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Homotopy [ heory

A branch of topology,

the study of spaces and continuous deformations
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HoMmotopy

Deformation of one path into another

—-— . p
.‘ -“\“

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between

homotopies, ....
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HOMOotopy groups

k' homotopy group
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lype heory

An alternative to set theory, organized around types:

* Basic data types (N, Z, booleans, lists, ...)

% Functions
double : NI N
double 0 =0
double (n +1) = double n + 2

* Unifies sets and logic




Propositions as lypes

1.A proposition is represented by a type
2.A proof is represented by an element of that type

I x: N. double(x) = 2*X,

type of proofs of equality
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Propositions as lypes

1.A proposition is represented by a type
2.A proof is represented by an element of that type

proof : I x: N. double(x) = 2*x

proof O = reflexivity
proof (n +1) = ...

proof by case analysis represented
by a function debPned by cases




Type are sets”

Traditional view:

type theory set theory
<element> : <type> X "S
<elem 1> = <elem 2> X=Y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2




Type are sets”

Traditional view:

type theory set theory
<element> : <type> X "S
<proof> : <elem1>=<elem 2> X=Y

In set theory, an equation is a proposition:
we don’t ask why 1+1=2

In type theory, an equation has a <proof>




Homotopy lype [heory

type theory

category theory homotopy theory




lypes are «-groupolids

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]
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lypes are «-groupoids

type theory set theory
<elem> : <type> X "S
<proof> : <elem 1> =<elem 2> X=Y
<2-proof> . <proof 1> = <proof 2>

<3-proof> . <2-proof 1> = <2-proof >




Homotopy lype [heory

new principles T l new proofs

category theory homotopy theory

type theory




Computer-checked proofs

Type Theory

\\ !
/ Correct!

cnecker
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Synthetic vs Analytic

Synthetic geometry (Euclid)

POSTULATES.

L .
Ler it be granted that a straight line may be drawn from any one
point to any other point.

. II.
That a terminated straight line may be produced to any length in a
straight line.
I

And that a circle may be described from any centre, at any distance
from that centre.

Analytic geometry

(Descartes)
(€2, 92)
d
Y2—W0
(1,1n) T2—x) e

[image from wikipedia]
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Synthetic vs Analytic

Synthetic geometry (Euclid) Analytic geometry

POSTULATES.
L ' (2,y2)
Ler it be granted that a straight line may be drawn from any one
point to any other point.
: 1L
That a terminated straight line may be produced to any length in a d Y2 — Y
straight line,
I
And that a circle may be described from any centre, at any distance )|
from that centre. (Z1,31)  T2— T

Classical homotopy theory Is analytic:
* a space is a set of points equipped with a topology

*a pathisamap [0,1]! X

[image from wikipedia]
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Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem1>=<elem 2>

homotopies <2-proof> : <proof 1> = <proof 2>




Synthetic homotopy theory

homotopy theory type theory
space <type>
points <element> : <type>
paths <proof> : <elem1>=<elem 2>
homotopies <2-proof> : <proof 1> = <proof 2>

A path is not a map [0,1]! X; It Is a basic notion
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Spaces as types

a space is a type A path operations
= " 1d : M =M (refl)
"ol : N=M (sym)

# 0" : M=P (trans)

points are

elements lth
M-A paths are

proofs of equality
" M= aN




Spaces as types

a space is a type A

path operations

) — id : M =M (refl)
"1 ¢ N=M (sym)
# 0" : M=P (trans)
homotopies
1d o " =
points are "-lo " = 1d
elements ‘
A paths are $o0(#o")
| proofs of equality =($0#)o

":M= aN
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Spaces as types

a space Is a type A path operations

1d

: M =M (refl)

"ol : N=M (sym)
# 0" : M=P (trans)

homotopies
.i_d O ] — 1"
points are "-lo " = 1d
elements
M-A paths are $o0(#o0")
| proofs of equality = ($0#) 0"

M= aN
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We can do
computer-checked proofs
INn synthetic homotopy theory

% Proofs are constructive*: can run them

* Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and oo-topol*

* New type-theoretic proofs/methods

*work Iin progress
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Some results

Homotopy Theoretic Type Theoretic

| 1(81)\! 1(SY)

