is a category
• [[Γ ` θ : ∆]] is a functor [[θ]] : [[Γ]] −→ [[∆]]

• [[Γ ` δ : θ1 =⇒∆ θ2]] is a natural transformation [[δ]] : [[θ1]] =⇒ [[θ2]] : [[Γ]] −→ [[∆]]

Next, we consider the semantics of types, terms, and term transformations.

Semantic Types The judgement Γ ` A type represents an open type. Correspondingly, it
should be interpreted as a functor that assigns a closed type to each object of Γ, preserving
transformations. Since closed types are represented by categories, this is modeled by a functor
into Cat:

[[Γ ` A type]] is a functor [[A]] : [[Γ]] −→ Cat

To interpret the type set, we require a category of sets in Cat. Thus, we take Cat to be the
category of large categories, so that it includes Sets as an object. Because Cat is larger than [[Γ]],
the space of functors Γ −→ Cat relies on an implicit inclusion of large categories into “larger”
categories.

As a notational convention, we will overload notation so that the semantics looks just like
the syntax: First, we use the same letter for a piece of syntax and for the semantic concept it is
interpreted as; e.g. we will write Γ for a category, θ for a functor, A for a functor into Cat, etc.
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Second, we use the same symbols as we use in the syntax for the 2-category structure on Cat:
we write the identity functor as id, functor composition as θ[θ′], vertical composition of natural
transformations as δ ◦ δ′, horizontal composition as δ[δ′], and the identity natural transformation
as reflθ, and the action of op as Γop, etc. Additionally, we abbreviate Γ −→ Cat by Ty Γ.

Semantic Terms Above, we defined the category of elements of a functor A : Γ −→ Sets ,∫
Γ
A, which represents the context extension Γ , x :T(A)+. The general form of the Grothendieck

construction works for a functor A : Γ→ Cat:
• an object of

∫
C A is a pair (o, a) where o ∈ Ob C, and a ∈ Ob A(o).

• a morphism from (o, a) to (o′, a′) is a pair (c, f) where c : o −→C o′ and f : A(c)o −→A(o′)

o′

• id(o,a) = (ido, ida)

• (c, f) ◦ (c′, f ′) = (c ◦ c′, f ◦ A(c)f ′)

This differs from the definition given above by requiring a morphism for the second component,
rather than an equality.

The Grothendieck construction constructs not only a category, but a (covariant) fibration.1

Suppose p : E −→ Γ. The fiber of E over o ∈ Ob Γ is the subcategory Eo consisting of those
objects e of E such that p(e) = o, and those morphisms f such p(f) = ido. Then, modulo
some technical details that we do not need to discuss here, p is a fibration iff pullback along a
morphism c : o1 −→ o2 in Γ determines a functor between fibers Eo1 and Eo2 . As this definition
suggests, there is an equivalence of categories between Fib(Γ) (the fibrations over Γ) and CatΓ

(the functor category). On objects, the right-to-left direction is the Grothendieck construction,
and the left-to-right direction extracts a functor from a fibration—this extraction is not possible
for an arbitrary functor p : E −→ Γ, but the fibration condition ensures that it is. We will
refer to the fibration functor p :

∫
Γ
A −→ Γ constructed by the Grothendieck construction as a

weakening map; concretely, it is defined by first project on objects and morphisms.
The set of terms Γ ` M : A is isomorphic to the one-element substitutions Γ ` id,M +/x :

Γ , x :A+, and Γ , x :A+ is interpreted as
∫

Γ
A. Thus, we can define a the interpretation of a term

Γ ` M : A to be a functor [[M ]] : Γ −→
∫

[[Γ]]
[[A]] such that the Γ part of the functor is the

identity—which we can formalize by saying that [[M ]] is a section of p: p ◦ [[M ]] = id. However,
following Hofmann and Streicher (1998), it is more convenient to use an equivalent explicit
definition:
DEFINITION 7.3.1. For a category Γ and a functor A : Γ −→ Cat, the set of terms over Γ of
type A, written Tm Γ A, consists of pairs (Mo,Ma) such that
• For all γ ∈ Ob Γ, Mo(γ) ∈ Ob (A(γ))
• For all c : γ1 −→Γ γ2, Ma(c) : A(c)(Mo(γ1)) −→A(γ2) Mo(γ2). Moreover, Ma(id) = id

and Ma(c2 ◦ c1) = Ma(c2) ◦ A(c)(Ma(c1)).
A Tm Γ A is a “dependently typed functor.” When A is a constant functor, the definition reduces
to that of a functor M : Γ −→ A. However, in general, the type of the object that Mo returns

1This is usually called an opfibration, as the word fibration is used for contravariant fibrations, which we will
discuss below.



160 CHAPTER 7. 2-DIMENSIONAL DIRECTED TYPE THEORY

depends on its argument, and the action on morphisms relates Mo(γ2) to (Mo(γ1)) “adjusted” by
applying the functor A(c). As with functors, we elide the projections from M , writing M(γ) and
M(c).

Semantic Term Transformations Next, we define the semantic counterpart of
Γ ` α : M =⇒A N . We characterized terms M as one-element substitutions, or sections of
weakening. Similarly, we can define a transformation between M and N to be a transformation
(id,M ) =⇒ (id,N ) : Γ −→

∫
Γ

A that projects to the identity transformation on id. However, it is
more convenient to work with the following equivalent definition:
DEFINITION 7.3.2. Given a category Γ, A : Ty Γ, and M ,N : Tm Γ A, a dependent natural
transformation α : M =⇒ N consists of a family of maps αγ such that
• for γ ∈ Ob Γ, αγ : M(γ) −→A(γ) N(γ)
• for c : γ1 −→Γ γ2, N(c) ◦ A(c)(αγ1) = αγ2 ◦M(c)

Structure of the Interpretation Overall, our goal is to show that every well-formed context
denotes a category, every substitution a functor, and so on. This can be factored into two parts:

The interesting part of the interpretation is showing that each inference rule is true, in the
following sense: given the semantic domains corresponding to the premises, we can construct
the semantic domain corresponding to the conclusion. For example, given a rule such as

∆ ` M : A Γ ` θ : ∆
Γ ` M [θ] : A[θ]

its semantic counterpart is a function

−[−] : (M : Tm ∆ A)→ (θ : Γ −→ ∆)→ Tm Γ A[θ]

Once we have defined the operations, we can validate each equation on the semantic counterparts
of the terms in question. Taken together, these constructions and proofs represent the inductive
steps of the interpretation.

The second part of the interpretation is an induction on syntax and derivations that interprets
each term as the corresponding semantic construction, and definitional equality as equations in
the semantics. This step runs into some technical considerations, which we discuss below.

7.3.1 Semantic Judgemental Framework
First, we validate the rules and equations in Figures 7.1 and 7.2.

Involution The involutions are interpreted by the 2-functor −op : Cat −→ Catco which sends
each category to its opposite category. Γopis the action on objects; θopis the action on 1-cells; and
δopis the action on 2-cells. More concretely, for any category Γ, Γopis the category whose objects
are the objects of Γ, and whose morphisms o1 −→ o2 are morphisms o2 −→ o1 in Γ. θop simply
“retypes” a functor C −→ D to a functor Cop −→ Dop, without changing the data involved.
δop similarly retypes a natural transformation. op is self-dual up to equality, which justifies the
equations.
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Identity and Composition for θ The identity and composition principles for substitutions and
transformations are interpreted as the identity, horizontal composition, and vertical composition
operations of the 2-category Cat. The equations are part of the definition of a 2-category. Com-
position of substitutions is interpreted as functor composition θ[θ′]. θ[δ] is interpreted as the
horizontal composition reflθ[δ]—”whiskering” a natural transformation with a functor. Because
id builds in weakening, it cannot be interpreted directly as the identity functor. Instead, the in-
terpretation depends on the weakening, and uses the functors defined with each form of context
below: skip is interpreted as the functor · : Γ −→ 1. Given θ : Γ −→ Γ′, skip is interpreted as the
functor θ ◦ p± : Γ.A± −→ Γ. keep is interpreted as the functor (θ ◦ p±, v±) : Γ.A[θ±]± −→ Γ.A.
When Γ ` id : Γ, the interpretation is an η-expanded identity functor.

To validate the 1-subst assoc/unit equations, we observe that functor composition is asso-
ciative and unital, which justifies the first and third equations. The second equation requires
weakening coherence (described below), as the left-hand side is interpreted with the weaken-
ing all the way at the outside, whereas the right-hand side is interpreted with it at the leaves.
The 1-resp equations are part of the definition of a 2-category. The op interactions are part of
2-functoriality of op.

Identity and Composition for δ reflθ is the identity natural transformation; δ2 ◦ δ1 is composi-
tion of natural transformations, or vertical composition in the 2-category Cat. δ[δ0] is horizontal
composition of natural transformations. The assoc/unit equations state associativity and unit of
these compositions, which hold in any 2-category. The second 2-resp rule depends on weakening
coherence, like the corresponding 1-subst rule. The interchange law also holds in any 2-category,
and we defined θ[δ] to make delegate true. The op interactions are the rest of 2-functoriality of op.

Types A type is interpreted as a functor, and A[θ] as functor composition.
map is an instance of whiskering a functor (into Cat) with a natural transformation, which

can be thought of as the functorial action of the type on the transformation. For reference, we
spell out the explicit construction: given a type C : Ty Γ , a natural transformation δ : θ =⇒ θ′ :
Γ −→ ∆, and a term M : Tm Γ C [θ], we define a term Tm Γ C [θ′] as follows:

(mapC δ M)(σ) = C(δσ)(M(σ))
(mapC δ M)(c : σ1 −→Γ σ2) = C(δσ2)(M(c))

The action on morphisms has the appropriate type because of the naturality square for δ(c): the
domain of C(δσ2)(M(c)) is C(θ′(c))(C(δσ1)(e(σ1))), which equals C(θ′(δσ2))(C(θ(c))(e(σ1)))
by naturality of δ and functoriality of C.

The 0-subst assoc/unit rules are just associativity and unit of functor composition. The
0-resp functoriality rules are consequences of the functoriality of the type C. 1-subst and 1-resp
can be calculated from the definition of map. The def. map for A[θ] is associativity of whisker-
ing.

Terms It is simple to check that a term Tm ∆ A and a functor Γ −→ ∆ can be composed as
indicated by M [θ]:

(M [θ])(σ) = M(θ(σ))
(M [θ])(c) = M(θ(c))
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This composition is functorial, as 1-subst assoc/unit states, because θ is.
M [δ] is, component-wise, the action on morphisms of the term M , which is required to be

functorial by the definition of Tm Γ A, justifying 1-resp assoc/unit and 1-resp preserves refl.
1-resp for 1-subst is an associativity property.

Term Transformations Semantic identity and vertical and horizontal composition for term
transformations are defined as follows:

(idM)σ = idM(σ)

(α2 ◦ α1)σ = α2σ ◦ α1σ

(α[δ])σ = N(δσ) ◦ A(c)(α(θ(σ)))

Identity id : M =⇒ M is the pointwise identity; naturality holds by the unit laws. Vertical compo-
sition of α2 : M2 =⇒ M3 and α1 : M1 =⇒ M2 is given pointwise as well; naturality holds using
naturality for the components and functoriality. For horizontal composition of α : M =⇒ N and
δ : θ =⇒ θ′, naturality again holds by naturality of the components and functoriality. Because of
these componentwise definitions, it is simple to check that these operations are associative and
unital, and that they satisfy an “adjusted” version of the interchange law.

