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A branch of topology,
the study of spaces and continuous deformations
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Deformation of one path into another

[image from wikipedia]
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q

= 2-dimensional path between paths

Homotopy theory  is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 
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Type Theory
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Basic data types (ℕ, ℤ, booleans, lists, …)

Functions 

Unifies sets and logic

double : ℕ ! ℕ
double 0 = 0
double (n +1) = double n + 2 

An alternative to set theory, organized around types:
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1.A proposition is represented by a type

2.A proof is represented by an element of that type

 ! x:  ℕ. double(x) = 2*x

type  of proofs of equality
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Propositions as Types

6

1.A proposition is represented by a type

2.A proof is represented by an element of that type

 ! x:  ℕ. double(x) = 2*xproof :

proof 0 = reflexivity
proof (n +1) = ... 

proof by case analysis represented 
by a function deÞned by cases



Type are sets?
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type theory                                
<element> : <type> x "  S

<elem 1> = <elem 2> x = y

In set theory, an equation is a proposition :
we don’t ask why 1+1=2

Traditional view:   

  set theory
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type theory                                
<element> : <type> x "  S

<elem 1> = <elem 2> x = y

In set theory, an equation is a proposition :
we don’t ask why 1+1=2

Traditional view:   

In type theory, an equation has a <proof>  

  set theory

<proof>  : 



category theory homotopy theory

type theory

Homotopy Type Theory
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Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]
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type theory                                
<elem> : <type> x "  S

<elem 1> = <elem 2> x = y

  set theory

<proof>  :  
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type theory                                
<elem> : <type> x "  S

<elem 1> = <elem 2> x = y

  set theory

<proof>  :  

<proof 1> = <proof 2><2-proof>  : 

<2-proof 1> = <2-proof 2><3-proof>  :  
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type theory                                
<elem> : <type> x "  S

<elem 1> = <elem 2> x = y

  set theory

<proof>  :  

<proof 1> = <proof 2><2-proof>  : 

...

<2-proof 1> = <2-proof 2><3-proof>  :  
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type theory
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new proofsnew principles
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Proof
checker

Correct!

Incorrect

Homotopy 
Type Theory

Computer-checked proofs

Your proof
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology

a path is a map [0,1] !  X



Synthetic homotopy theory
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type theory                                

<element> : <type>

<elem 1> = <elem 2>

  homotopy theory

<proof>  : 

<proof 1> = <proof 2><2-proof>  : 

...

points
paths

homotopies

...

space <type>



Synthetic homotopy theory
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type theory                                

<element> : <type>

<elem 1> = <elem 2>

  homotopy theory

<proof>  : 

<proof 1> = <proof 2><2-proof>  : 

...

points
paths

homotopies

...

space <type>

A path is not  a map [0,1]! X; it is a basic notion
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M
N

"id
"

points are 
elements

M:A

a space is a type A

paths are
proofs of equality

"  : M = A N

path operations

id    : M = M (refl)
" -1     : N = M  (sym)-1
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P

#

id
"

points are 
elements

M:A

a space is a type A

paths are
proofs of equality

"  : M = A N

path operations

id    : M = M (refl)
" -1     : N = M  (sym)
# o "  : M = P (trans)

-1
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M
N

"

P

#

id
"

points are 
elements

M:A

a space is a type A

paths are
proofs of equality

"  : M = A N

path operations

id    : M = M (refl)
" -1     : N = M  (sym)
# o "  : M = P (trans)

-1

homotopies
id o "  = "

" -1 o "  = id
$ o (# o " ) 
   = ($ o #) o "  
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points are 
elements

M:A

a space is a type A

paths are
proofs of equality

"  : M = A N

path operations

id    : M = M (refl)
" -1     : N = M  (sym)
# o "  : M = P (trans)

homotopies
id o "  = "

" -1 o "  = id
$ o (# o " ) 
   = ($ o #) o "  



16

We can do
computer-checked proofs
in synthetic  homotopy theory



16

We can do
computer-checked proofs
in synthetic  homotopy theory

Proofs are constructive*: can run them



16

We can do
computer-checked proofs
in synthetic  homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*