Hopf Pbration /
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Outline

1.mSH =2
2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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3.Connectedness and Freudenthal Suspension
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Higher Inductive types

Circle is Inductively generated by Q
loop
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Higher Inductive types

Circle is inductively generated by
point base : Circle Q loop

path  loop : base = base

base




Higher Inductive types

Circle is inductively generated by

point base : Circle loop loop

path  |loop : base = base “base

=
'.a

Free co-groupoid with these generators
id inv : loop o loop -1 =id
loop 1
loop o loop

20




Higher Inductive types

Circle recursion: Q loop
function Circle ! X determined by

base

|

baseO : X

loopO : baseO = baseO




Higher Inductive types

Circle recursion: Q loop
function Circle ! X determined by

base

baseO : X l
loopO : baseO = baseO | {oopd

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base) ,
continuously in the loop

21
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Debnition. Q(S?) is the space of loops at base
..e. the type (base = base)

Theorem. Q(SY) is equivalent to Z,
by a map that sends o to +

Proof: two mutually inverse functions
winding : "(S Hhtr 7
loop " : zZ!"(S 1
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Fundamental group of circle

Debnition. Q(S?) is the space of loops at base
..e. the type (base = base)

Theorem. Q(SY) is equivalent to Z,
by a map that sends o to +

Proof: two mutually inverse functions
winding : "(S Hhtr 7
loop " : zZ!"(S 1

Corollary: mi(S?Y) is isomorphic to Z
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Fundamental group of circle

Debnition. Q(S?) is the space of loops at base
..e. the type (base = base)

Theorem. Q(SY) is equivalent to Z,
by a map that sends o to +

Proof: two mutually inverse functions
winding : "(S Hhtr 7

loop " :  Z!"(S Y 0-truncation

// (set of connected
_ _ components)
Corollary: m1(SY)Ts isomorphic to Z of Q(S1)
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Fundamental group of circle

Debnition. Q(S?) is the space of loops at base
..e. the type (base = base)

Theorem. Q(SY) is equivalent to Z,
by a map that sends o to +

Proof: two mutually inverse functions
winding : "(S Hhtr 7
loop " : Z'"s 1 0-truncation

// (set of connected
_ _ components)
Corollary: m1(SY)Ts isomorphic to Z of Q(S1)

rk(S?t) trivial otherwise

22




Universal Cover

P S w:"(S H! Z

I, — defined by lifting a loop
R L
q}\ to the cover, and giving
the other endpoint of O
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e w:"(Ss Htr Z

defined by lifting a loop
to the cover, and giving
the other endpoint of O

|

<> g
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lifting Is functorial
ifting loop adds 1
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Universal Cover

base

lifting Is functorial

ifting loop adds 1

lifting loop ~! subtracts 1

w:"(Ss Htr Z

defined by lifting a loop
to the cover, and giving
the other endpoint of O
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Universal Cover

base

lifting Is functorial

ifting loop adds 1

lifting loop ~! subtracts 1

w:"(Ss Htr Z

defined by lifting a loop
to the cover, and giving
the other endpoint of O

Example:
w(loopoloop 1)

=0+1-1

=0
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lifts to a path in E from e !
g ., > st
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Family of types ( E(X) )x:B
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Floration = Family of types

Fibration (classically): T
map p.E ! B suchthat 8 "
any path from p(e) toy \

lifts to a path in E from e

to some point in p~1(y) Cr et g

Family of types ( E(X) )x:B
* Fibers: E(b) s a type for all b:B
* transport: equivalence E(b 1) i E(b2) forall p:b 1=gb:

p(b)

\ sends e " E(x) to other endpoint of lifting of p

24




Universal Cover

family of types  (Cover(x) )x:s1

e

| TSR

i

ks

v I




-

Universal Cover T

U T
b

i

family of types  (Cover(x) )x:s1 Ty gl

base

By circle recursion, it suffices to give
* Fiber over base: Z

* Equivalence Z #* 7 as lifting of loop:
successor

25




-

Universal Cover T

U T
b

i

family of types  (Cover(x) )x:s1 Ty gl

base

By circle recursion, it suffices to give
* Fiber over base: Z

* Equivalence Z # 7 as lifting of loop: uses univalence
successor

25




Universal Cover 8 ]