Equality Rules The equality rules in Figure 7.3 are all obvious in the semantics, because equal-
ity is real semantic equality, which is a congruence, and everything respects it.

7.3.2 Semantic Contexts
Empty Context The empty context is interpreted as the category 1, which has one object and
its identity morphism. Because 1 is discrete (no non-identity morphisms), it is self dual. Because
the set of objects and the set of arrows are unital, there is only one functor into 1 (it is a terminal
object in Cat), and only one natural transformation between this functor and itself. This justifies
the remaining equations.

Covariant term variables Γ , x :A+ is interpreted by the Grothendieck construction
∫

Γ
A. As

Hofmann and Streicher (1998) discuss, there is a bijection between functors θ : Γ −→
∫

∆
A

and pairs (θ1,M) where θ1 : Γ −→ ∆ and M : Tm Γ A[θ1 ], given by pairing and projection at
the meta-level: the above functor p projects the first component, v : Tm (

∫
Γ

A) (A[p]) projects
the second, and we write (θ1,M) for the reverse direction. Variables are interpreted as v[p±n],
where p±n is the appropriate number of projections to find the variable in Γ. The transformation
rule says that the natural transformations between two functors into

∫
Γ
A are themselves given as

pairs, which follows from the fact that morphisms in
∫

Γ
A are pairs: the transformation rule is ex-

actly the definition of morphisms written out type-theoretically. More concretely, we can define a
natural transformation of the appropriate type by (δ, α)σ = (δσ, ασ), and that the commutativity
condition follows from commutativity for δ and α.

The βη equations hold because objects and morphisms in
∫

Γ
A are products. 1-id follows

from η. refl and trans follow from the definition of identity and composition for this category.
1-subst and 1-resp and 2-resp all reassociate compositions. The op rules requires the definition
of contravariant context extension, which we treat next.
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Contravariant term variables Γ , x :A- is interpreted as (
∫

Γop A)op: We are given a category
Γ and a functor [[A]] : [[Γ]]op −→ Cat. Thus, we can form

∫
[[Γ]]op

[[A]]. In the syntax, we have
weakening for a contravariant context extension, so we require a functor [[Γ , x :A-]] −→ [[Γ]].
However, p :

∫
[[Γ]]op

[[A]] −→ [[Γ]]op faces in the wrong direction. Thus, we interpret Γ , x :A- as
(
∫

[[Γ]]op
[[A]])op. For any functor F : C −→ D, there is a functor F op : Cop −→ Dop given by the

same data, so pop : (
∫

[[Γ]]op
[[A]])op −→ [[Γ]] provides the required weakening map.

The substitution and transformation rules express the fact that (
∫

Γ
A)op has similar structure

to
∫

Γ
A: objects and morphisms are pairs of a certain form. Indeed, we could directly spell out

the construction of a contravariant fibration
∫ -

Γ
A from a contravariant functor A : Γop −→ Cat,

but here we derive the definition from op instead.2

The equations are analogous to those for
∫

Γ
A. The invol rules are clearly validated by this

definition using the fact that Γopop = Γ.

7.3.3 Semantic Types
Π Π-types are defined as in Hofmann and Streicher (1998): we follow their construction,
checking that everywhere they depend on symmetry of equality, we have inserted the appropriate
op’s.

For a category Γ and a A : Ty Γ op, we abbreviate semantic contravariant context extension
(
∫

Γop A)op by Γ.A-. Given a B : Ty Γ .A- and an object σ ∈ Ob Γ, we define Bσ : Ty A(σ) by

(Bσ)(σ′) = B(σ, σ′)
(Bσ)(c) = B(idσ, c)

For any Γ and A, the Tm Γ A are the objects of a category with morphisms given by term
transformations α. This lets us define a Π type as follows:

(Π A B)σ = Tm A(σ)op Bσ

Functoriality is given by pre- and post-composition: the contravariance of A ensures that the
pre-composition faces the right direction. λ and application and βη rules are interpreted by
giving a bijection between Tm Γ.A- B and Tm Γ ΠAB. The transformation intro and elim and
βη rules express a bijection between M =⇒ N : Γ −→ ΠAB and M v =⇒ N v : Γ .A- −→ B .
The proof follows Hofmann and Streicher (1998), Section 5.3, which observes that the groupoid
interpretation justifies functional extensionality. Simple calculations validate the remaining rules.

Σ Because both subcomponents of Σ x :A.B are covariant, the interpretation given in Hofmann
and Streicher (1998) adapts to our setting unchanged. In particular, given A : Ty Γ and B :
Ty (

∫
Γ
A), a semantic Σ-type, ΣAB is defined by

(ΣAB)o =

∫
A(o)

Bo

2In fact, it is more common to define
∫ -
Γ
A so that it is equivalent to (

∫
Γop(op ◦ A))op. We have avoided this

definition because we have only considered syntactic rules for the op functor on contexts, not on types. We will
return to this point below.
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with functoriality defined componentwise. Pairing and projection, and pairing and projection for
transformations, follow from the definition of the Grothendieck construction.

Generic rules for set and elements set is interpreted as the constant functor returning Sets ,
the category of sets and functions. We avoid size issues by taking Cat to be the (larger) category
of large categories, so that Sets is an object.

Because the action on morphisms of a constant functor is the identity, Tm Γ set is bijective
with Γ −→ Sets . There is a full embedding discrete : Sets −→ Cat. This embedding takes
each set to the discrete category on that set: a set X is mapped to the category whose set of
objects is X and whose arrows are only the identity on each element of X . This embedding
is full because the functors between two discrete categories are bijective with the set-theoretic
functions between their objects (the action on morphisms is trivial, because the only maps are
identities). Thus, we can represent T(S) semantically by discrete ◦ S. As usual, we overload
notation and writeT(S) for discrete ◦ S.

The transformation rule for set expresses (half of) an isomorphism between, on the one hand,
natural transformations between two functors into Sets , and, on the other, terms Tm

∫
Γ
T(S)T(S ′).

This direction is implemented as follows: we construct
∼
M : S =⇒ S ′ : Γ −→ Sets given

M : Tm (
∫

Γ
(T(S ))) (T(S ′)) by

(
∼
M)(σ) = x 7→M(σ, x)

For a morphism c, naturality is given by x 7→M(c, idx). This “currying” is exactly analogous to
the interpretation of Π types, except here we abstract over a covariant variable.

The transformation introduction rule for T(S) is just the identity transformation, and the
transformation elimination rule is equality reflection. To interpret equality reflection, observe that
(1) by proof-irrelevance for equality in the semantics, two Tm Γ T(S) are determined entirely
by their action on objects, as the action on morphisms produces a proof of equality and (2)
the interpretation of the premise says that M(σ) = N(σ) for all σ. Thus M and N are equal
Tm ΓT(S).

The def. T(−) equation similarly expresses that the action on morphisms of a Tm Γ T(S)
proves an equality. The η rule for Sets is analogous to the η rule for Π. The η for forT(−) holds
because all morphisms are the identity. 0-subst is given compositionally. 0-resp is the identity
for a constant functor, and forT(S) determined by the action on morphisms of S. The remaining
equations are true by simple calculations.

Particular Sets Semantic Π and Σ are defined as follows:

(Σ S S ′)(σ) = Σm∈S(σ)S
′(σ,m)

(Σ S S ′)(c) = (m,m′) 7→ (S(c)(m), S(c, id)(m′))

(Π S S ′)(σ) = Πm∈S(σ)S
′(σ,m)

(Π S S ′)(c) = f 7→ (x 7→ S(c, id)(f(S(c)(x))))
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0 is the empty set, 1 is the one-element set, and 2 is booleans. For identity, we define IdS M N : Ty Γ
by

(IdA M N)(o) = 1 if M(o) = N(o)
= 0 otherwise

Functoriality holds because the functorial action of M and N give equations, which can be
combined using symmetry and transitivity to give the result.

The term rules for Π and Σ express a bijection between the set-theoretic Π and Σ and the
category-theoretic definition applied to discrete categories. The intro maps for 1 and 2 are the
corresponding elements, and the elimination maps are standard for an initial object and a coprod-
uct. Because if and abort eliminate towards an arbitrary type, we check them in more detail. For
the covariant if (where M : Tm Γ 2 ), we proceed as follows:

(if(M ,M1 ,M2 ))(σ) = M1(σ) if M(σ)
(if(M ,M1 ,M2 ))(σ) = M2(σ) otherwise

(if(M ,M1 ,M2 ))(c : σ1 −→ σ2) = M1(c) if M(σ1)
(if(M ,M1 ,M2 ))(c : σ1 −→ σ2) = M2(c) otherwise

The action on morphisms is well-typed because M(c) shows that M(σ1) = M(σ2). The con-
travariant if is defined similarly, as 2 is discrete and therefore symmetric. The semantic version
of abort is defined by elimination on the empty set. The rules for identity express that the se-
mantics of IdS is isomorphic to the transformations at T(S), which are both just the equations
between members ofT(S). The remaining equations are validated by calculation.

7.3.4 Soundness Theorem

Next, we formally interpret the syntax of the theory into Cat. We have already discussed the
semantic constructions that make up the inductive step of each case, so what remains is to tie it
together. We follow the development in Hofmann (1995): first, we define a partial interpretation
of raw syntax. This consists of the following judgements, where we write Γ,M , etc. for semantic
terms.

Γ� Γ

Γ� Γ ` θ � θ : ∆

Γ� Γ ` δ � δ : θ =⇒∆ θ′

Γ� Γ ` A� A type
Γ� Γ `M �M : A
Γ� Γ ` α� α : M =⇒A M

′

The first judgement means that the meaning of Γ is the category Γ. The second means that if
the meaning of Γ is Γ, then the meaning of θ is a functor θ into the category ∆. The remaining
judgements are analogous.
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For contexts and types, the rules simply track the structure of the typing derivation, and apply
the corresponding semantic construction to the results. For example:

· � 1

Γ� Γ Γ� Γ ` A� A type

Γ , x :A+ �
∫

Γ
A

Γ� Γ Γop � Γ
op ` A� A type

Γ , x :A- � (
∫

Γ
op A)op

Γ� Γ

Γop � Γ
op

Γop � Γ
op ` A� A type (Γ , x :A-)� (

∫
Γ
op A)op ` B � B type

Γ� Γ ` Π x :A.B � ΠAB type

For the remaining judgements, the rules do type checking in the semantics, in that they insist
that the semantic types fit together appropriately. For example, we show the rules for Π-types:

Γop � Γ
op ` A� A type

(Γ , x :A-)� (
∫

Γ
op A)op ` B � B type

(Γ , x :A-)� (
∫

Γ
op A)op `M �M : B

Γ� Γ ` λ x :A.M B � λ(M) : ΠAB

Γop � Γ
op ` A� A type

(Γ , x :A-)� (
∫

Γ
op A)op ` B � B type

Γ� Γ `M �M : ΠAB

Γop � Γ
op ` N � N : A

Γ� Γ ` appA,x.B(M,N)� M N : B [idΓ, N ]

The transformation rules are similar.
A simple induction shows that the interpretation is unique if it exists:

LEMMA 7.3.3: UNIQUENESS.
• If Γ� Γ and Γ� Γ1 then Γ = Γ1.
• If Γ� Γ ` θ � θ : ∆ and Γ� Γ ` θ � θ1 : ∆1 then ∆ = ∆1 and θ = θ1.
• If Γ� Γ ` δ � δ : θ =⇒∆ θ′

and Γ� Γ ` δ � δ1 : θ1 =⇒∆1
θ′1

then ∆ = ∆1 and θ = θ1 and θ′ = θ′1 and δ = δ1.
• If Γ� Γ ` A� A type and Γ� Γ ` A� A1 type then A = A1.
• If Γ� Γ `M �M : A and Γ� Γ `M �M1 : A1 then A = A1 and M = M1.
• If Γ� Γ ` α� α : M =⇒∆ M ′

and Γ� Γ ` α� α1 : M1 =⇒A1
M ′

1

then A = A1 and M = M1 and M ′ = M ′
1 and α = α1.