16

We can do
computer-checked proofs
in synthetic  homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods



16

We can do
computer-checked proofs
in synthetic  homotopy theory

Proofs are constructive*: can run them

Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*

New type-theoretic proofs/methods

*work in progress
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! 1(S1)

! 2(S2)
Hopf Þbration
& ! 2(S2)

! n(Sn)

Freudenthal

Homotopy Theoretic Type Theoretic

! 1(S1)

! n(Sn)
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1.! 1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension
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Higher inductive types
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Circle is inductively  generated  by 

base : Circle
loop : base = base

loop

base

Free ∞-groupoid with these generators

idloop-1
point

path

inv : loop o loop -1 = idid

loop -1

loop o loop

...
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Circle recursion:
  function Circle ! X  determined by

baseÕ : X
loopÕ : baseÕ = baseÕ 

loop

base

loopÕ
baseÕ



Higher inductive types

21

Circle recursion:
  function Circle ! X  determined by

baseÕ : X
loopÕ : baseÕ = baseÕ 

Circle induction:  To prove a predicate P for all points 
on the circle, suffices to prove P(base) ,
continuously in the loop

loop

base

loopÕ
baseÕ
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Fundamental group of circle
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Corollary: π1(S1) is isomorphic to ℤ
                

DeÞnition. Ω(S1) is the space of loops at base
                   i.e. the type (base = base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +
Proof: two mutually inverse functions

winding : "(S 1) ! ℤ
loop n   : ℤ ! "(S 1) 0-truncation

(set of connected 
components)
of Ω(S1)

πk(S1) trivial otherwise
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Universal Cover

23

w : "(S 1) ! ℤ
defined by lifting  a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1

lifting loop -1 subtracts 1

Example:
    w(loop o loop -1)
= 0 + 1 - 1
= 0

lifting is functorial
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Fibration = Family of types

24

Fibration (classically):
 map p: E !  B  such that
 any path from p(e)  to y
 lifts to a path in E from e
 to some point in p-1(y)

Family of types  ( E(x) )x:B
Fibers: E(b)  is a type for all b:B

transport: equivalence E(b 1) ! E(b 2) for all p:b 1=Bb2

p-1(b)

sends e "  E(x) to other endpoint of lifting of p

#
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family of types (Cover(x) )x:S1

Fiber over base: ℤ

Equivalence ℤ  !  ℤ as lifting of loop:
successor

#

By circle recursion, it suffices to give



Universal Cover
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family of types

uses univalence

(Cover(x) )x:S1

Fiber over base: ℤ

Equivalence ℤ  !  ℤ as lifting of loop:
successor

#

By circle recursion, it suffices to give



Universal Cover
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family of types

Cover(base) := ℤ
transport Cover(loop) := successor

uses univalence

(Cover(x) )x:S1

Fiber over base: ℤ

Equivalence ℤ  !  ℤ as lifting of loop:
successor

#

By circle recursion, it suffices to give

DeÞning equations:
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w : "(S 1) ! ℤ
w(p) = transport Cover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))



Winding number

26

w : "(S 1) ! ℤ
w(p) = transport Cover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)



Winding number
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w : "(S 1) ! ℤ
w(p) = transport Cover(p,0)

    w(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0
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The book Computer-checked

Fundamental group of the circle
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1.π1(S1) = ℤ 

2.The Hopf Þbration

3.Connectedness and Freudenthal Suspension
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The Hopf fibration

The Hopf Þbrationis a Þbration with

¥ baseS2

¥ ÞberS1

¥ total spaceS3

S1!"