D

4

family of types  (Cover(x) )x:is1 =~ ———

base

By circle recursion, it suffices to give
* Fiber over base: Z

* Equivalence Z # 7 as lifting of loop: uses univalence
successor

DePning equations:
Cover(base) = Z

transport  cover(lOOp) := successor

25




Winding number == T

< st

base

w:"(s Ht! Z

w(p) = transport Cover(p,0) lift p to cover,
starting at 0




I ' S —
Winding number == .
S

w:"(s Ht! Z

w(p) = transport Cover(p,0) lift p to cover,
starting at 0

w(loop™t o loop)




I ' S
Winding number == .
S

w:"(s Ht! Z -
w(p) = transport cover(p,0) lift p t_o COVer,
starting at 0

w(loopt o loop)
= transportcover(loopt o loop, 0)

26




winding numoer == .
P

W

(S Hr Zz

lift p to cover,

W(p) = transport Cover(p,o) starting at 0

w(loopt o loop)

transportcover(loopt o loop, @)
transportcover(loopt, transportcover(loop,d))

26




winding numoer == .
Cons 2 ool

w:"(s Ht! Z -
w(p) = transport Cover(p,0) lift p to cover,
starting at 0

w(loop! o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

26




winding numoer == .
Cons 2 ool

w:"(s Ht! Z -
w(p) = transport Cover(p,0) lift p to cover,
starting at 0

w(loop! o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

0

26




Fundamental group of the circle
The book

wg olher enandin
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Computer-checked

Cover : 5* « Type
Cover x » Sterec Int (uo succiquiv) x

tronsport-Cover-100p : Path (tronsport Cover loop) suxc
tronsport-Cover-100p =
trensport Cover locp
=( tromaport-op-assoc Cover locp )
trensport (A x « x) (op Cover loop)
«ap (trorsport O x «- X))
ocp/rec Int (o succiquiv)) )
trensport (A x ~ x) (e secciquiv)
“Ctypep
suce .

tronsport-Cover-110cp : Poth (tromaport Cover (I locp)) pred
tronsport-Cover-1100p =
transport Cover (1 loop)
=( tramspoct-op-assoc Cover (I locp)
tresport (A x ~ x) Cop Cover (1 loop))
«C gp (transport O x « x)) C(ap-! Cover loop)
transport (A x « x) (! Cop Cover loop))
“(ep Oy~ tronsport G x - x) (1 y))
Mocp/rec Int (o succlquiv)) ?
trensport (4 x « x) (1 (o secckquiv))
«C ap (trensport (A x « X)) (I-ua swcckquiv)
trensport (A x - x) (uo (leguiv succlauiv))
“ typesp
pred »

encode : [x : S') - Poth bese x - Cover x
ocode ¢ = tromaport Cover ¢ Jero

encode” ! Poth base base - Int
ecode’ s » encode (Base) o

loop* : Int « Poth bese bose
leop* Zero - 14
locpr (Pos One) = locp
leop* (Pos (5 n)) = locp - Yoopr (Pos n)
loop* (Neg One) = | loop
lecpA (Neg (S n)) = | loop « locp* (Neg n)
1 0op* -prese~ves -pred
:(n : It) - Poth (locp® (pred n)) (1 loop - losp* n)
locpr-preserves-prad (Fos Ore) « | (1-taw-1 locg)
locph-praserves-pred (Fos (5 y)) »
I C-amsec (1 Toop) loop (lospr (Fos y)))
(w0 x wnx-) s Y1) Oi-Aow-1 Tomp))
v | i1 Qlaopt o
Loigr -preserves -pred Jero = 14
Limig -preserves -pred () (re) :
Lotpt-praserves-pred Oy 5 30D = ¢

dotode : (n ! 54) < Cover n ~ Poth bose »
decode (») =
3% Anduction

* = Cover x* - Poth base »')