The proof exploits the fact that the type of a term is determined (up to equality) by its immediate
subterms. Otherwise, there would be some non-determinism in e.g. the application rule, which
would require guessing a domain type, and this non-determinism would make the interpretation
less obviously unique.

The interpretation interacts with weakening in the expected way: First, a weakening w : Γ ⊇
∆ induces a functor between the interpretations of the contexts. Second, weakening commutes
with the interpretation, in the sense that interpreting in a larger context is the same as interpreting
in a smaller context and then weakening.
LEMMA 7.3.4: WEAKENING.

1. If w : Γ ⊇ ∆ and Γ� Γ and ∆� ∆ then there is a functor w : Γ −→ ∆

2. For any of the contextual interpretations, if Γ ctx and ∆ ctx and Γ � Γ and ∆ � ∆ and
w : Γ ⊇ ∆ and ∆� ∆ ` t� t : J then Γ� Γ ` t� t [w] : J [w]
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Proof. The construction for the first part was described above. The second part is true by a
simple induction, using the equations discussed above for how semantic substitution commutes
with constructors.

THEOREM 7.3.5: SOUNDNESS.
Formation:

• If Γ ctx then Γ� Γ

• If Γ ctx and Γ� Γ and Γ ` θ : ∆ then ∆� ∆ and Γ� Γ ` θ � θ : ∆

• If Γ ctx and Γ � Γ and Γ ` δ : θ =⇒∆ θ′ then ∆ � ∆ and Γ � Γ ` θ � θ : ∆ and
Γ� Γ ` θ′ � θ′ : ∆ and Γ� Γ ` δ � δ : θ =⇒∆ θ′

• If Γ ctx and Γ� Γ and Γ ` A type then Γ� Γ ` A� A type

• If Γ ctx and Γ� Γ and Γ ` M : A then Γ� Γ ` A� A type and Γ� Γ `M �M : A

• If Γ ctx and Γ � Γ and Γ ` α : M =⇒A M ′ then Γ � Γ ` A � A type and
Γ� Γ `M �M : A and Γ� Γ `M ′ �M ′ : A and Γ� Γ ` α� α : M =⇒A M

′

Equality:

• If Γ ≡ ∆ then Γ� Γ and ∆� ∆ and Γ = ∆

• If Γ ctx and Γ � Γ and Γ ` θ ≡ θ′ : ∆ then ∆ � ∆ and Γ � Γ ` θ � θ : ∆ and
Γ� Γ ` θ′ � θ

′
: ∆ and θ = θ

′

• If Γctx and Γ� Γ and Γ ` δ ≡ δ′ : θ =⇒∆ θ′ then ∆� ∆ and Γ� Γ ` θ � θ : ∆ and
Γ� Γ ` θ′ � θ

′
: ∆ and Γ� Γ ` δ � δ : θ =⇒∆ θ

′
and Γ� Γ ` δ′ � δ

′
: θ =⇒∆ θ

′

and δ = δ
′

• If Γ ctx and Γ � Γ and Γ ` A ≡ A′ type then Γ � Γ ` A � A type and Γ � Γ `
A′ � A

′
type and A = A

′

• If Γ ctx and Γ � Γ and Γ ` M ≡ M ′ : A then Γ � Γ ` A � A type and Γ � Γ `
M �M : A and Γ� Γ `M ′ �M

′
: A and M = M

′

• If Γ ctx and Γ � Γ and Γ ` α ≡ α′ : M =⇒A M ′ then Γ � Γ ` A � A type and
Γ� Γ ` M � M : A and Γ� Γ ` M ′ � M

′
: A and Γ� Γ ` α � α : M =⇒A M

′

and Γ� Γ ` α′ � α′ : M =⇒A M
′
and α = α′

Proof. Mutual induction on the principal formation/equality judgement.

There is no need to prove a separate compositionality lemma (substitution commutes with
interpretation), because this is expressed by the interpretation of explicit substitutions. The usual
proof of compositionality is embedded in the proof that each of the 0-subst and 1-subst equations
hold.

On the semantic front, an important piece of future work is to generalize this semantics to
a class of 2-categories with appropriate structure (for example, the role of functors into Cat
will be played by fibrations), prove a completeness result, and investigate other instances of this
structure.
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7.4 Discussion
In this chapter, we have taken the first steps towards a directed dependent type theory, where
each type is equipped with a notion of transformation between its members, and dependent types
and terms are equipped with a functorial action on transformations. This calculus has several
interesting technical ingredients: First, we represent transformations as a judgement, rather than
as an analogue of the identity type, which is necessary because the collection of transformations
is not functorial in the ambient context. Second, we track the variances of assumptions, which
is necessary to ensure that the functorial action of each type constructor can be defined. Third,
we internalize the identity and composition principles of a 2-category as identity and substitution
operations, whose meaning is explained by definitional equality rules. These principles include
familiar explicit substitutions in terms and types, as well as the functorial action of each type
constructor (map), and operations stating that terms and transformations respect transformation
(e.g. M [δ] and α[δ]). The definitional equality rules explain these principles in terms of other
constructs of the calculus. An interesting avenue for future work is to give a more syntactic
presentation, where the identity and composition principles are treated as meta-operations (like
ordinary substitution traditionally is). We conjecture that the equations given here are sufficient
to define these meta-operations, but we leave an investigation of this approach to future work.

In the next chapter, we show how 2DTT accounts for the structural properties of the generic
judgement, and we sketch other extensions that will make it useful for programming with logical
systems that mix admissibility and derivability.



Chapter 8

Applications and Extensions

In this chapter, we discuss some applications of 2DTT to programming with variable binding.
First, we demonstrate that 2DTT provides the right vocabulary for analyzing the structural prop-
erties of the generic judgement. Second, we sketch a variety of extensions to the base theory that
will make 2DTT a convenient language for programming with logics.

8.1 The Generic Judgement
In this section, we demonstrate two facts: First, 2DTT provides the tools to describe the structural
properties of the generic judgement. Second, 2DTT provides general answers to the question of
what operations can be used in the subject of a generic judgement, while remaining structural.

8.1.1 Simple Contexts and Variables
Here, we concentrate on the structural properties of weakening, exchange, and contraction; sub-
stitution is discussed below. To illustrate these ideas in as simple a setting as possible, we begin
by representing uni-sorted contexts (where the lone sort is written i for individual), which are
essentially natural numbers representing the number of free variables of an expression. Contexts
are a directed type, with morphisms given by variable-for-variable substitutions. The generaliza-
tion to multi-sorted contexts is analogous.

Contexts are constructed by ε (zero) and Ψ, i (successor). A transformation Ψ =⇒ctx Ψ′

means that Ψ ` Ψ′, so syntax will typically be indexed contravariantly by Ψ. Transformations
between contexts have two introduction forms, ε and (α, v), and one elimination form (first
projection). map at var(−) plays the role of second projection. Variables are classified by the set
var(Ψ), and introduced by zero and successor indices.

These constructs satisfy the following equations: For contexts, the β-rule says that projecting
from a pair is the first component, and the η-rules expand renamings into concrete contexts.
1-subst is standard. The action of the constructors on renamings, given by 1-resp, is trivial for ε
and uses “parallel” renaming extension

((− ◦ π), z) : Ψ =⇒ Ψ′ −→ Ψ, i =⇒ Ψ′, i

for Ψ, i. We discuss the remaining equations below.

169



170 CHAPTER 8. APPLICATIONS AND EXTENSIONS

Γ ` ctx type Γ ` ε : ctx
Γ ` Ψ : ctx

Γ ` Ψ, i : ctx

Γ ` ε : Ψ =⇒ctx ε

Γ ` α : Ψ =⇒ctx Ψ′ Γ ` v :T(var(Ψ))

Γ ` (α, v) : Ψ =⇒ctx Ψ′, i Γ ` π : Ψ, i =⇒ctx Ψ

Γop ` Ψ : ctx
Γ ` var(Ψ) : set Γ ` z :T(var(Ψ, i))

Γ ` v :T(var(Ψ))

Γ ` s(v) :T(var(Ψ, i))

Equations for contexts:

π ◦ (α, v) ≡ α 2-β
α : Ψ =⇒ ε ≡ ε 2-η

α : Ψ =⇒ Ψ′, i ≡ (π ◦ α), z

ctx[θ] ≡ ctx 0-subst
map∆.ctx δ M ≡ M 0-resp

ε[θ] ≡ ε 1-subst
(Ψ, i)[θ] ≡ Ψ[θ], i

ε[δ] ≡ ε 1-resp
(Ψ, i)[δ] ≡ (Ψ[δ] ◦ π), z

reflε ≡ ε refl
reflΨ,i ≡ (reflΨ) ◦ π, z refl
ε ◦ α ≡ ε trans

(α2, v) ◦ α1 ≡ α2 ◦ α1,map α1 v

ε[δ] ≡ ε 2-resp
(α, v)[δ] ≡ α[δ], v [θ1]

π[δ] ≡ π

Equations for variables:

var(Ψ)[θ] ≡ var(Ψ[θ]) 1-subst
var(Ψ)[δ] ≡ x .mapψ.T(var(ψ)) Ψ [δop] x 1-resp

mapψ.T(var(ψ)) (α, v) z ≡ v 1-resp
mapψ.T(var(ψ)) (α, v) s(i) ≡ mapψ.T(var(ψ)) α i 1-resp

mapψ.T(var(ψ)) π i ≡ s(i) 1-resp

z[θ] ≡ z 1-subst
s(v)[θ] ≡ s(v [θ]) 1-subst

z[δ] ≡ ? 1-resp
s(v)[δ] ≡ ? 1-resp

Figure 8.1: Simple contexts and variables



8.1. THE GENERIC JUDGEMENT 171

8.1.2 Structurality
To illustrate structurality, we consider a representation of a judgement Ψ ` φ, where Ψ is a ctx
and φ is a proposition that can mention the variables in Ψ. We represent propositions by a set

Γop ` Ψ : ctx
Γ ` propo Ψ : set

This typing says that propositions are contravariantly functorial in Ψ, meaning that

w : Ψ =⇒ctx Ψ′ φ : propo Ψ′

(mapψ-.propo ψ (w -/ψ) e) : propo Ψ

Moreover, the functoriality equations for map stipulate that weakening by the identity is the
identity, weakening by a composition is composition of the weakenings, and so on. We will
sometimes abbreviate mapψ-.propo ψ w -/ψ e by map w e when the meaning is clear from context.