�!
S3

�!�!
S2

The Hopf Þbration is a family of circles, parametrized byS2 and
whose ÒunionÓ isS3.
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The Hopf Þbration

The Hopf fibration is a fibration with

¥ base S2

¥ fiber S1

¥ total space S3

S1
� �

��

S3

����

S2

The Hopf fibration is a family of circles, parametrized by S2
and

whose “union” is S3
.
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Picture

c�Beno”t R. Kloeckner CC-BY-NC



! 1(S1) = Z The Hopf Þbration

The spheres

DeÞnition
The suspensionof a spaceA (denotedΣA) is generated by

¥ Two points n, s : ΣA
¥ For everya : A, a path m(a) : n =! A s

DeÞnition

Sn+1 := ΣSn

•n

•s

A

ΣA
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Fibrations over S2

A fibration over S2 is given by
¥ a space A (over n)

¥ a space B (over s)
¥ a “circle of equivalences” between A and B (over m)

!" a function e : S1 # (A $ B)
!" for every x : S1, an equivalence ex : A $ B



! 1(S1) = Z The Hopf Þbration

Fibrations overS2

A fibration over S2 is given by
¥ a space A (over n)
¥ a space B (over s)

¥ a “circle of equivalences” between A and B (over m)
!" a function e : S1 # (A $ B)
!" for every x : S1, an equivalence ex : A $ B



π1(S1) = Z The Hopf fibration

Fibrations overS2

A Þbration overS2 is given by

• a spaceA (over n)

• a spaceB (over s)

• a Òcircle of equivalencesÓ betweenA and B (over m)
!" a function e : S1 # (A $ B)
!" for everyx : S1, an equivalenceex : A $ B
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The Hopf fibration in HoTT

A Þbration overS2 with ÞberS1 and total spaceS3?

• S1 over n

• S1 over s

• for x : S1, the equivalenceex : S1 ! S1 is the Òrotation of
angleÓx

Left to do:

• DeÞne the rotation of anglex
• Prove that the total space isS3
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The Hopf Þbration in HoTT

A fibration over S2 with fiber S1 and total space S3?
• S1 over n
• S1 over s
• for x : S1, the equivalence ex : S1 ! S1 is the “rotation of

angle” x

Left to do:
• Define the rotation of angle x
• Prove that the total space is S3
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The Hopf Þbration in HoTT

A Þbration overS2 with ÞberS1 and total spaceS3?

¥ S1 over n

¥ S1 over s

¥ for x : S1, the equivalenceex : S1 ! S1 is the Òrotation of
angleÓx

Left to do:

¥ DeÞne the rotation of anglex
¥ Prove that the total space isS3
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Rotations of S1

We want
e : S1 ! (S1 " S1)

By definition of S1, we need
• an equivalence ebase : S1 " S1

• a homotopy e(loop) : ebase = ebase

e(loop) is the homotopy “turning once around the circle”.

•
base

loop
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Rotations ofS1

We want
e : S1 ! (S1 " S1)

By deÞnition ofS1, we need

¥ an equivalenceidS1 : S1 " S1

¥ a homotopye(loop) : idS1 = idS1

e(loop) is the homotopy Òturning once around the circleÓ.

•
base

loop



! 1(S
1) = Z The Hopf fibration

Rotations ofS1

We want
e : S1 → (S1 � S1)

By deÞnition ofS1, we need

• an equivalenceidS1 : S1 � S1

• a homotopye(loop) : idS1 = idS1

e(loop) is the homotopy Òturning once around the circleÓ.

¥
base

loop
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Homotopy turning once around the circle

A homotopy idS1 = idS1 ⇐⇒ for everyx : S1, a path x = x

We need:

• a path
p : base= base

• a (2-dimensional) path

q : p ! loop= loop ! p
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Homotopy turning once around the circle

A homotopy idS1 = idS1 ⇐⇒ for every x : S1, a path x = x

We need:
• a path

loop : base = base
• a (2-dimensional) path

q : loop ! loop = loop ! loop



π1(S
1) = Z The Hopf fibration

Homotopy turning once around the circle

A homotopyidS1 = idS1 !" for everyx : S1, a path x = x

We need:

¥ a path
loop : base= base

¥ a (2-dimensional) path

reß
loop�loop

: loop � loop = loop � loop



! 1(S1) = Z The Hopf fibration

Total space

We just constructed a fibration with
¥ base S2

¥ fiber S1

What is the total space?