cbatroct <« prevert Agdo from mormolirin
v

tromsport Cover (Qocp - loopr (Pos m)) Zere
= ap= (tromport-- Cover locp (locpr (Poa n))) ?
tronsport  Cover locp
(tronspert Cover (loopr (Pus m)) Zere)
. ap~ traraport-Cover-lo0p }
succ (tronsport Cover (loopt (Pos m)) ZTere)
e (encode Clocpr (Pes n)))
= ap succ (encode-locpr (Pea n)) )
st (Fos a) o
encode-loopt (Meg Ore) = ap= treraport-Covers|loop
encode-looph (Mg (S n)) =
tronsport Cover (1 1009 « loag* (g 1)) Zero
« ap= (troraport— Gover (1 1oop) Cloap* Oleg n))) ?
tronsport Cover (1 1oop) (tremaport Cover Cloop* Oteg n)) Zero)
! gp+ tremaport-Cover-1loop )
prod (tromaport Cover (loopr (Meg 2)) Zers)
= ap pred (encode-locpr (Neg n)) )
prod (Neg &) »

encode-decode 1 (x 1 5*) « (c 1 Cover )
« Poth (encode (decode{x} <)) ¢
mcode-decods {x} = 5% -induction
NGx:$)+ (c: Comrx)
- Poth (encode(x} (decode{x} <)) <)
encode-loopr (= O x' ~ fat (use-level (use-level (use-level MSet-Ist _ ) _ 0))) x

decode-encode @ (x & 5') (o ! Poth base x)
« Poth (Secode (encode o)) »
decode-encode {1} & =
path-induction
G (x' : $1) (" : Poth base x')
-~ Poth (decode (encode o')) &°)
ice

(54 )-Equiv-Int : Equiv (Poth base bose) Im
a5 )-fquiv-Int =
tprove (heguiv encode decode decode-encode encode-10oph)

O[5 )-is-Int : (Poth bose base) = Int
D[54 )-is-Int « uo OS*)-Equiv-let

n(5)is-Int ! x One S* Dase » Int
w52 )-is-Int = UnTrunc.poth _ _ HSet-Int « op (Trunc (1 @) OJS*)-is~Imt

"« Poth bone x') loop locg* « (L & « logg* n)

« Cower 2" . Poth bose x") Yoo lospr
« Cover (Poth bose) Loop loug” >

w Oy « trevaport-futhoright Looe Closer Chravaport Gover (1 Seop) y20) 0

Gp-lop. 9
o loopt
© tromaport Cover (1 loop)

Oy - 0x < loog - Toop* ) (ap= tremport-CoverIloop))

Gp~lop-9)
o locp*
© pred

O ® ~ loop - (heopr (pred m)))

o Oy~ move-lefe- | Seop (loop* y) Clocp*-preserves-pred ¥))

On - lospr n)
0




Outline
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2.The Hopf Pbration

3.Connectedness and Freudenthal Suspension
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The Hopf fibration

The Hopf Pbration

Sl
he Hopf fibration is a fibration with
¥ base S? Y
: S3
¥ fiber St
¥ total space S3 i
S2

The Hopf fibration is a family of circles, parametrized by S® and
whose “union” is S3.
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Picture

©Benot R.

m =y

The Hopf bbration

Kloeckner CC-BY-NC



The Hopf Pbration

The spheres

DePnition

The suspensiorof a spaceA (denoted> A) Is generated by
¥ Two points ns: XA
¥ Foreverya: A,apathma):n=, 4 S

Depnition

S = ¥S"




The Hopf Pbration

Fibrations over S?

A fibration over S? is given by

¥ a space A (over n)
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The Hopf fibration

Fibrations ovef?

A Pbration overS? is given by
e a spaceA (over n)
e a spaceB (over s)

e a Ocircle of equivalencesO betwéeand B (over m)
' afunctione:S'# (A$ B)
I'  for everyx : S, an equivalence, : A$ B
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The Hopf fibration in HoTT

A bbration overS? with bberS! and total spaceS>?



The Hopf fibration

The Hopf Pbration in HOTT

A fibration over S? with fiber St and total space S°7
o S! over n
e S!overs

o for x : S! the equivalence ey . St1 Slis the “rotation of
angle” x



The Hopf Pbration

The Hopf Pbration in HOTT

A bbration overS? with bberS! and total spaceS>?
¥ S over n
¥ St over s

¥ for x : S, the equivalencey, : St! S'is the Orotation of
angleOx

Left to do:
¥ Debne the rotation of angle
¥ Prove that the total space i$°
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We want

Rotations of S

e:St1 (st s

The Hopf fibration



The Hopf Pbration

Rotations ofS?