Next, we represent natural deduction derivations by a type

Γop ` Ψ : ctx Γ ` φ : prop Ψ

Γ ` nd Ψφ : set

The type-generic rule for map specializes to the appropriate renaming principle:

w : Ψ =⇒ctx Ψ′ e : nd Ψ′ φ

(mapψ-,a+.ndψ a (w -/ψ, refl+/a) e) : nd Ψ (map w φ)

As desired, this principle says that the renaming of the derivation proves the renaming of the
judgement.

8.1.3 Subjects of Judgements
Above, we raised questions about what propositions φ may be used in inference rules for Ψ ` φ
without invalidating the structural properties. 2DTT provides a general framework for answering
these questions, and in fact, the answer is quite simple. As we explain further below, an inference
rule will typically be stated for an unknown context variable ψ : ctx-. Thus, typical instances of
propositions in inference rules will be in an unknown context, as in ψ : ctx- ` φ : propo ψ, or in
the extension of an unknown context, as in ψ : ctx- ` φ : propo (ψ, i) (e.g. in the premise of the
universal quantifier introduction rule). And indeed, any terms of these types can be used in rules.
The reason is that the term typing judgement in 2DTT provides the necessary guarantees.

This is easiest to explain for a rule

ψ ` φ1 . . . ψ ` φn
ψ ` c(φ1, . . . , φn)

To prove renaming for a judgement defined by this rule, it is necessary to show that given w :
Ψ1 =⇒ctx Ψ2 and propositions φi : propo Ψ2

map w cΨ2(φ1, . . . , φn) ≡ cΨ1(map w φ1, . . . ,map w φn)
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However, any term
ψ : ctx-, φ1 : propo ψ+, . . . ` c : propo ψ

has exactly this property, because there is a transformation

(w -/ψ, refl+/φ1, . . .) : (Ψ2
-/ψ, φ1

+/φ1, . . .) =⇒(ψ : ctx-,φ1 : propo ψ+,...) (Ψ1
-/ψ, (map w φ1 )+/φ1, . . .)

and thus functoriality of c gives the result: c[w, refl, . . .] gives a transformation at T(−), which
by equality reflection proves the equation.

Moreover, there is nothing special about the indices of the premises being tuples of proposi-
tions: any term ψ : ctx- ` c : A commutes with renaming in a sense appropriate for A.

Context-parametric terms The above discussion has reduced the problem of what proposi-
tions can appear in inference rules to deciding what terms of the form ψ : ctx- ` M : A are
permissible in 2DTT. Based on the above examples of programming with logics, we have some
intuition for what should and should not be allowed:
• A proposition constructed out of variables and constructors should be allowed (e.g. the

conclusion of conjunction introduction).
• A proposition constructed by applying the structural properties should be allowed (e.g. the

conclusion of ∀-elimination)
• A proposition constructed by case-analyzing the context ψ should not be allowed.
Intuitively, constructors and variables commute with renaming, and renamings commute be-

cause they compose. However, a term that intensionally analyzes the context may not commute
with renaming, because it may compute differently on the different contexts.

The functoriality component of the definition of terms in 2DTT allows the former two but
disallows the latter. Variables, constructors, and map are all ways of constructing a term. How-
ever, we cannot, for example, add the usual recursor for ctx, as this would permit functions that
do not respect renaming:

Ψ : ctx+ ` tail(Ψ) : ctx
tail(ε) = ε
tail(Ψ, i) = Ψ

tail does not respect transformation, in that if Ψ =⇒ Ψ′ there is not necessarily a transformation
tail(Ψ) =⇒ tail(Ψ′). To see this, take Ψ′ = (ε, i) and Ψ = (ε, i, i), and let the original renaming
map both variables in Ψ to the one variable in Ψ′. There is no renaming ε =⇒ i, so this renaming
cannot be preserved by tail. Because the functoriality component of a terms requires it to respect
transformation, tail cannot have this type. However, certain functions on contexts do respect
transformation. An example is the transformation π, which can be defined by recursion on the
context.

Similar considerations influence the elimination forms for variables and syntax: the richer
the notion of transformation, the fewer eliminations respect it. For example, we cannot give
the standard case-analysis principle for variables var(Ψ), giving a case for z and a case for s.
The reason is that functoriality imposes a coherence constraint between the transformation of
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the result of the zero case and the result of the successor case. However, some functions are
permissible. For example, we can provide an equality test:

Ψ : ctx-, x , y : var(Ψ)+ ` eq(x , y) : 2′

if we take 2′ not to be the discrete category on booleans, but the two-point category with false ≤
true—equal variables stay equal under renaming, but disequal variables may become equal. Con-
versely, restricting the transformations at a type enables more general elimination forms: for
example, Pouillard and Pottier (2010) show that the operation

islast : var(Ψ, i)→ 2

respects bijections on variables, but it does not respect arbitrary renamings.
For syntax, when ctx is restricted to renamings, propo can be equipped with the usual re-

cursor, because case-analysis on constructors commutes with renaming. However, if the context
category is instead taken to be term-for-variable substitutions, then this places additional re-
strictions on a context-polymorphic term: a general recursor is no longer permitted, because a
recursive function over propositions does not necessarily respect substitution. On the other hand,
arbitrary recursive functions over syntax are classified by the type

Πψ:!ctx. exp un! -ψ → exp un! +ψ

!A, which is discussed in more detail below, discretizes a type, forgetting all transformation
structure. When A is closed, like ctx, it has both co- and contravariant inclusions into A, which
we notate un!+ and un!- . Because transformations at !ctx are only equalities, a function of this
type may avail itself of the usual recursion operators to analyze contexts and expressions.

2DTT provides a natural setting to explore this hierarchy of coarser and finer notions of a
transformation on a type. In the semantics, a term can be defined giving a function on raw
objects, in addition to a proof that it respects transformation. We can expose this in the syntax
in a manner similar to quotient types: one can define a function on a higher-dimensional type by
defining a function on the raw terms and proving separately that it respects transformation. We
speculate on this extension below.

At present, because we have not yet exposed this functionality in the syntax, ctx and hctx(Ψ)
deviate from the methodology we espoused above: For example, we include π as a primitive
elimination form for context transformations—in a more general setting, it could be defined by
recursion on contexts and proved to respect transformation. refl, α ◦ α′, and map are not in
general definable in terms of other constructs—though they are for canonical transformations.
For variables, the only unusual rules are for 1-resp and map, which are anomalous because we
do not have a general elimination form for variables. Instead, we cheat by (1) reducing var(Ψ)[δ]
to map and (2) giving rules for map that pattern-match on the term it is applied to.

8.2 Extensions
In this section, we sketch various extensions to 2DTT that will make it more convenient for
programming with logics.
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8.2.1 Datatypes
Our goal in this section is to show that if we extend 2DTT with a datatype mechanism, then
we can generate weakening, exchange, and contraction for many interesting signatures just by
writing down the type in 2DTT.

For this section, we assume a datatype mechanism that allows definitions of the form

D : (A→ set) ∼= B

where A is a type and D : (A→ set)+ ` B : A→ set. The idea is that D is an inductive set
indexed by A, with unrolling given by B. Inductive types are functorial if their unrollings are,
and map at T(D a) is given recursively using functoriality of its unrolling T(B a). Datatypes
of this form should admit the usual induction principles as elimination forms.

A definition of this form could be represented by an indexed µ:

Γop ` A type Γop ` I : A Γ, r :T(A→ set)+, i : A- ` F : set Γop ` M : A

Γ ` µA(r .i .F , I ) : set

which is introduced by unrolling

Γ ` M : F [id, λ x . µ(r .i .F , x )-/r , I -/i ]

Γ ` in M :µA(r .i .F , I )

and eliminated by recursion.
The problem with this definition is that it admits too many recursive types: The variance of r

ensures that the recursive occurrences are only in positive positions, which precludes examples
such as D ∼= (D → D). However, it still allows some constructions that do not make sense in
Sets , like D ∼= (D → 2)→ 2, which is impossible for size reasons.

One possible solution is to change the intended semantics, say to categories in domains,
and allow this formation rule for recursive types. Another is to restrict the recursor to strictly
positive types. This can be achieved syntactically by inspecting F , checking that r does not
occur to the left of an arrow, or semantically by formalizing a type of (indexed) strictly positive
functors (Abbott et al., 2005; Chapman et al., 2010; Martin-Löf, 1975), whose fixed points are
equivalent toW -types. Because the encoding of indexedW -types asW -types uses propositional
equality, it may be useful to consider indexed containers (Altenkirch and Morris, 2009; Gambino
and Hyland, 2004) as a primitive notion. Alternatively, we could first explore directed hom types,
and then investigate whether the encoding carries over to a higher-dimensional and directed
setting.

For the remainder of this section, we will informally check that the definitions are strictly
positive.

Simply-typed Signatures

Expressions: Purely Positive Syntax λ-terms are described by the usual de Bruijn datatype:

exp : ctx→ set
exp ∼= λψ. (var(ψ) + (exp ψ × exp ψ) + exp (ψ, i))
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It is instructive to type-check the right-hand side: our goal is to show under the assumption
ψ : ctx-, the body is a set. By the rules for + (which can be encoded with its usual rules using Σ
and booleans) and× (a degenerate Σ) this is true if var(ψ)and exp ψ and exp (ψ, i) are sets under
this assumption. But both var and exp are indexed contravariantly—for var, this is expressed in
the formation rule, and for exp, this is expressed by the→ in its type (which is a degenerate Π,
and arguments to such a function are a contravariant position). Thus, this reduces to showing
that ψ : ctx and ψ, i : ctx in (ψ : ctx-)op, which is (ψ : ctx+), which permits the variable to be used.

The functorial action of this datatype implements weakening, exchange, and contraction: If
w : Ψ =⇒ Ψ′ and e : exp Ψ′ then (map w e) : exp Ψ. Moreover, the generic equations of the
calculus ensure that weakening by the identity is the identity, weakening by a composition is
composition of the weakenings, and so on.

Arithmetic Expressions: Mixed Variance Syntax Similarly, we can define mixed-variance
syntax, combining admissibility and derivability, as in the arith example above (assuming a set
of natural numbers with its usual rules):

arith : ctx→ set
arith ∼= λψ. var(ψ)

+nat
+(arith ψ × (nat→ nat→ nat)× arith ψ)
+(arith ψ × arith (ψ, i))

The body type-checks because ψ is only used in positions of the appropriate variance—for
example, if we put arith ψ to the left an arrow, then the index of arith would again be a negative
position, and the variable would not be available for use.

This description of the datatype captures the fact than nat is constant in ψ, rather than relying
on subordination-based weakening/strengthening, as above. Below, we will discuss an example
where a type is indexed by two contexts of different variances.

Dependently typed syntax

Propositional Logic: Intrinsically Simply-Typed Syntax Next, we consider some examples
that go beyond the framework described in Chapter 5. First, we consider typed syntax, in the
special case where the types are not dependent on variables. This covers propositional logic and
intrinsic encodings of simply typed languages. We assume a set ty of object-language types, e.g.
constructed by

arr(τ1 : ty, τ2 : ty) : ty

For this example, we also need to generalize the type ctx to lists of ty’s, rather than lists of
unit, and generalize variables var(Ψ) to τ ∈ Ψ. As with booleans, there is an inductive identity
function −- :T(ty→ ty) that allows a contravariant ty assumption to be used contravariantly.