! 1(S1) = Z The Hopf fibration

Homotopy pushouts
Given a span

Y Xf!! g ""Z

DeÞnition
The homotopy pushout Y ! X Z is the space generated by

¥ For all y : Y , a point l(y ) : Y ! X Z
¥ For all z : Z , a point r(z) : Y ! X Z
¥ For all x : X , a path g(x ) : l(f (x )) = r(g(x ))

The suspension of A is the homotopy pushout of

1 A!! ""1
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Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:

S1 S1 ! S1e�� p2 �� S1

This span is equivalent to the following:

S1 S1 ! S1p1�� p2 �� S1

whose total space is S1 � S1
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Total space

By gluing/descent/flattening, the total space is the homotopy
pushout of:

S1 S1 ! S1e�� p2 �� S1

This span is equivalent to the following:

S1 S1 ! S1
p1�� p2 �� S1

whose total space is S1 ! S1
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Join
DeÞnition
The join of A and B is the homotopy pushout of

A A × B
p1�� p2 �� B

A
B

A ! B

We have
S0 ! A = ΣA

(A ! B) ! C = A ! (B ! C)
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Join
DeÞnition
The join of A and B is the homotopy pushout of

A A × B
p1�� p2 �� B

A
B

A � B

We have

S0 � A = ! A

(A � B) � C = A � (B � C)



! 1(S1) = Z The Hopf fibration

Total space

S1 � S1 = ( ! S0) � S1

= ( S0 � S0) � S1

= S0 � (S0 � S1)

= ! (! S1)

= S3

We have the Hopf Þbration in homotopy type theory.
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Total space

S1 � S1 = ( ! S0) � S1

= ( S0 � S0) � S1

= S0 � (S0 � S1)

= ! (! S1)

= S3

We have the Hopf fibration in homotopy type theory.
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Long exact sequence
Long exact sequence of homotopy groups of the Hopf Þbration:

...

!�
! 4(S1) "� ! 4(S3) "� ! 4(S2)

!�
! 3(S1) "� ! 3(S3) "� ! 3(S2)

!�
! 2(S1) "� ! 2(S3) "� ! 2(S2)

!�
! 1(S1) "� ! 1(S3) "� ! 1(S2)
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Long exact sequence of homotopy groups of the Hopf fibration:

.

.

.

��
0 �� ! 4(S3) �� ! 4(S2)

��
0 �� ! 3(S3) �� ! 3(S2)
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0 �� ! 2(S3) �� ! 2(S2)

��Z �� ! 1(S3) �� ! 1(S2)



! 1(S1) = Z The Hopf fibration

Long exact sequence
Long exact sequence of homotopy groups of the Hopf Þbration:

...

�!0 �"! 4(S3) �"! 4(S2)

�!0 �"! 3(S3) �"! 3(S2)

�!0 �"0 �"! 2(S2)

�!Z �"0 �"0



! 1(S1) = Z The Hopf Þbration

Long exact sequence
Long exact sequence of homotopy groups of the Hopf Þbration:

...

!�0 "� π4(S3) ∼ "� π4(S2)

!�0 "� π3(S3) ∼ "� π3(S2)

!�0 "� 0 "� π2(S2)
∼

!�Z "� 0 "� 0



π1(S1) = Z The Hopf Þbration

Homotopy groups

Theorem
We have

π2(S2) = Z

πk (S2) = πk (S3) for k ≥ 3

In particular

Theorem
Assumingπ3(S3) = Z

π3(S2) = Z
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π4(S3)

Theorem
There exists a natural number n such that π4(S3) ! Z/nZ.

• Classical mathematics: cannot compute n, unless the proof is
nice enough

• Constructive mathematics: disallow the axiom of choice and
excluded middle =" every proof is nice enough

In this case we can compute the value of n and get 2∗

∗work in progress
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There exists a natural number n such thatπ4(S3) ! Z/ nZ.
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excluded middle=" every proof is nice enough

In this case we can compute the value ofn and get 2!

! work in progress



! 1(S
1) = Z The Hopf Þbration

! 4(S3)

Theorem
There exists a natural number n such that ! 4(S3) � Z/ nZ.

• Classical mathematics: cannot compute n, unless the proof is
nice enough

• Constructive mathematics: disallow the axiom of choice and
excluded middle =⇒ every proof is nice enough

In this case we can compute the value of n and get 2!