We want
e:St1 (St st

By definition of St, we need

e an equivalence &y55e: ST " St

e a homotopy €(loop) : €yase = Epase



The Hopf Pbration

Rotations ofS?

We want
e:St1 (st sh

By debnition ofSt, we need
¥ an equivalencéd«: : St " St
¥ a homotopye(loop) : ids1 = idg



The Hopf fibration

Rotations ofSt

We want
e: St — (St~ 5

By dePnition ofS!, we need
e an equivalencédg : S' ~ S
e a homotopye(loop) : ida = idg
e(loop) is the homotopy Oturning once around the circleO

loop

W

base



(S = Z The Hopf fibration

Homotopy turning once around the circle

A homotopyidg =idg <= for everyx : S, a path x = x



The Hopf fibration

Homotopy turning once around the circle

A homotopyid« = ida <= for everyx : S, a pathx = X

We need:

¥ a path
P : base= base

¥ a (2-dimensional) path

q:p'loop= loop'p



1 1(SYHY =2 The Hopf Pbration

Homotopy turning once around the circle

A homotopy idgt = idq <= for every X : St, a path x = X

We need:

e a path
loop : base = base

e a (2-dimensional) path

q : loop ! loop = loop ! loop



The Hopf fibration

Homotopy turning once around the circle

A homotopyid« = idg ' for everyx : St, a pathx = x

We need:

¥ a path
loop : base= base

¥ a (2-dimensional) path

rel31oop_|00p . loop - loop= loop- loop



The Hopf fibration

Total space

We just constructed a fibration with
¥ base S?
¥ fiber S

What is the total space?



The Hopf fibration

Homotopy pushouts

Given a span

yL!t x_£& "7

DebPnition

The homotopy pushout Y ! X Z is the space generated by
¥ Forally:Y,apointl(y): Y!XZ
¥ Forall z: Z, apointr(z): Y! X Z
¥ For all x : X, a path g(x) : [(f(x)) = r(g(x))

The suspension of A is the homotopy pushout of

Y W—



The Hopf Pbration

Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:



The Hopf fibration

Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:

whose total space is S ! S?



The Hopf fibration

Join
DePnition
The join of A and B is the homotopy pushout of




The Hopf fibration

Join
DePnition
The join of A and B is the homotopy pushout of

A< AxB-2-B

AxB

We have
SPxA=1A
(AxB)xC = Ax(BxC)



The Hopf fibration

Total space

St xSt =(1S% xSt
= (S« SY) xSt
= SY % (S xS
=10 sh
= S3



The Hopf Pbration

Total space

Stxst=(1SY% xSt
= (S« SY) xSt
= S” % (SY x SH
=1 (0 sh
= g3

We have the Hopf fibration in homotopy type theory.



The Hopf fibration

Long exact sequence
Long exact sequence of homotopy groups of the Hopf Pbration:

1 4(SY) ——14(S°) 14(S%)

1 5(S! ) ——13(S) ——"13(SH)

1 o(S) ——=12(S) ——=12(S)

1(31) ——11(S) —="11(SH)



The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf fibration:

0 51 ,4(S3) — =1 4(SP)

0=——=13 83)%!3(82)

05— 1,(S’) —=12(S?)

Z5—11(S) —=11(S)



The Hopf fibration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf Pbration:




The Hopf Pbration

Long exact sequence

Long exact sequence of homotopy groups of the Hopf Pbration:




The Hopf Pbration

Homotopy groups

Theorem
We have
772(82) =7
7Tk(52) = 7Tk(§’) for kK > 3
In particular
Theorem

Assumingr3(S°) = Z
m(SP) =7Z



The Hopf Pbration

7'('4(83)

Theorem

There exists a natural number n such that w4(S®)! Z/nZ.



The Hopf Pbration

7T4(83)

neorem
nere exists a natural number n such tha(S%) ! Z/nZ.

e Classical mathematics: cannot compute unless the proof Is
nice enough



The Hopf Pbration

Theorem

There exists a natural number n such that ! 4(S3) ! Z/ nZ.

¥ Classical mathematics: cannot compute unless the proof is
nice enough

¥ Constructive mathematics: disallow the axiom of choice and
excluded middle=" every proof is nice enough



The Hopf Pbration

Theorem

There exists a natural number n such that ! 4(S°) ~ ZI nZ.

e (Classical mathematics: cannot compute n, unless the proof is
nice enough

e Constructive mathematics: disallow the axiom of choice and
excluded middle = every proof is nice enough

In this case we can compute the value of n and get 2’

| .
“work in progress



Outline

1.mSH =2
2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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Part III: Freudenthal and friends

1. Truncatedness

2. Connectedness

3. Freudenthal Suspension Theorem

1/16



Truncatedness

DePnition
A type X is n-truncated (or an n-type) if, by induction on
n> —2:

' n= —2:1f X Is contractible, i.e. X ~ 1,

' n> —2: if each path space(x = x x') of X is
(n — 1)-truncated.

Proposition

Suppose X Is n-truncated, forr —1. Thenm (X, Xg) ~ 1, for all
kK> nandX : X.

[In Top and SSet, the converse holds; but not in all classical
settings, cf. WhiteheadOs theorem and hypercompleteness.]
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Truncations

Definition

For any type X, and n!" 1, the n-truncation mX is the higher
inductive type generated by:

' for X : X, an element [X|, : ThX;
' forf: S"™l# X, and t: S™, a path f(t) = f(0).

Proposition

X IS the free n-truncated type on X: any X # Y, with Y
n-truncated, factors uniquely through, X.

[Classically: iteratively glue cells on to X to kill homotopy in
dimensions > n.]
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Connectedness (of types)

Definition

X is n-connected if !, 1 X is contractible.

Proposition

TFAE:
» X is n-connected;

> every map from X to an n-type is constant;
> (whenn > 0)" (X, x9) ~ 1, forallk < nand xy : X.

Connectedness (trivial low homotopy groups) is dual to
truncatedness (trivial high homotopy groups).
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Connectedness (of maps)
Definition

f: Al Bisn-connected if each (homotopy) fiber f' 1(b) is
n-connected. (Warning: indexing conventions vary by * 1.)

Proposition

TFAE:
' f is n-connected;
' f 1s weakly (or strongly) orthogonal to maps with n-truncated

fibers;
A—i
A
(n-conn) f J" (!)". J"p (n-trunc)
B— !X

' f is equivalent to the inclusion of A into some extension by cells
of dimensions > n.
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Additivity of connectedness

Lemma (Wedge-product connectedness)

Suppos&X, Xg) is i-connected(Y, Yo) is ]-connected. Then the
inclusion X1 Y .+ X x Yis (i + j)-connected.

1-cell Y 2-cell

Yo

1-cell
X0 X

Type-theoretically: to define a function of two variables f (X, y)
into an (i 4 j)-type, enough to define in the cases f (X, y) and
f(X,Yo0), agreeing in the case f(Xo, Yo).

6/16



Freudenthal

Detinition

Recall: the suspension ! X is generated by
» N,S: ! X;
» foreach x: X,apathm(x) : N =, x S.

Theorem (Freudenthal Suspension Theorem)

Supposé€X, Xp) Is h-connected. Then the canonical map
X1 " (1X,N) is2n-connected.

A Idea: want X I " (I X, N) to be an equivalence.
Generally (e.g. for ! St " &%) it isn’t; but within
X a certain dimension range, it is.

Important application: stable homotopy groups
of spheres.

7/ 16



Proof: weak Freudenthal

For now, prove a weaker statement. (Same approach, with
more work, yields full FST.)

Theorem (Weak Freudenthal)

Suppos&X, Xp) is n-connected. Then the canonical map
on(X) 1 15,02(2X, N) is an equivalence.

Proof.

Heuristic: to prove a result of the form X " Q2(Y,Yo), generalise
X to a dependent type Xy overy : Y, with Xy, # X, and prove

Xy" (Yo=yYy)forally:Y.

So: debne typeX, depending on y : ¥X, and maps
my: Xy ! !2,(N =), using universal property of :X.

8/16



Weak Freudenthal, cont’d

Proof.
To give Ry, my for ally : ! X, need:

| types and maps Wy : Xy — mn(N = N), and
Mg - %S — TZn(N = S),

| transport equivalences transportym(x;): Xy — Xs, for
each X; : X, commuting with @y, ®s.

over N: my := mon(X — m(X) o m(Xg) ™) : mn(X) = mn(N = N)

and over m(X), need to define for each X; : X the action
transportg (M(x), —) : By — Xs.

9/16



Weak Freudenthal, contOd

Proof.

... transport over m(x1): need to give, for each x; : X and
Z: RN = 1on(X), some element of R = 1 5,(X).

Since RHS Is &-truncated, may assume z is of form [X»], some
X2 . X. Also, by wedge-product connectedness lemma, enough
to assume one ofXy, X2 IS Xg. S0: whenXx; = Xp, return [X»].
When X2 = X, return [x;1]. (Check: when x; = X2 = Xg, these
agree)

(Roughly: debning a multiplication X! I5,(X) " I2,(X), with
Xp as a two-sided unit.)

So: havem, : R, " (N = y),forall y: ¥X.

Debne conversen, : (N = y) " X, by ny(p) := transportg[xo]-
Not hard to prove m, @ mutually inverse; so, each my Is an

equivalence, as desired.




Consequences

From (weak) Freudenthal, immediately have:

Corollary (Homotopy groups of spheres stabilise)
! n+k(Sn) ' I n+1+k(8n+1),f01’ n ! k + 2
In particular,

Corollary
1 (ST Z, foralln" 1

' n = 1. by universal cover.
' n= 2. by LES of Hopf Pbration.
' n" 2: by stabilisation.
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(S") iIn HOTT

k" homotopy group

n-dimensional sphere

% 2% 9| %] 2 2| %
o
o
o

m n2 n3 g L1 Mg ny g o M1 m2 m3 M4 M5
L o 0 0 0 0 0 0 0 0 0 0 0 0
sl z 0 0 0 0 0 0 0 0 0 0 0 0

[Image from wikipedia]
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Vlore results




James construction

RePnement of Freudenthal: describes! (" X) precisely, via a
Pltration.

Theorem
Suppos&X, Xp) is n-connected, for h 0. There is a sequence

1 =X —>3(X)—>K(X) —= LX) — > 444

with the maps having respective connectivit(eS' 1),2n, (3n+ 1),
, and such that;J = jm X $! (" X).

Conceptually, J (X) is the free monoid on X; asX is connected,
this is the free group on X.

12/16



BlakersbMassey

Generalization of Freudenthal: describes path spaces in
pushouts.

Theorem (BlakersbMassey theorem)

Suppose given mapsd as below, with f I-connected, g ]-connected.

y ALY

f inr
|

. \l
X "% Y

Then for all x: X,y : Y, the canonical map,4, — (inl X =inry) is
(i + j)-connected.
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van Kampen

Another tool for pushouts of types:

Theorem (van Kampen theorem)

For any pointed mapsfZ — Xandg: Z — Y, with Z O-connected,
the fundamental group of the pushout of f and g is the amalgamated
free product (pushout of groups)of(X) andm(Y) overm(Z):

7T1(X L~ Y) A 7T1(X) 1 1(2) 7T1(Y).

Can also be generalised to non-connected Z.
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Covering spaces

The (beautiful) classical theory of covering spaces transfers
straightforwardly. In particular:

Definition

A covering space of a connected type X is a dependent family
of O-types over X.

Theorem
Covering spaces of X correspond to sets with an actibrn(f).
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Eilenberg—Mac Lane spaces; cohomology

Eilenberg—Mac Lane spaces of Abelian groups can be
constructed as HIT’s:

Theorem

For any (n-truncated) Abelian group G and natural numbeprn0,
there is a type KG, n) such that! ,(K(G,n)) ! G, and
I (K(G,n)) ! 1fork*=n.

These (and other spectra) can be used to define cohomology of
types.
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Conclusion




We can do
computer-checked proofs
IN synthetic homotopy theory




January 14, 2013

1 1(SH=Z
I k<n (Sn) =0




April 11, 2013

1 1(SY) =7 Freudenthal Van Kampen

l k<n(S") =0 I h(S") =Z Covering spaces
Hopf fibration K(G,n) Whitehead

1 2(S?) =Z Cohomology for n-types
M3(S?) = 7 axioms

James Blakers-Massey

Construction
T[4(33) =/
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