Consider the following Agda datatype:
data exp : ctx � ty where
var : ∀ {Ψ τ} � τ ∈ Ψ � exp Ψ τ
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lam : ∀ {Ψ τ1 τ2} � exp (Ψ , τ1) τ2 � exp Ψ (arr (τ1 , τ2))
app : ∀ {Ψ τ1 τ2} � exp Ψ (arr (τ1 , τ2)) � exp Ψ τ1 � exp Ψ τ2

This is a “Catholic” inductive family1, which means that the indices may vary in the result of
each constructor. Catholic families can be made “Protestant” (meaning the indices may vary in
recursive calls, but not results) by representing the index constraints as explicit equality proofs:

data exp (Ψ : ctx) (τ : ty) where
var : τ ∈ Ψ � exp Ψ τ
lam : ∀ {Ψ τ1 τ2} � Id τ (arr (τ1 , τ2)) � exp (Ψ , τ1) τ2 � exp Ψ τ
app : ∀ {Ψ τ1} � exp Ψ (arr (τ1 , τ)) � exp Ψ τ1 � exp Ψ τ

Our above notion of datatype allows only Protestant families, which avoids any tacit use of
propositional equality—a treatment of Catholic families in the directed and higher-dimensional
settings is an interesting subject for future work. However, when the index constraints are on
elements of sets, we can encode Catholic families using Id. For example, the Protestant definition
of exp can be rendered directly in 2DTT:

exp : (ctx×T(ty))→ set
exp ∼= λ (ψ, τ). τ - ∈ ψ

+Σ τ1 , τ2 :T(ty). Id τ - arr(τ1, τ2)× exp ((ψ, τ1 ), τ2
-)

+Σ τ1 :T(ty). exp (ψ, arr(τ1
-, τ))× exp (ψ, τ)

Note the use of τ -, discussed above, to flip the polarity of various types. This is necessary because
the Σ-bound ty’s are bound covariantly, whereas the λ-bound ty is bound contravariantly. An
alternative, which discuss below, is to consider a type operatorAop, and Σ-quantify overT(ty)op,
in which case τ1 and τ2 would be facing the appropriate direction.

Because ctx×T(ty) is a non-dependent pair, there is a transformation Ψ, τ =⇒ Ψ′, τ when-
ever there is a transformation w : Ψ =⇒ Ψ′. This gives the expected renaming principle: if
e : exp (ψ′, τ) then map (w , refl) e : exp (ψ, τ).

Mixed Variance We can also combine dependent types with mixed variance syntax. For ex-
ample, in Chapter 4, we used a constructor2

dlam : {Γ : ctx} {B : nat � tp} � ((n : nat) � Γ ` B n) � Γ ` Π B
This constructor can be encoded as follows:

` : (ctx×T(ty))→ set
` ∼= . . .

+ Σ B :(nat→ ty). Id τ - pi(B)× Π x :nat.` (ψ, (B x )-)
. . .

This type is functorial because the index sets of the pi are not parametrized by the context.

1Catholic families requires the mysterious equality and its associated miracle of transubstantiation, as the joke
goes.

2 Here we have taken the slight simplification of restricting the index set to nat.
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Mixed Variance with Non-constant Domains An example where types appearing in negative
positions are dependent on a context is Simmons and Toninho (2010)’s constructive provability
logic. We encode a simplification here.

CPL offers an explanation of negation-as-failure in logic programming, using a logic that
includes reflection on the provability of a statement in another logic. For example, the proposition
sld(A) means that the proposition A can be proved using SLD resolution. More interestingly, the
proposition notsld(A) means that A is not provable using SLD-resolution, and is introduced by
giving an admissibility:

(Γ ` sld(A))→ false

Γ ` notsld(A)

This rule would seem to destroy the structural properties of Γ. However, the truth of sld(A)
depends only on the sld variables in Γ, not ordinary truth variables. Thus Γ is still structural in
truth variables.

We can tease this out by separating the definition of the logic into two judgements proves and
provessld, and separating Γ into two contexts, one for SLD variables and one for truth variables.
provessld is indexed only by an SLD context, whereas proves is indexed by both contexts. The
SLD context appears in both positive and negative positions in proves, so the judgement is in-
variant in the SLD context. However, truth variables occur only positively, so the judgement has
the usual structural properties for this context. The type ctx is essentially a higher-dimensional
natural number, so an invariant context is just a natural number (with numbers less than it as
variables—this type is usually called fin(n)).

The intro rules for notsld and sld are represented as follows:

provessld : (nat×T(ty))→ set
proves : (nat× ctx×T(ty))→ set
proves ∼= λ(ψsld, ψtrue, φ) . . .

+ Σφ′:ty. Id φ- notsld(φ′)× (provessld(ψsld
-, φ′)→ 0)

+ Σφ′:ty. Id φ- sld(φ′)× provessld(ψsld , φ
′-)

. . .

Note the use of −-, which is implementable because nat and ty are discrete types, to permit
natural numbers and types to be used in mixed variance positions.

The Generic Judgement: First-order logic Next, we consider an example where one index
is dependent on another. We can illustrate this with a simple fragment of first-order logic:

Ψ, i ` φ
Ψ ` ∀φ ∀I

Ψ ` ∀φ
Ψ ` φ{id, nΨ} ∀E

For simplicity, we assume that the quantifier can only be instantiated with variables, which means
that the elimination rule requires only renaming. There is a renaming operation on derivations as
well: if D :: Ψ ` φ and r : Ψ → Ψ′ then D{r} :: Ψ′ ` φ{r}—the renaming of the derivation
proves the renaming of the proposition.
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Propositions are a simple syntax:

propo : ctx→ set
propo ∼= λψ. (var(ψ) + propo (ψ, i))

We think of the variables as the subjects of a single base proposition b(v), and the second sum-
mand as ∀.

The type of natural deduction derivations is defined to satisfy

nd Ψ φ ∼= Σφ′:propo (Ψ, i). Id φ ∀(φ′)× nd (Ψ, i) φ′

+Σφ′:propo (Ψ, i). Id φ (map (refl, v) φ′)× nd Ψ ∀(φ′)
+ . . .

Representing this parametrization, where both propo and nd are contravariant in Ψ, as a function
type requires some additional technology, which we now discuss.

8.2.2 The Attraction of Opposites
In the above examples, we have considered either a hypothetical judgement, or a generic judge-
ment, but not both. An extension is to consider both at once. This would be necessary if, for
example, the object logic included both quantifiers and implication. To represent the hypotheti-
cal, we use a type hctx(Ψ)indexed by a generic context Ψ. However, doing this right requires an
op modality on types.

First, we define a type representing a hypothetical context, which is itself indexed by the
generic context Ψ. The reason hctx(Ψ)is a type, rather than set, is that transformations are
renamings, analogously to ctx.

Γop ` Ψ : ctx
Γ ` hctx(Ψ) type Γ ` ε : hctx(Ψ)

Γ ` Ξ : hctx(Ψ) Γ ` φ : propo Ψ

Γ ` Ξ, φ : hctx(Ψ)

Γ ` ε : Ξ =⇒hctx(Ψ) ε

Γ ` α : Ξ =⇒hctx(Ψ) Ξ′ Γ ` v :T(φ ∈ Ξ)

Γ ` (α, v) : Ξ =⇒hctx(Ψ) Ξ′, φ Γ ` π : Ξ, φ =⇒hctx(Ψ) Ξ

Γop ` Ψ : ctx Γop ` Ξ : hctx(Ψ) Γ ` φ : propo Ψ

Γ ` φ ∈ Ξ : set Γ ` z :T(φ ∈ (Ξ, φ))

Γ ` v :T(φ0 ∈ Ξ)

Γ ` s(v) :T(φ0 ∈ Ξ, φ)

An object language judgement Ψ; Ξ ` φ will be represented as a type family nd Ψ Ξ φ.
However, we must ensure that nd has the appropriate variance: because of the orientation of the
renamings, it should be contravariant in both context arguments. Thus, the obvious candidate
type is

Ψ : ctx-,Ξ : hctx(Ψ)-, φ : propo Ψ+ ` nd Ψ Ξ φ type

However, this does not type check. The problem is that marking Ξ : hctx(Ψ)- as a contravari-
ant assumption means that it should be well-formed contravariantly in the preceding context,
whereas in this case it is well-formed covariantly. If we instead mark Ξ : hctx(Ψ)+ as a covariant
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assumption, the context is well-formed, but the type cannot be defined as intended, as the de-
pendence on hctx(−) faces the wrong direction. An ad-hoc solution to this problem would be to
reverse the direction of the morphisms in the definition of hctx(−).

The right solution is to provide finer control over the variance of types. The essence of
the problem is that Π x :A.B ties together two independent notions: First, A is well-formed
contravariantly in the ambient context. Second, the dependence of B on A is contravariant—for
example, in the special case whereA andB are both closed, Π x :A.B is equivalent to the functor
category Aop −→ B.

This limitation can be lifted by introducing a type constructor

Γ ` A type
Γ ` Aop type

that is interpreted by taking the opposite of A point-wise (i.e. if A : Γ −→ Cat then Aop =
op ◦ A). We have not yet considered how to present rules for this type syntactically.

nd can then be rendered as

Ψ : ctx-,Ξ : hctx(Ψ)op+, φ : propo Ψ+ ` nd Ψ Ξ φ type

This expresses that Ξ is well-formed covariantly in Ψ, but the dependency of nd on it is con-
travariant.

We can also now explain the dependency of nd as a function type, putting it into the same
form as the non-dependent examples discussed above.

nd : (Σ Ψ:ctxop.Σ Ξ:hctx(Ψ)op. propo Ψ)op → set

The inner op’s are necessary for the dependency on Ψ in later components of the Σ; the outer op

cancels the op that is implicit in→. An alternative would be to use a function space that does not
have an implicit op around the domain, which we discuss below.

Alternative presentation Given the op modality, there is an alternate presentation of 2DTT in
which Π x :A.B requires a covariant dependence of B on A by default, with contravariant de-
pendency encodable using op. Moreover, this presentation accords slightly better with category-
theoretic conventions, in which the Grothendieck construction for a contravariant functor A con-
structs a fibration

∫ -
Γ
A as follows:

• an object of
∫
C A is a pair (o, a) where o ∈ Ob C, and a ∈ Ob A(o).

• a morphism from (o, a) to (o′, a′) is a pair (c, f) where c : o −→C o′ and f : o −→A(o′)

A(c)o′

This is related to the covariant Grothendieck construction by

(

∫ -

Γ

A)op ∼=
∫

Γop

Aop

In this notation, our present notion of contravariant context extension Γ , x :A- is interpreted as∫ -
Γ
Aop, which means that the morphisms require for a map f : A(c)o′ −→A(o′) o, facing in the

opposite direction from above.
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The direct definition of
∫ -

Γ
A requires the op modality on types, because the substitution in-

troduction rule is:
θ : Γ −→ ∆ M : Tm Γop Aop[θop]

θ,M : Γ −→
∫ -

∆
A

Our current presentation avoids mention of the op modality by only allowing
∫ -

Γ
Aop, in which

case the double-op cancels when the above rule is unfolded.
Of course, given op, this presentation is isomorphic to one that still takes the present definition

of Γ , x :A- as primitive, as Γ , x :Aop- interprets as
∫ -

Γ
A (by canceling double-ops).