! work in progress
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1.π1(S1) = ℤ 

2.The Hopf fibration

3.Connectedness and Freudenthal Suspension



Part III: Freudenthal and friends

1. Truncatedness

2. Connectedness

3. Freudenthal Suspension Theorem

4. Further results
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Truncatedness

DeÞnition

A type X is n-truncated (or an n-type) if, by induction on
n ≥ −2:

! n = −2: if X is contractible, i.e. X � 1;
! n > −2 : if each path space(x = X x!) of X is

(n − 1)-truncated.

Proposition

Suppose X is n-truncated, for n≥ −1. Thenπk(X, x0) � 1, for all
k > n and x0 : X.

[In Top and SSet, the converse holds; but not in all classical
settings, cf. WhiteheadÕs theorem and hypercompleteness.]
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Truncations

Definition
For any type X, and n ! " 1, the n-truncation τnX is the higher
inductive type generated by:

! for x : X, an element [x]n : τnX;
! for f : Sn+1 # τnX, and t : Sn+1, a path f (t) = f (0).

Proposition

τnX is the free n-truncated type on X: any f: X # Y, with Y
n-truncated, factors uniquely throughτnX.

[Classically: iteratively glue cells on to X to kill homotopy in
dimensions > n.]
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Connectedness (of types)

Definition
X is n-connected if ! n+1X is contractible.

Proposition

TFAE:
� X is n-connected;
� every map from X to an n-type is constant;
� (when n ≥ 0) " k(X, x0) � 1, for all k ≤ n and x0 : X.

Connectedness (trivial low homotopy groups) is dual to
truncatedness (trivial high homotopy groups).
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Connectedness (of maps)
Definition
f : A ! B is n-connected if each (homotopy) fiber f ! 1(b) is
n-connected. (Warning: indexing conventions vary by ± 1.)

Proposition

TFAE:
! f is n-connected;
! f is weakly (or strongly) orthogonal to maps with n-truncated

fibers;
A !�

(n-conn) f
"�

Y

p (n-trunc)
"�

B !�

" (!)

#�

X
! f is equivalent to the inclusion of A into some extension by cells

of dimensions > n.
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Additivity of connectedness

Lemma (Wedge-product connectedness)

Suppose(X, x0) is i-connected,(Y, y0) is j-connected. Then the
inclusion X�1 Y !→ X × Y is (i + j)-connected.

y0
1-cell

x0

1-cell
!→ Y

X

2-cell

Type-theoretically: to define a function of two variables f (x, y)
into an (i + j)-type, enough to define in the cases f (x0, y) and
f (x, y0), agreeing in the case f (x0, y0).
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Freudenthal
Definition
Recall: the suspension ! X is generated by

� N, S : ! X;
� for each x : X, a path m(x) : N = ! X S.

Theorem (Freudenthal Suspension Theorem)

Suppose(X, x0) is n-connected. Then the canonical map
X ! " (! X, N) is 2n-connected.

N

X

S

Idea: want X ! " (! X, N) to be an equivalence.
Generally (e.g. for ! S1 " S2) it isn’t; but within
a certain dimension range, it is.

Important application: stable homotopy groups
of spheres.
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Proof: weak Freudenthal

For now, prove a weaker statement. (Same approach, with
more work, yields full FST.)

Theorem (Weak Freudenthal)

Suppose(X, x0) is n-connected. Then the canonical map
! 2n(X) ! ! 2nΩ(ΣX, N) is an equivalence.

Proof.

Heuristic: to prove a result of the form X " Ω(Y, y0), generalise
X to a dependent type X̄y over y : Y, with X̄y0 # X, and prove
X̄y " (y0 =Y y) for all y : Y.