8.2.3 Substitution and Other Structural Properties
Above, we have considered only renamings, which give weakening, exchange, and contraction
for positively occuring variables. Our approach generalizes to additional structural properties
by considering additional context categories. For example, the fact that all signatures admit ex-
change can be expressed by showing that all types are functorial in the category ctx

∼= of contexts
and bijections between them. This holds because ctx

∼= has projections both to ctx and ctxop. The
restriction to bijections ensures that inverse exchanges compose to the identity. Similarly, all
types admit weakening and strengthening of variables whose types are insubordinate to A: all A
are functorial in ctx≥A, the category of contexts that differ only by types that are insubordinate
to A, which is again symmetric. This holds because the subordination condition implies that
B ∈ Ψ is preserved by adding or deleting insubordinate A’s. These contextual categories can
be composed. For example, a schema with positive and negative occurrences of the context is
functorial in renamings, which additionally only weaken or contract variables in subordinate to
its contravariant types. This can be represented as a category of contexts that has projections to
both ctx and ctx≥A. 2DTT is a natural setting to explore this hierarchy of contexts.

Next, we come to substitution, which has a slightly different flavor. Whereas renaming is
functorial, substitution is monadic (Altenkirch and Reus, 1999). More precisely, substitution
endows terms with the structure of a relative monad (Altenkirch et al., 2010)—which is a gener-
alization of monads to non-endofunctors. This generalization is necessary because exp ctx→ set
is not an endofunctor. Thus, our approach to substitution will be to have a type constructor for
constructing a relative monad from a signature.

In simpler terms, the programmer will write a signature expressed as a (perhaps strictly pos-
itive) functor that is parametrized by the recursive call. E.g.

exp : (ctx→ set)+, ψ : ctx- ` expsig : set
expsig = (exp ψ × exp ψ) + exp (ψ, i)

From this we can generate
• The type exp : ctx→ set = λψ. µ(exp.ψ.expsig , ψ)

• The type ctx′ of term-for-variables substitutions.
• The type exp′ : ctx′ → set of expressions equipped with substitution.

Given a signature that potentially takes advantage of dependent types and mixed variance, this
construction will allow the programmer to get all of the available structural properties for free
from the signature description.
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8.2.4 Covariant Π’s
Using the rules above, a contravariant assumption can be internalized as a function: if Γ, x : A- `
M : B then Γ ` λ x .M : Π x :A.B . It is natural to ask whether anything analogous can be said
for covariant variables: is there any sort of function space internalizing Γ, x : A+ ` M : B? As
we have observed above, the problem with attempting to naïvely construct such a function space
is that A is well-formed covariantly in Γ, so map is not definable by pre- and post-composition.

However, there is in fact such a function type, and, as it turns out, we have already seen the
seeds of it in Chapter 5: In the NBE example, we observed that a function of type

∀Ψ1.〈Ψ + Ψ1〉sem→ 〈Ψ + Ψ1〉sem

is always weakenable to any context bigger than Ψ, because it explicitly accounts for such ex-
tensions. Thus, map is definable by instantiating the quantifier.

Categorically, this type corresponds to the exponential object in the category of presheaves:
given two functors A,B : Γ → Sets, where Γ is a small category, there is a functor BA : Γ →
Sets defined by

BA(o) = HomSetsΓ(HomΓ(o,−)× A,B)
BA(c : o1 −→Γ o2) = f 7→ (o′ 7→ (c′ : o2 −→ o′, x) 7→ fo′(c

′ ◦ c, x))

Here HomΓ(o,−) : Γ −→ Sets is the covariant hom functor, which sends each object o′ to the
set of maps in Γ from o to o′:

Hom(o,−)(o′) = HomΓ(o, o′)
Hom(o,−)(c : o1 −→Γ o2) = (f : o −→ o1) 7→ c ◦ f

Thus, BA sends each object o to the set of natural transformations (which are the maps in the
functor category SetsΓ) from HomΓ(o,−) × A to B. Spelling out this definition, we see that
an element of BA(o) is a function ∀o′.HomΓ(o, o′) × A(o′) → B(o′), which is natural in o′. If
we ignore the naturality constraint, this specializes to the type above if we take Hom(Ψ,Ψ′) to
mean Ψ′ = Ψ + Ψ1 for some Ψ1.

The action on morphisms works by instantiating the quantifier: if we are given
f : HomΓ(o1,−) × A =⇒ B and (c : o1 −→Γ o2), we need to make a natural transformation
g : HomΓ(o2,−)× A =⇒ B. This is defined by taking

go′ = (c′ : o2 −→ o′, x : A(o)) 7→ fo′(c
′ ◦ c, x)

Naturality follows from the naturality of f . That is, f already works for all “future” objects of Γ,
and by composition the future of the future is the future.

Our next task is to figure out how to describe this type syntactically. A first cut is to define a
type

Γ ` A : set Γ ` B : set
Γ ` BA : set

However, there are two problems with this rule. The first is technical: the object BAofSets∆

does not interact in the usual way with substitution, in that BA[θ] is different than B [θ]A[θ]. For an
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(Non-dependent) context append:

Γ ctx ∆ ctx
Γ,∆ ctx

Γ ` θ1 : ∆1 Γ ` θ2 : ∆2

Γ ` θ1, θ2 : ∆1,∆2

Γ ` δ1 : θ1 =⇒∆1 θ
′
1 Γ ` δ2 : θ2 =⇒∆2 θ

′
2

Γ ` (δ1, δ2) : θ1, θ2 =⇒∆1,∆2 θ
′
1, θ
′
2

Non-dependent transformation assumptions:

Γ ctx ∆ ctx Γ ` θ1 : ∆ Γ ` θ2 : ∆
Γ , d :θ1 =⇒∆ θ2 ctx

d : θ1 =⇒∆ θ2 ∈ Γ

Γ ` d : θ1 =⇒∆ θ2

Γ ` θ : ∆ Γ ` δ : θ1 [θ] =⇒Ψ θ2 [θ]

Γ ` θ, δ/d : ∆, d : θ1 =⇒Ψ θ2

Γ ` δ0 : θ =⇒∆ θ′

Γ ` reflθ2 [δ0 ] ◦ δ ≡ δ′ ◦ reflθ1 [δ0 ] : θ1 [θ] =⇒Ψθ2 [θ′]

Γ ` (δ0, ?) : θ, δ =⇒∆,d:θ1=⇒Ψθ2 θ
′, δ′

Covariant functions:

∆ ctx Γ ` θ : ∆ ∆ ` A,B : set

Γ ` Π+(∆ ≥ θ).A→ B : set

Γ,∆, d : (θ =⇒∆ id∆), x :T(A)+ ` M :T(B)

Γ ` λ∆, d , x .M :T(Π+(∆ ≥ θ).A→ B)

Γ ` M :T(Π+(∆ ≥ θ1 ).A→ B) Γ ` θ2 : ∆ Γ ` δ : θ1 =⇒∆ θ2 Γ ` N :T(A[θ2 ])

Γ ` M (θ2 , δ,N ) :T(B [θ2 ])

(λ∆, d, x.M)(θ2, δ,N) ≡ M [idΓ, θ2, δ/d,N
+/x] β

M ≡ λ∆, d, x.M(id∆, d, x) η

(Π+(∆ ≥ θ).A→ B)[θ0] ≡ Π+(∆ ≥ θ[θ0]).A→ B 1-subst
(Π+(∆ ≥ θ).A→ B)[δ] ≡ f .λ∆, d , x .f (id∆, d ◦ θ[δ], x ) 1-resp

(λ∆, d , x .M )[θ0] ≡ λ∆, d, x.M [θ0, id∆, d/d, x +/x] 1-subst
M (θ2 , δ,N )[θ0] ≡ M [θ0](θ[θ0], δ[reflθ0 ],N [θ0])
(λ∆, d , x .M )[δ] ≡ ? 1-resp
M (θ2 , δ,N )[δ] ≡ ?

Figure 8.2: 2DTT: Covariant Functions
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object o ∈ ∆, the former quantifies over all futures of θ(o) in Γ, whereas the latter quantifies over
all futures of o in ∆, and these are not necessarily the same. Thus, we cannot define substitution
compositionally. The second is practical: the type BA doesn’t quite match our intuition from the
NBE example, as there is no place to write the bounding context Ψ.

Both of these problems arise because the type Γ ` BA : set is defined so that it anticipates
extensions in the ambient context Γ, which means that this type reflects upon the context in a way
that other type constructors do not. In type theory, the connectives always build in a composition,
so that they can be judged well-formed in an arbitrary context. The above rule fails to do so.

The solution is to build in this composition and make the bound an explicit part of the type
constructor: we define a type Π+(∆ ≥ θ).A→ B

∆ ctx Γ ` θ : ∆ ∆ ` A,B : set

Γ ` Π+(∆ ≥ θ).A→ B : set

For example, if we take ∆ to be a single assumption Ψ′ : ctx, and Ψ is a context, and A,B are
well-formed in Ψ′ : ctx, then we can form the type Π+(Ψ′ : ctx ≥ Ψ).A(Ψ′)→ B(Ψ′), as above.
Then the substitution into Π+(∆ ≥ θ).A→ B is defined by composing substitutions.

Next, we need intro and elim rules for this connective. Based on the semantics, Π+(∆ ≥
θ).A→ B should classify functions, that, for every θ′ reachable from θ and A[θ], produce a B [θ′].
Stating this syntactically requires a couple of new ingredients: substitution and transformation
variables. Thus far, we have considered the transformation judgements only on the right. It is
also possible to allow hypothetical transformations as a judgemental notion, even though it is not
obvious how to internalize transformations as a dependent type.

In Figure 8.2, we give the rules for these concepts: The first set of rules allow a context to
be extended with an entire context (which is not dependent on the first)—the rules are exactly
those for the product category. The next set of rules define transformation variables: a con-
text can be extended with a transformation variable, and transformation variables can be used
as transformations. A substitution into Γ , d :θ1 =⇒∆ θ2 consists of a substitution into Γ and a
transformation for the substitution instance. A transformation between such substitutions con-
sists of a transformation for the first component, such that a naturality condition holds for the
second components—because the theory is 2-dimensional, there is no notion of morphism be-
tween transformations. We elide the equality rules for these contexts. We could also allow term
transformation variables a : M =⇒A N , but they are not necessary for this construction.

The introduction rule for Π+(∆ ≥ θ).A → B internalizes a hypothetical term as a function.
Note the weakenings: θ is dependent only on Γ, and id∆ andA andB only on ∆. The elimination
rule is symmetric. The βη rules express that this is an isomorphism. The 1-resp rule for Π+(∆ ≥
θ).A→ B simply composes substitutions. The 1-resp rule composes transformations (the future
of the future is the future), as discussed above. It is also necessary to adjust ∆ by θ because of the
built-in composition. The 1-subst rules are compositional; the 1-resp rules are computationally
trivial, but require checking that the equations hold.

While these rules are operationally sensible, they allow impredicativity. For example, ∆
might be a : set, in which case Π+(a : set ≥ 0 +/a).A → B permits impredicative polymorphic
quantification over sets, as in the System F type ∀a.A(a)→ B(a). Thus, we may wish to restrict
the formation rule for covariant Π’s in order to avoid impredicativity. We leave an investigation
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of the necessary restrictions to future work; for example, quantification over set might increase
the size of the type.

The type Π+(∆ ≥ θ).A → B described here can be generalized in two ways: First, we can
generalize the→ to a Π, by allowing the domain type type A to depend on d : θ =⇒ id∆, and
the range type B to depend on both d and x : A+. Second, we can generalize from sets to types.
Here, we have considered the exponential of two presheaves. This construction generalizes to
functors into Cat, using the exponential of two fibrations.

Applications at set If ∆ has an initial object, then we can derive an unbounded quantifier
from the bounded quantifier. For example, at set, we write Π+(a : set).A → B for Π+(a : set ≥
0 +/a).A → B. There is a unique transformation 0 + =⇒set S + given by x .abort x , so we can
ignore the transformation argument to functions and applications.

Naturality properties of polymorphic functions are typically only made available in exter-
nal logics based on relational parametricity. In 2DTT, they are instead available as definitional
equality principles inside the type theory. For example, we can derive the fact that a polymorphic
function on lists, of type Π+(a : set).list(a)→ list(a), commutes with map:

If P : Π+(a : set).list(a)→ list(a)
x.F : S1 =⇒set S2

L : list(S1)
then mapa.T(list(a)) (x.F ) P (S1, L) ≡ P (S2,mapa.T(list(a)) (x.F ) L)

This makes essential use of directedness: in a higher-dimensional symmetric type theory, S1 =⇒set

S2 would classify only equivalences, though typical applications of this reasoning principle apply
it to arbitrary functions from S1 to S2.

Contravariant Π x :A.B satisfies naturality conditions as well. The reason it cannot be used
for this example is that the type Π a:set. list(a)→ list(a) is not well-formed, because the as-
sumption a can only be used in contravariant positions. The type Π+(a : set).list(a)→ list(a) is
necessary to allow a to be used in both the domain and range.

Applications at ctx Using Π+(ψ : ctx- ≥ Ψ -/ψ).exp ψ → exp ψ we can reproduce some famil-
iar results relating functions to de Bruijn form, which has applications to higher-order abstract
syntax (Fiore et al., 1999; Hofmann, 1999).

Suppose ctx includes term-for-variable substitutions. Then there is a type isomorphism

(Π+(ψ : ctx- ≥ Ψ -/ψ).exp ψ → exp ψ) ∼= exp (Ψ , i)

Intuitively, this says that the space of functions that work in all future contexts, naturally in
substitutions, is the same as the space of derivabilities represented in de Bruijn form. The reason
for this is that both represent exactly substitution functions. Thus, we have a negative (in the
focusing sense) function space that is isomorphic to a positive representation in de Bruijn form.
This provides another explanation as to why substitution functions can be used in inductive
definitions, and why their polarity is somewhat confusing: they can be isomorphically thought
of as either positive or negative.
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From right to left, the isomorphism sends

e 7→ λψ, d, x.mapψ.exp ψ (d, x) e

which substitutes its argument for the last variable in e. From left to right, it instantiates the
quantifier with a context with one extra variable, plugs π in for the transformation, and plugs the
new variable in for x.

f 7→ f((Ψ, i)/ψ, π, v(z))

Using naturality, these maps can be shown to be mutually inverse. Without naturality, these maps
back and forth can be defined, but the type (Π+(ψ : ctx- ≥ Ψ-/ψ).exp ψ → exp ψ) is broader than
exp (Ψ, i), because its elements functions may analyze their argument.

HOAS At first glance, one might hope that this type isomorphism will provide a convenient
higher-order way to write down syntax. Unfortunately, elements of (Π+(ψ : ctx- ≥ Ψ-/ψ).exp ψ →
exp ψ) are no easier to write than de Bruijn terms: as the above isomorphism shows, a term
λψ′, d, x.e gets a new weakening function (d) and a new last variable (x), and weakening and
other structural properties must be marked explicitly, just as in de Bruijn form.

However, following Hofmann (1999), we may be able to introduce HOAS as a special syntax
for the functor category ctx → set. This category is itself a Cartesian closed category, with
exponentials BA given by λψ. (Π+(ψ′ : ctx- ≥ ψ-/ψ′).A ψ′ → B ψ′). The interpretation of λ-
terms into this CCC thus constitutes a semantically motivated parser trick for writing de Bruijn
form in a higher-order notation.

8.2.5 Higher-Dimensional Quotient Types
In ordinary type theory, one can consider quotient typesA/R, whereR is an equivalence relation
on A: the elements of A/R are the elements of A, but two elements are considered equal when-
ever they are related by R. In 2DTT, the analogous operation is forming a type from an internal
category—a description of a category inside the theory. In the symmetric higher-dimensional
case, we can introduce a new type-forming operation as follows:

O : set
∼=

A : O → O → set
∼=

r : Π x :O .A x x
t : Π x1 , x2 , x3 :O .A x2 x3 → A x1 x2 → A x1 x3

t r p ≡ p
t p r ≡ p
t(t p1 p2 )p3 ≡ t p1 (t p2 p3 )

cat(O,A, r, t) type

Terms and equivalences are introduced by the corresponding sets:

M : O
[M ] : cat(O ,A, r , t)

P : A [M1 ] [M2 ]

[P ] : Idcat(O ,A,r ,t) [M1 ] [M2 ]
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and terms can be eliminated by a raw function that respects equality:

M : cat(O ,A, r , t) R : O → C P : Π x , y :O .A x y → IdC (R x ) (R y)

celim(M ,R,P) : C

Adapting these rules to the directed case is an important piece of future work, as it will allow
programmers to introduce types such as ctx and hctx(Ψ), and write elimination forms such as π,
without extending the language.

Discretization We can go further and expose the fact that every type can be viewed in the form
cat(O,A, r, t). To do this, we need an operation !A that forgets the higher-dimensional structure
of a type. Above, we considered nat to be an “invariant” version of ctx. This is an instance
of a general construction: Given a structured type A, there is a set Ob A, and therefore a type
T(Ob A). This type forgets the morphism part of A, leaving only the underlying set of objects,
which are now only transformable if they are equal. In fact, Ob − and T(−) are a section-
retraction, because ObT(S) ≡ S. Semantically, it is clear what the functor Ob : Cat −→ Sets
means, but we have not investigated a proof theory for it. Because T(Ob A) forms a comonad,
which we will abbreviate as !A, it could potentially be given a proof theory analogous to the
necessitation operator in modal logic (Pfenning and Davies, 2001). For example, there is an
operation un!M which has type A if M : !A.

Using !, we can directly expose the semantic definitions of types and terms in the type theory.
For example, we may add a rule that encodes the definition of Tm Γ A:

Γ ` A type
!Γ ` M : !A[un! id]
~x :!Γ, ~y :!Γ, d : un! ~x =⇒A un! ~y ` α : un! (mapA d M [id~x]) =⇒A[un! ~y] un! (M [id~y])
α[refl] ≡ refl
α[d2 ◦ d1] ≡ α[d2/d] ◦ resp1 (x.map d2 x) α[d1/d]

Γ ` explicit(M , α) : A

8.2.6 Directed Hom Types
Thus far, we have treated equality as a judgement, which is necessary because the usual con-
struction of the identity type in symmetric type theory does not apply in the directed case. For
review, identity types

Γ ` A type Γ ` M : A Γ ` N : A

Γ ` IdA M N : set

are interpreted by

(IdA M N)(o) = HomA(o)(M(o), N(o))
(IdA M N)(c : o1 −→ o2) = f : HomA(o1)(M(o1), N(o1)) 7→ N(c) ◦ A(c)(f) ◦M(c)−1

The functoriality of the type constructor depends on the symmetry of HomA(o), because M(c) :
A(c)M(o1) −→ M(o2), but the construction requires a map M(c) : M(o2) −→ A(c)M(o1).
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In addition to the judgemental notion of transformation, it would be useful to have a first-
class directed hom type, which could be freely mixed with the other type constructors. There are
several potential solutions to this problem:

One option is to define the hom-types a relation on objects of a type, using the ! type con-
structor discussed above:

Γ ` A type Γ ` M : !A Γ ` N : !A

Γ ` homA M N : set

Transformation at !A is just equality, and it is therefore symmetric even if A is not. This defini-
tion is restrictive, because equations are restricted to elements M that respect transformation on
the context on-the-nose, rather than up to transformation. However, it matches category-theory
practice of defining the Hom-set on the objects of a category.

Another solution is to define the hom-type so that it is explicitly contravariant in M , which
accounts for the symmetry required by functoriality.

Γ ` A type Γ ` M : Aop Γ ` N : A

Γ ` homA M N : set

However, it is unclear what the rules for this type should be—for example, reflexivity and tran-
sitivity do not (obviously) make sense, because it relates two terms of opposite variances.

Both of these types make sense semantically, but it is unclear what the right notion to inte-
grate into the type theory is, or how they related to each other and to the judgemental notion of
transformation.

8.2.7 Universes and Higher-dimensions
Existing proof assistants have a size hierarchy which is used to avoided the paradox of type : type.
Higher-dimensional type theories have an additional axis of dimensionality. These are mostly
orthogonal ideas: there can be small types of high dimension, and large types of low dimension.
However, there are some relationships; for example, the collection of all d-dimensional types of
size l naturally forms a n + 1-dimensional type of size l + 1. For example, the collection of all
sets naturally forms a large category. Exploring this matrix is an important piece of future work,
generalizing 2DTTto ωDTT. Here, we take the first step of situating our present approach in the
hierarchy. For simplicity, we discuss these issues in the symmetric setting.

Current proof assistants such as Agda and NuPRL commit to the fact that all types are sets,
in the above sense of being of dimension one. However, intensional type theories, like Agda,
and extensional type theories, like NuPRL, differ in how they expose this set-hood to the user. In
intensional type theories like Agda, it is through propositional uniqueness of identity proofs. This
can be expressed in many equivalent ways (see Hofmann and Streicher (1998)), one of which is
that all proofs of propositional equality are themselves propositionally equal: for all A, there is a
term of type UIPA, where
UIP A = {x y : A} {p q : Id A x y} � Id (Id A x y) p q

On the other hand, in extensional type theories, set-hood is expressed in two ways: (1) propo-
sitional equalities induce definitional equalities and (2) all proofs of propositional equality are
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definitionally equal:

P : IdA M N
M ≡ N : A

reflect
P : IdA M N

P ≡ reflM : IdA M N
uip-def

Note that the first rule is necessary for type-checking the second.
This raises the question of how these notions of intensional and extensional set-hood gen-

eralize to higher-dimensional type theories. Here, we argue that they arise from two different
interpretations of the definition of an n-groupoid. Consider a general ω-groupoid interpreta-
tion of type theory (Garner, 2009; Lumsdaine, 2009). Semantically, a closed type A denotes an
ω-groupoid. By definition an ω-groupoid is an n-groupoid if, for j > n, every two parallel j-
morphisms are equivalent. This expresses a cut-off condition which says that the structure above
dimension n is trivial.

Intensional n-groupoids arise from transcribing this cut-off condition directly into the type
theory, using propositional equality for equivalence:
DEFINITION 8.2.1: INTENSIONAL n-GROUPOIDS.

1. Intensional Propositions: A is an intensional−1-groupoid ifA is an intensional 0-groupoid
and there is a term of type
(x y : A) -> Id A x y

2. Intensional Sets: A is an intensional 0-groupoid if A is an intensional 1-groupoid and there
is a term of type
(x y : A) (p q : Id A x y) -> Id (Id A x y) p q

3. Intensional Groupoids: A is an intensional 1-groupoid if A is an intensional 2-groupoid
and there is a term of type
(x y : A) (p q : Id A x y) (r s : Id (Id A x y) p q) -> Id r s

4. . . .
5. A is an intensional ω-groupoid
These definitions say that, up to propositional equality, a proposition has only one inhabitant,

a set is discrete, the 2-cells of a groupoid are discrete, etc.
On the other hand, we can ask for the stronger condition that this cut-off condition holds up

to equality, not just equivalence: A is strictly an n-category3 if for all j > n, every j-morphism
is the identity.

Rendering this condition type-theoretically gives the rules of extensional type theory:
DEFINITION 8.2.2: EXTENSIONAL n-GROUPOIDS.

1. Extensional Propositions: A is an extensional −1-groupoid if A is a 0-groupoid and for all
M,N : A, M ≡ N (the set of 0-morphisms from M to N is defined to be the one-element
set). I.e.

M ≡ N : A
reflect

3Note that "strictly" has nothing to do with whether the n-category is strict or weak—whether the identity and
composition laws hold on the nose at each level, or up to higher-dimensional structure—but with whether the cut-off
condition is phrased in terms of equality or equivalence.



8.2. EXTENSIONS 189

2. Extensional Sets: A is an extensional 0-groupoid if A is a 1-groupoid and for all M,N : A
if P : IdA M N then M ≡ N and P ≡ reflM :

P : IdA M N
M ≡ N : A

reflect
P : IdA M N

P ≡ reflM : IdA M N
uip-def

3. Extensional Groupoids: A is an extensional 2-groupoid if A is a 2-groupoid and

R : IdIdA M N P Q

P ≡ Q : IdA M N
reflect

R : IdIdA M N P Q

R ≡ reflP
uip-def

4. . . .
5. A is an extensional ω-groupoid

Note that this definition uses definitional equality—i.e. equality on objects—and is hence
“evil” (not stable under equivalence). In the limit, the intensional and extensional ω-groupoids
are the same—because there is no cutoff-condition.

The usual trade-offs between intensional and extensional type theory apply in the higher-
dimensional case: Extensional groupoids make type checking a term undecidable, because reflect
throws away the equality proof. Additionally, in extensional type theory it is not possible to
implement equality on open-terms by untyped reduction, as in the presence of contradictory
assumptions, all terms are equal, and hence terms that would ordinarily be ill-typed are well-
typed (e.g. int ≡ int × int, so fst 6 is well-typed). This problem can be solved by defining
reduction on ill-typed terms, as in NuPRL’s direct computation (Constable et al., 1986). On the
other hand, the extensional theory is more general, because it can describe both extensional and
intensional groupoids. Intensional type theory restores decidability by forcing one to always
work up to equivalence, never equality. For example, if nat is defined as an intensional set by
the usual inductive definition, then any type family x : nat ` C type has an action mapC (P :
Idnat M N) : C[M ] ∼= C[N ]. In fact, this isomorphism is the identity, but intensional type
theory assumes the worst—that it is an arbitrary isomorphism—and forces the programmer to
push it around a term explicitly—e.g., canceling inverses, or substituting P with another proof
Q. Thus, extensional type theory can be more convenient to use, because coercions by equalities
(as opposed to more general equivalences) are tacit, and thus there is never a need to reason about
them.

OTT (Altenkirch et al., 2007) combines intensional type theory (no equality reflection rule)
with extensional concepts such as proof-irrelevance and functional extensionality, all without
introducing stuck closed terms (a problem simple axiomatic treatments of functional extension-
ality suffer from). It does this by distinguishing a universe of proof-irrelevant propositions prop
from arbitrary sets. Under the present analysis, we see that an OTT proposition is an exten-
sional proposition: all proofs of it are definitionally equal. On the other hand, an OTT set is an
intensional set (intensional 0-groupoid): while all proofs of propositional equality are proposi-
tionally equal (uip-def ), propositional equality does not induce a definitional equality (reflect).
That said, on OTT set is trivially an extensional 1-groupoid, because all proofs of higher dimen-
sional identities are definitionally equal. This corresponds to the original semantic motivation
for OTT (Altenkirch, 1999), as an intensional set that is also an extensional groupoid is exactly
a setoid.
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Adapting this terminology to the directed case, we say that 2DTT has a universe of exten-
sional 1-categories (Γ ` A type), and a universe of extensional 0-categories (Γ ` S : set), and
nothing else. The higher-dimensional and intensional variants are an interesting subject for future
work.

8.3 Related Work
The functorial/monadic approach to abstract syntax was developed by Altenkirch and Reus
(1999); Fiore et al. (1999); Hofmann (1999). 2DTT allows this theory to easily be put into
practice, by providing a language in which it is easy to describe categorical constructions. Addi-
tionally, the signatures available in 2DTT are more general, in that they allow mixing of admis-
sibility and derivability—existing functorial accounts of syntax concentrate only on derivability.
Fiore’s later work (Fiore, 2008) gives a semantics for second-order and dependently typed ab-
stract syntax, though not both at once. To our knowledge, the analysis of the structural properties
of the generic judgement in terms of the Grothendieck construction is novel, or at least has not
been used in type theory. 2DTT will enable us to go beyond LF-based systems (Altenkirch and
Reus, 1999; Pfenning and Schürmann, 1999; Pientka, 2008; Poswolsky and Schürmann, 2008)
by supporting both admissibility and derivability.

Pouillard and Pottier (2010) describe an interface to dependent de Bruijn indices that en-
sures that any function Πψ:ctx.A commutes with bijections on variables. 2DTT improves on
this in several ways: First, we generalize this result to other notions of transformation, including
directed ones: ctx can be chosen to force such a function to respect only equality, bijections, re-
namings, or general substitutions. Second, Pouillard and Pottier (2010)’s representation is some-
what non-standard: contexts are treated as abstract type, and de Bruijn indices are represented
relationally, by defining a relation that means i is the successor of j. This allows naturality at
ctx to be encoded using the naturality of abstract types. In 2DTT, we do not need this encoding.
Third, in Pouillard and Pottier (2010), these naturality properties are not available for reasoning
inside of of the type theory, only in an external relational interpretation. In contrast, 2DTT treats
them as rules of the type theory.



Chapter 9

Conclusion

Any stamp collector will recognize the Inverted Jenny, a 1918 24-cent misprint featuring an
upside-down Curtiss JN-4 airplane. In a sense, the work described in this dissertation is also
upside-down, compared to the textbook dissertation: we begin in Part I with the most practical
work, and get progressively more theoretical in Parts II and III. In Part I, we argued that it is
possible to define, study, automate, and use domain-specific logics within a dependently typed
programming language, by showing how to construct a security-typed language and a semantic
type system for differential privacy. These examples make essential use of both derivability and
admissibility, and the remainder of the thesis describes progress towards putting these two no-
tions of consequence on equal footing, rather than privileging one over the other (derivability in
LF, admissibility in MLTT). In Part II, we described a logical framework that allows derivabil-
ity and admissibility hypothetical judgements to be mixed in novel and interesting ways. The
fact that admissibilities can invalidate the structural properties of derivability was handled by
a collection of ad-hoc tactics that implement the structural properties in many useful cases. In
Part III, we analyzed these tactics as functoriality, and showed that a directed type theory, inspired
by higher category theory, accounts for the structural properties of the generic judgement. Our
investigation into programming with logics prompted two independently interesting technical
contributions, spanning all three points of the Curry-Howard correspondence. The first, higher-
order focusing for intuitionistic logic, is a logical formalism that handles inductive types well,
using an infinitary proof theory. The second, directed type theory, is an exciting and fundamental
generalization of dependent type theory that accounts for asymmetric concepts.

Thus, the real test of this work will be whether we can, in the next several years, bring it
back down to Earth. What is the road map to doing so? The first step is the theoretical work on
directed type theory outlined above:

1. It is paramount to adapt familiar type constructors, such as an inductive datatype mecha-
nism, to the directed case. Inductive types may be handled by giving a directed analogue
of W -types (Nordström et al., 1990) or indexed containers (Altenkirch and Morris, 2009).

2. The analog of symmetric type theory’s quotient types is the notion of an internal category
in directed type theory, which will allow programmers to define their own directed types
by giving a collection of elements and a notion of transformation between them.

3. The concept of the opposite of a category, which ordinarily plays a central role in account-
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ing for variances, is much more subtle in the dependent case than in the non-dependent case
usually considered. A full accounting of variances involves a modality for contravariance
that demands further investigation.

4. Semantically, it is clear that one should be able to internalize the judgement α : M =⇒A N
by a directed-Hom-type HomA(M,N) of transformations between M,N : A, as long as
M is treated as a contravariant position. However, the introduction and elimination rules
for this type require further study.

5. In addition to the admissibility Π, which is contravariant in its domain, there is a covariant
Π-type corresponding the exponential object in the category of presheaves. We have given
operationally plausible rules for this type, but have left the restrictions necessary to avoid
impredicativity to future work. This covariant Π is analogous to parametric polymorphic
quantification, and suggests a semantically motivated way of integrating higher-order ab-
stract syntax into our approach.

6. Semantically, all of symmetric type theory sits inside of directed type theory, as every
groupoid is a category. By exposing this structure in the syntax, we can ensure that directed
type theory provides strictly greater flexibility than traditional type theories.

7. Thus far, we have considered only the two-dimensional case of directed type theory;
higher-dimensional generalizations would admit more sophisticated constructions, which
make use of transformations between transformations.

Once these issues are understood, the next step is implementation. Some issues are familiar
from existing proof assistants. For example, we must outfit directed type theory with practical
necessities like meta-variables and implicit argument reconstruction. Other issues are new: For
example, in the current presentation, we have taken many equations for resp and map to hold
definitionally. These include both the equations defining these constructs for each type and term,
as well as associativity and unit laws. It remains to be seen whether this theory can be effectively
implemented. One approach would be to isolate a decidable notion of definitional equality, and
switch to a presentation that treats equality more like in intensional type theory, at which point we
could prove a decidability result. Another would be to keep the theory in its current extensional
form, and show that the equational theory, though undecidable in general, can be automated
enough to be useful in practice.

To validate this work, we must show that directed type theory improves upon the examples
that we have used for motivation here: For example, we hope to show that we can write down
signatures for BL0 and differential privacy and automatically derive the structural properties from
them; and that we can provide a concrete syntax for derivability that is as convenient as Twelf.
If we can succeed at this endeavor, and successfully integrate the representational power of LF
with the computational power of Martin-Löf type theory, then we will significantly improve on
current technology for programming with domain-specific logics, with broad applications to pro-
gram verification and mechanized metatheory. On the one hand, our work permits computation
to be used in the specification of logical systems, allowing more object-language concepts to
be inherited from the meta-language. On the other, our work makes it easier to program with
domain-specific logics and type systems, transforming more of programming language design
into ordinary programming.
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