So: deÞne typeX̄y depending on y : ΣX, and maps
m̄y : X̄y ! ! 2n(N = y), using universal property of ΣX.
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Weak Freudenthal, cont’d

Proof.
To give øXy, ømy for all y : ! X, need:

! types and maps ømN : øXN → τ2n(N = N), and
ømS : øXS → τ2n(N = S);

! transport equivalences transportX̄m(x1) : øXN → øXS, for
each x1 : X, commuting with ømN , ømS.

over S: ømS := τ2n(m) : τ2n(X) → τ2n(N = S)

over N : ømN := τ2n(x �→ m(x) ◦ m(x0)−1) : τ2n(X) → τ2n(N = N)

and over m(x), need to define for each x1 : X the action
transportX̄(m(x),−) : øXN → øXS.
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Weak Freudenthal, contÕd

Proof.

. . . transport over m(x1): need to give, for each x1 : X and
z : øXN = ! 2n(X), some element of øXS = ! 2n(X).

Since RHS is 2n-truncated, may assume z is of form [x2], some
x2 : X. Also, by wedge-product connectedness lemma, enough
to assume one ofx1, x2 is x0. So: whenx1 = x0, return [x2].
When x2 = x0, return [x1]. (Check: when x1 = x2 = x0, these
agree)

(Roughly: deÞning a multiplication X ! ! 2n(X) " ! 2n(X), with
x0 as a two-sided unit.)

So: have ømy : øXy " (N = y), for all y : ΣX.

DeÞne converseøny : (N = y) " øXy by ny(p) := transportøX[x0].
Not hard to prove øm, øn mutually inverse; so, each ømy is an
equivalence, as desired.
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Consequences
From (weak) Freudenthal, immediately have:

Corollary (Homotopy groups of spheres stabilise)

! n+k(Sn) ! ! n+1+k(Sn+1), for n " k + 2.

In particular,

Corollary

! n(Sn) ! Z, for all n " 1.

Proof.

! n = 1: by universal cover.
! n = 2: by LES of Hopf Þbration.
! n " 2: by stabilisation.
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76

kth homotopy group

n-
d

im
en

si
on

al
 s

p
he

re

[image from wikipedia]



More results

77



James construction

ReÞnement of Freudenthal: describes! (" X) precisely, via a
Þltration.

Theorem

Suppose(X, x0) is n-connected, for n! 0. There is a sequence

1 �� X �� J2(X) �� J3(X) �� J4(X) �� á á á

with the maps having respective connectivities(n " 1), 2n, (3n + 1),
. . . , and such that J! (X) := lim"# n

Xn $ ! (" X).

Conceptually, J! (X) is the free monoid on X; asX is connected,
this is the free group on X.
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BlakersÐMassey

Generalization of Freudenthal: describes path spaces in
pushouts.

Theorem (BlakersÐMassey theorem)

Suppose given maps f, g as below, with f i-connected, g j-connected.

Z

f
!�

g "� Y

inr
!�

X inl "� X �Z Y

Then for all x: X, y : Y, the canonical map Zx,y → (inl x = inr y) is
(i + j)-connected.
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van Kampen

Another tool for pushouts of types:

Theorem (van Kampen theorem)

For any pointed maps f: Z → X and g : Z → Y, with Z 0-connected,
the fundamental group of the pushout of f and g is the amalgamated
free product (pushout of groups) ofπ1(X) andπ1(Y) overπ1(Z):

π1(X �Z Y) � π1(X) ∗! 1(Z) π1(Y).

Can also be generalised to non-connected Z.
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Covering spaces

The (beautiful) classical theory of covering spaces transfers
straightforwardly. In particular:

Definition
A covering space of a connected type X is a dependent family
of 0-types over X.

Theorem
Covering spaces of X correspond to sets with an action of! 1(X).
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Eilenberg–Mac Lane spaces; cohomology

Eilenberg–Mac Lane spaces of Abelian groups can be

constructed as HIT’s:

Theorem

For any (n-truncated) Abelian group G and natural number n> 0,
there is a type K(G, n) such that! n(K(G, n)) ! G, and
! n(K(G, n)) ! 1 for k "= n.

These (and other spectra) can be used to define cohomology of

types.
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We can do
computer-checked proofs
in synthetic  homotopy theory
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! 1(S1) = ℤ

! k<n(Sn) = 0
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! 1(S1) = ℤ

! k<n(Sn) = 0

! 2(S2) = ℤ 

Hopf fibration

π3(S2) = ℤ 

! n(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms


