Proving Meta-theorems with Twelf

Dan Licata
drl@cs.cmu.edu

***************D RA FT***************

February 8th, 2006

Notes to proofreaders:

¢ | haven't had time to do many of the adequacy proofs yet. If you knewwady of streamlining these,
I'd love to hear it. | wonder if moving to a Kevin-style presentation would Pelp

e The theorem in Appendix A stating that equivalent worlds have the samaicahforms is true (in
the sense that | wrote out the proof on paper, but | haven't had ach#o type it up yet). | haven't
seen this written up anywhere, so please let me know if it exists.

These notes are a rough draft; please alert me to any errors or omissions

1 Introduction

1.1 Motivation

Raise your hand if you have ever seen one of these phrases in echegeper:
e “The proof proceeds by a straightforward structural induction on teegremise.”
e “The remaining cases are similar.”
e “For brevity, we elide the proof, which can be found in our companionrteeth report.”

When | read one of these phrases, it makes me a little worried. How straightftbis it? Did they really
do that other case? | don't usually worry enough to go and look at therégort, though.

But, when Iwrite one of these phrases, that’s when | really worry. Fortunately, | daiité these phrases
very often. Instead, | mechanize the meta-theory of the programming lgeguaesign in my day-to-day
research, and, in particular, | do it in Twelf [1, 16].

I’m not going to go to great lengths to sell you on mechanized metatheoey-traany people have
made that case (e.g., the organizers of the POPLmark Challenge [5]hot'even really going to try and
sell you on Twelf here, except by example. This guide is intended to betartgnt that | can point someone
towards and say, “this explains how | use Twelf in my research; giveetd and see if you think it will
be useful to you.” | presume no prior knowledge of LF or Twelf, thofmyhiliarity with the simply-typed
A-calculus and System F will make some of the presentation and examples merstandable.

1.2 Overview

So, what exactly is Twelf? Among other things, it includes
1. atype checker for the dependently-typedalculus LF [9].
2. a meta-theorem checker.
3. an implementation of an operational semantics for LF as a logic-programmimgdge*
4. a (currently in-development) meta-theorem prover.

The first two are the focus of this guide, though I'll touch on the third ab. w&nce the meta-theorem
prover is currently defunct (it doesn'’t actually produce the proohi$), | won't discuss it at all.

Before jumping right in, it will be useful to get a big-picture sense of whatvolved in using Twelf.
The first step in using Twelf is encoding your language of interest in thedbffamework LF. For clarity,
we call the language that you wish to study titgect languagdit is the object of your study) and LF
the meta-language To encode a language in LF, you write an kignature—a sequence of LF constant
declarations—defining LF types and terms that fully and faithfully model wdject language. To check
that you've encoded your object language correctly, you prove @ehe calledadequacythat establishes
a bijection between the informal description of the object language (i.e., yoluaivrite on paper) and the
terms of particular LF types in your signature. Once you have proven thisdm, you can reason about
your object language by reasoning about its LF encoding.

LF is designed for representing deductive systems with binding—for eeammgramming languages
and logics. Oftentimes, you will be able to represent binding in your objeguiage with binding in LF;
by doing so, you get the machinery of binding for free from the meta-laggu At the level of syntax,
this means that there is no need to define capture-avoiding substitution-@guivalence for each object
language you design. This technique is often caligtier-order abstract syntaor the judgements of your
object language, you get hypothetical judgements for free by usingnigima LF to represent hypotheses.
This is part of thgudgements-as-typaesethodology.

Once you have encoded your object language in LF, you can begimgnmeta-theorems about it. First,
why do we use the word “meta’-theorem? In this usage, the theorems ofiettedsystem are what you can
provein it. For example, after encoding a logic in LF you can create a derivatiomisgdhat a proposition
is true; after encoding a type system, you can create a derivation shtveihg program is well-typed,;
after encoding an operational semantics, you can create a derivatieinghthat a programs evaluates to a
particular value. Twelf includes a “theorem checker” because it insladgpe checker for LF: judgements
are encoded as LF types classifying only valid derivations, so cheth@galidity of a derivation is the
same as type checking its LF representation. On the other hand, the mataghaaeductive system is
what you can provaboutit. Twelf provides separate facilities for checking meta-theorems abootedc
logics and languages.

1.3 Outline

The rest of this tutorial will teach you how to encode languages in LF amgepneta-theorems about them.
In Section 2, you'll learn how to encode simple languages in LF. In SectipalBll see some first examples
of meta-theorems. To keep things simple, these first object languages ithelnde binding. In Section 4

and Section 5 you'll learn how to encode and prove meta-theorems alpguialges with bindings. Since
there is a lot that | won't get to cover, | am including some pointers to otkeneles and documentation in

The original implementation of this was named EIf. You'll need a Germatiogiary to figure out how we got from there to
here.

Section 6. Finally, | tease some advanced Twelf techniques in Section quacietheorems and their proofs
are discussed throughout, but detailed presentations of these prestvad for Appendix B; Appendix A
presents enough of LF that we can do these proofs.

All of the examples in this document are available online [2]. They wereldpgd and checked using
the latest CVS release (Twelf 1.5R3, August 30, 2005), which | got fitee anonymous CVS server:

cvs -d:pserver:guest_If@cvs.concert.cs.cmu.edu:/cvsr oot login
[enter blank password]
cvs -d:pserver:guest_If@cvs.concert.cs.cmu.edu:/cvsr oot checkout twelf

I imagine that they’'d work in Twelf 1.5R1, which is available on the Twelf Webega

2 Encoding Languages in LF: Natural Numbers with Addition

Before we can prove meta-theorems in Twelf, we need to understand hegrasent the languages we'll
be proving these theorems about. That is, we need to be able to repghesériguages we wish to study
using the logical framework LF. As a first example, adapted from CradySarkar [6], let's encode a simple
language of natural numbers with addition.

2.1 Natural Numbers, Informally

In informal mathematical notation, we’'d write the abstract syntax of natunadbers with the following
grammar:
N = zero|succN.

The single judgement in this languagd¥, + N> = N3, relates two natural numbers to their sér@ne way
of axiomatizing this relation is through the following inference rules:

Ni + N2 = N3
zero+ N =N succ (N1) + N2 = succ (N3).

Then, for example,

zero + succ (succ (zero)) = succ (succ (zero))

succ (zero) + succ (succ (zero)) = succ (succ (succ (zero)))

is a derivation of the judgement that+ 2 = 3. Now that we have defined the syntax and judgements of
natural numbers with addition, we can set about formalizing it. To do so,retenfust define the fragment
of LF that we'll use.

2.2 Simply-typed LF

LF contains the simply-typed-calculus. Because we will soon be working entirely in Twelf, I'm going
to present LF using an abstract syntax that is close to Twelf’s concyataxs Here's the grammar for
simply-typed LF:

2To be preciseN; + No = Ns is a judgement schema: there is a judgemént- N, = N3 whenever the meta-variablék,
N», andNjs are filled in with particular natural numbers. I'm going to be sloppy abadstdistinction from now on.

Types A = a base type
A2 -> A function type

Terms M = ¢ constant

X variable

[X:A] M A-abstraction

M1 M2 application
In its actual concrete syntax, Twelf allows any charactersexcept) [] {} % " and whites-
pace in the identifiers used for variables and constants. Parenthesgsedrfor grouping, and the usual
A-calculus association rules appl:abstractions extend as far to the right as possiblgc:8¢ M1 M2 is
[Xx:A] (M1 M2) rathertharf[x:A] M1) M2 ;application left-associates, st M2 M3s (M1 M2) M3.

LF makes a distinction between constants and variables. Type and tertardsrare declared in a

signature variables are bound by abstractions. The typing rules for the simplygtiragment of LF are
what you would expect. In addition to the typing judgement, LF also containstiamof definitional
equality of terms. Definitional equality is a congruent equivalence relation contamiim-rules. Thegs-
normal,n-long terms are taken a=mnonical forms—the canonical representatives of thgn-equivalence
classes of terms modulo definitional equality. We will see why term equality is iaposoon.

2.3 Representing Syntax in LF

Here’s a rough first guideline: to represent the syntax of an objegubage in LF, declare base types
corresponding to its syntactic categories and constants correspondisigeions. These declarations form
the LF signhature that encodes your object language.

For example, we can represent the syntax of natural numbers with theifujlgignature:

nat : type.
z : nat.
S : nat -> nat.

Notice that in the Twelf syntax, is overloaded: it is used both to declare types and to declare terms of a
given type; also, is used to end declarations. Until you get used to thinking in LF, it can helgaih these
declarations out in detail. For example, the first line of the signature meansis an LF type”; the second
means 2 is an LF constant of typeat ”; the third means$ is an LF constant of typeat -> nat "

For this particular example, it should be intuitive how these constants egptribe object-language syn-
tax. However, we should nevertheless specify this correspondeecisgly by writing down the mapping
from informal object-language syntax to LF terms. We'll call this émeoding mappingand denote it with
™.7. The encoding mapping is defined is defined as follows:

Tzero!' = z

Fsucc N7 = sTN™.

2.4 Adequacy of the Encoding

Is this a good encoding? Our goal in representing a language in LF is tad&ahrow away the informal
description of the object language and reason using only its represant®¥ioat justifies doing so? We
need a theorem that implies that any reasoning we do in or about the langsiétgs encoded in LF could
just as well have been done in or about the informal description. In pktj¢his theorem would imply that
when we prove meta-theoretic properties about a language’s LF eqctitty are also true for the informal
presentation of the language.

What should such a theorem look like? At the very least, if we say thatpresent an object-language
syntactic category with the elements of a particular LF type, then the encddinddsbe a function and
its co-domain should be the desired LF type (otherwise, we haven'tsemied the whole object language,
or we haven't represented it the way we said we would). In this casesheald check the following
proposition:

PropPosITION2.1. If N is a syntactically-correct natural number, then there exists a unisech that
"N = NandNis an LF term of typeat .

Proof. By induction onN. The case forero is immediate, since zero' = z andz is declared to have
typenat . To show uniqueness, assume some olfiesuch that™zero™ = N’ ; then, by inversion on the
encodingN’ is z because there is only one clause that applies.

Forsucc N’, by induction we get that there exists a unidliesuch that"N’" =N’ , whereN’ has type
nat . TakeNto bes N';then"succ N7 =s"™N7 =s N’, so such arN exists. To show uniqueness,
assume some oth&F’ such that"succ N7 =N” ; then by inversiolN” iss™N" because there is only
one clause of the encoding that applies; this implies uniqueness bethilise= N’ uniquely. By the
declaration in the signature we know tisahas typenat -> nat , so by LF’s function-application typing
rule,s "N has typenat . O

That's a start, but it's not sufficient for throwing away the informal diggion of the object language
and reasoning solely about its encoding in LF. For example, if we come upawittF term of typenat ,
is it necessarily the encoding of some natural nunib2nf not, then if we prove in the formalization that
there exists aat with some properties, we don’t know whether that is “real” according to the informal
description—the formalized proof does not prove anything about thetbjeguage we have in our heads
and on paper. Additionally, is there necessarily only one informal naturaber gets mapped to any given
LF term? If not, then when we come up with a particular LF term of tygpe, we can’t read back the
corresponding informal object-language term.

To reason entirely in LF, the encoding mapping must be a bijection (i.e., an wgeantid surjective
function, or a pair of mutually inverse functions); this addresses thdqrsbin the previous paragraph. If
an encoding is a bijection, then it and its inverse operation allow us to “poytteasoning in or about the
language between the informal description and its LF representation.

Unfortunately, if we read what we said literally—every LF term of tyya¢ has a preimage under the
encoding—surjectivity will never be true. It's certainly not the case ¢vetyLF term of typenat directly
has a preimage by the encoding: that would imply that a preimage exists farbitsary sequence of
functions and applications that winds up with typs ! However, we can rescue the situation by making use
of the structure we've assumed about the space we’re mapping intoidwhabterms in LF are considered
up to afn-equivalence, but we didn’t mention this equivalence when we statg¢ectuity. Let’s try to
respect equivalence:

e Surjectivity: Every LF term of typ@at is equivalent to one for which a preimage exists.
e Injectivity: Any two equivalent LF terms have at most one preimage.

But what this really says is that there is a bijection between the natural nembéthesquivalence classes
of LF terms of typenat . Observe that this is still sufficient for throwing away the informal desicnip
of the object language; for example, every LF term of tppé represents a true object-language number,
namely the number that is the preimage of something in that term’s equivalesse cla

Rather than dealing with equivalence classes directly, we take the can@#icarmal,n-long) forms
as canonical representatives of the equivalence classes. Soypasbijection with the equivalence classes
of LF terms of typenat , we set up a bijection with the canonical forms of typs . This methodology

is feasible for two reasons. First, every LF term has a canonical fapnd a-equivalence), and two
terms have the same canonical form iff they are in the same equivalense Gasond, the canonical
(i.e., 8-long, n-normal) LF terms can be characterized by an alternate, inductive defjrtiigrsimplifies
proving bijections. For now, the important fact about this inductive attarization is that a constant or
variable applied to canonical arguments of the correct types is canoaschdng as the iterated sequence
of applications reaches base (i.e., non-function) type. For exampiijs canonical whem is canonical,
buts by itself is not canonical according to this definition (indeed, norislidng). Throughout, we write
[Fx M : Atodenote thall is a canonical LF term of typg, where the signaturg will usually be clear
from the context.

We collect the properties we require of a sensible encoding in a theoitkatd adequacy

PROPOSITION2.2: ADEQUACY OF NATURAL NUMBER SYNTAX. Let ¥ be the signature above. Then
there is a bijection between the (informal) natural numbers as defined lyrainemar and LF term8s such
that- -y, N : nat.

We require the LF term to be well-typed in the empty context. This makes seesentbding we have
proposed does not mention any variables, so allowing variables wouddt bre bijection. For example,
there would be no informal natural number corresponding to the LF Variabutw : nat Fy w:nat.

We sketch the proof here; a more complete treatment is given in Appendix B.

Proof. First, we prove something a little stronger than Proposition 2.1, showing thas a function whose
range iscanonicalterms of typenat . This proof is very similar to the above, but in each case we derive
canonicity rather than well-typedness. Roughly, in the first casg,canonical because it is a constant of
base type; in the second, we get thét" is canonical by induction, and theri N is canonical because it
is a constant applied to canonical arguments and of base type.

Having established thdt-" is a function of the correct type, there are two easy ways to establish this
bijection:

1. Define an inverse encoding\ on canonical LF terms of typeat , show that it is a function to
syntactically correct natural numbers, and then show that both compasitierthe identity ("N
=Nand™LN,7 =N).3

2. Show that for all canonical LF ternisof typenat , there exists a unique natural numibesuch that
N7 = N. If you expand out the definitions, this is just proving injectivity and suijéy at once?

Let's do the first approach. First, you'll have to take on faith claim that, is signature, the only
canonical terms of typ@at arez ands N, in which case we also derive as a subderivation bha
canonical (or you can look at Appendix A now). Then, we defitNa in the obvious way:

LZ1 = zero

LS NJ = succ (|_N_|)

Now, we check properties:

e |- is a function. By induction on the derivation thiltis canonical. It's defined foz, andzero
is syntactically correct; in the other case, we knidws canonical by above, soN. is defined and
a correct natural number by induction, and thus NJ by definition exists and is correct by the
grammar. Checking uniqueness is straightforward.

3This implies the alternate definition of a bijection as an injective and surjectivatibn: . "N7_ = N implies injectivity and
LNy = Nimplies surjectivity.
“This implies that an inverse tb- " exists: takeLN. to be the uniquél such that"N7 = N.

e "M =M By induction on the derivation thallis canonical. It works foe. In the other case, by
induction it works forN. Then.s N4 =succ(LNJ),s0"™ts No 7 ="succ(LNL)T=s TLNL T,
so we get what we wanted by induction.

e "N, =N. By induction on the syntax of the natural number. It works#e®. Forsucc (N), by
induction it works forN, and then we plug through.

O

You might think that this is an awful lot of trouble to go through to establish somgtihis simple,
but keep in mind two things: first, all adequacy proofs that I've seer lgane something like this, so now
you've got the model; second, adequacy is a formal way of ensuringdhiae representing the language
you think you're representing, which is the only way to know that all waslt @o in Twelf actually means
anything at all.

2.5 Representing Judgements in LF, Take 1

Now that we've represented the syntax, we need to representjtheN, = N3 judgement. By analogy
with our treatment of the syntax, let's postulate that we represent the judgdime N, = N3 with an LF
type, and the derivations of that judgement as terms of that type. For éxalets say we represent the
judgement with a typsum:

sum : type.

Now, we need to write constants with which we can encode the derivatiaorsexample, we could try
defining the constants

sum-z : nat -> sum.
sum-s : nat -> nat -> pat -> sum -> sum.

and encoding the object-language derivations as follows:

T zero+N=N 7 =sum-z "N"

D,
Ni + N> = N3
™ succ(N1) + N2 =succ(N3) 7 =sum-s "N; 7 "Ny "N37 ™D;7.

Then, for examplesum-z (s z) s the representation of the derivation

zero + succ (zero) = succ (zero)

andsum-s z (s z) (s z) (sum-z (s z)) is the representation of the derivation

zero + succ (zero) = succ (zero)

succ (zero) + succ (zero) = succ (succ (zero))

Now, let's check adequacy:

CONJECTUREZ2.3: ADEQUACY OF SuM. There is a bijection between derivationshf + N, = N3 and
canonical LF term® such that Fx D: sum.

Proof. First, we show that - is a function to canonical terms of tyg&im by rule induction orD. The
proof is straightforward; it is analogous to the above proof for syntax.

However, we will not be able prove that the encoding is a bijection, as thiseheis not true! In
particular, surjectivity fails. Consider the LF term

sum-s z z (s z) (sum-z z)

It is a canonical term of typsum because it is a constant applied to canonical arguments, but it is not the
encoding of any actual derivation. Here's why: in the encoding defimitioe only case whose result has
the formsum-s "N; ' "Ny ' "N3' "D; ' has the property tha?; derivesN; + N» = N3. However, in

this case, but the preimage@um-z z) does not deriveero + zero = succ (zero). O

The cause of this problem is that the tygaamis not precise enough, so the typesoin-s does not capture
how D; relates to the other arguments. Fortunately, we can fix this problem with diepietypes.

2.6 Dependently Typed LF

In a dependently-typed language, types are allowed to contain termsxadrapke, rather than a typim
that classifies (the representations of) all derivations of the judgeiest N, = N3, we could define a
typesum N1 N2 Na3that classifies only derivations relating those partictilarN2, andN3.

The terms of dependently typed LF are the same as those of simply typed eveto the simple
function typeAl -> A2 is generalized to a dependent function 8peritten {x:A1} A2 . The depen-
dent function type is a binding fornx is bound inA2. Intuitively, the argument to a dependent func-
tion is allowed to appear free in the result type; application substitutes themargunto the body of the
type. For example, i€ is a constant of typé:nat} sum z x x , the applicatiorc (s z) has type
sum z (s z) (s z) . Twelf allows the traditionaAl -> A2 notation as a synonym for a dependent
function type{x:A2} A wherex is not free inA2.

For dependent types to be useful, equality of types should respealitgopf the terms embedded in
them. For example, it is desirable that a term with tgpen (([x:nat] x) z) z z also has type
sum z z z. This is accomplished by extending the definitional equality relation for termsdétation
between two types that compares the embedded termsgsiprequality.

2.7 Representing Judgements in LF, Take 2

Let's see how we use dependent types to fixswm judgement. First, we postulatéygpe familysum N1 N2 N3
that is well-formed whenever dli have typenat ; we'll see how to declare such a type in an LF signature
in a little while. We call theNi theindicesof the type family. This terminology has set-theoretic origins:
sum defines a family of types indexed by threat s; there is one type in the family for each choice of
indices.

Given this type family, we give more precise types to the constants repiresére inference rules:

sum-z : {n : nat} sum z n n.
sum-s : {nl : nat} {n2 : nat} {n3 : nat}
sum nl n2 n3 -> sum (s nl) n2 (s n3)

These constants seem like they capture the object language judgementmoregbrecisely. We use the
same encodings as before:

T zero+N=N 7 =sum-z "N"

5In standard abstract syntax, this type is writliznA1. A2.

D,
N1+ N> = N3
™ succ (Nl) + N2 = succ (N3) 7 = sum-s '_Nl—' ’_N2—I I_N3—| Fpl‘l

Now we can check adequacy:

PROPOSITION2.4: ADEQUACY OF SUM. There is a bijection between derivationshf + N, = N3 and
LF termsD such that s D & sum "N; 7 "Ny7 "N3™.

Again, we sketch the proof here; a more detailed presentation is in AppBndix

Proof. First, we show thaf -7 is a function to canonical terms of tygem by structural induction o®.

e LetD bezero + N = N. We know that" N is a canonical term of typeat by adequacy of syntax
(PROPOSITION2.2). Further, the constasum-z has type{n:nat} sum z n n by the signa-
ture. Thereford D' =sum-z "N exists, and it is canonical attygem z "N "N because
it is a constant applied to a canonical argument of the appropriate tyfetfsubstitution of N™
for n in the result type of the application!), and the application reaches a baseTyshow unique-
ness, assume some othdr such that" D" = N’ ; then inversion on the encoding function and the
unigueness of N7 give the result.

e LetD be
D,
Ni + N2 = N3

succ N7 + Ny = succ N3

By adequacy of syntax;N;" are canonical terms of typgat . By induction "D, is a canonical

term of typesum™N; " "No ' "N3 . By the signaturesum-s is a constant of type

{nlinat } {n2:nat } {n3:nat } sum nl n2 n3 -> sum (s nl) n2 (s n3) . Thus™D™
=sum-s "N;' "Np' "N3' "™D;7' exists. It is unique by the usual inversion argument, using
uniqueness of the subterms. It is canonical at sg® (s "N; ') "N (s "N3')—again, note

the substitution ofN; for ni —because it is a constant applied to type-correct, canonical arguments
down to base type. Then, rewriting using the definition of the syntax engd@isucc (N)" =s

"N7) implies that this is what we need to show.

Checking the rest is left as an exercise. It's probably easier to do it isett@nd style mentioned above
(there exists a unigue preimage of every canonical term) rather thansth@&fining the inverse explicitly).
Further, you'll need to assume that the only canonical terms ofgype N1 N2 N3are

e sum-z N, where we derived as a subderivation tNas canonical and of typeat

e sum-s N1 N2 N3 D, where all the arguments are canonical and of the appropriate typebby su
derivations.

unless you want to go look at the rules for canonicity in Appendix A ydtur§éen, the proof proceeds by
induction on the canonicity derivation. O
2.8 Higher Kinds and Full LF

Our one undischarged promise is showing how to actually declare thedypeN1 N2 N3in a signature.
For this, we generalize to full LF, which allows kinds (the “types” of typeifées) other thartype :

Kinds K = type the kind of types
{x:A} K dependent-function kind

Type Families A = a family constant

{x:A2} A dependent-function type

A M application of a type family to a term
Terms M = ¢ term constant

X variable

[X:A] M A-abstraction
M1 M2 application

Kinds classify families, and type families with the particular kiggde classify terms. In a signature,
you can define the type of a term-level constant or the kind of a family-lewestant. For example, we
could declaresum as follows

sum : {nl : nat} {n2 : nat} {n3 : nat} type.

Note how in the Twelf syntax, the dependent-function kind is written the santeeadependent-function
type, except you can tell the difference because the kind-level oneuttmsately end intype (the only
base kind). Also, just as with the dependent-function type, Twelf allowstgavrite a dependent-function
kind with an arrow when the parameters are not free in the body. So, we also declare

sum : nat -> nat -> nat -> type.

since theni don’'t get mentioned later on. The application foAnMis used to apply type families of
dependent-function kind to terms; forexam@em N1 N2 N3s the (iterated) application of the constant
sumto three terms. Just like the term-level dependent-function application riiky{fievel application rule
substitutes arguments for bound variables in the body of dependenisfukends; if A has type{x:A2 }
KandMhas typeA2, thenA Mhas typgM/x] K

2.9 Summary: the LF Methodology

Let’s quickly sum up what we've learned.

GUIDELINE 2.5: ENCODING SYNTAX. To encode the syntax of your object language, declare a type for
each syntactic category and a constant for each piece of syntax. hgoldsbe able to prove a bijection
between syntactic objects and canonical LF terms (in the empty LF contexg obthesponding types.

In particular, it often works if you encode a grammar entry of the férms ... [t Sy ... S, |... using
a constant of typ&1 -> ... Sn -> S, whereSi is the type classifying the encodings of abstract
syntax ranged over by the meta-variabje

GUIDELINE 2.6: ENCODING JUDGEMENTS. To encode the judgements of your object language, declare
a type family for each judgement and a constant for each inferencelftie judgement relates things,
the type family should have parameters. You should be able to prove a bijection between valid derivation
and canonical LF terms (in the empty context) of the corresponding typles. iS known as called the
judgements-as-typasethodology, since we represent judgements as types that classify oimlyale
derivations.

In particular, it often works if you encode a judgement that we write orepajith the meta-variables
S; ... S, using a family-level constant of kindS; " -> ... 7S, ->type and if you encode an inference

rule that we write on paper as
N Im
J

10

(with free meta-variableS; ... S,) using a constant of type
{st: s1} .. {sn: Sn }J1->.. Jm->1]

whereSi is the type classifying the encodings of abstract syntax ranged oveebyete-variablé&; and
Ji is the type classifying the encodings of derivationg/af

3 Proving Meta-theorems in Twelf: Addition is Commutative

Now we can throw away the informal descriptions and get to the good $taffexample, I'm now going
to use “syntactic category” to mean both the on-paper syntactic categodtpheiF type representing the
syntactic category.

II, Sentences

Twelf's meta-theorem checker allows you to validate proofs of statemetie dbrm
¥x1:Al...Vxn:Andyl:B1l...9ym: BmwhereAi andBj are all (canonical) LF types; statements of
this form are often callefl, sentences. The quantifiers range aaamonicalLF terms of those types. While
at first this might seem restrictive, it is strong enough to express mucle ahéta-theory of programming
languages. Why is that? First, we represent our object language wsingical LF terms and types, so
the restriction to canonical terms and types is no problem. Second, begauspresent judgements as
LF types, these quantifiers range not just over (the encodings acticmcategories, but also over (the
encodings of) judgements. Third, many of the theorems we prove showutidgy certain assumptions
about some judgements being derivable, other judgements are alsdbtitiva

As an example of this third point, consider the usual statement of type patisarfor the simply-typed
A-calculus. Presuming judgements E: T (typing) andE — E’ (small-step operational semantics), we'd
say

If - -E:TandE+— E'then- FE":T.
When we mention an unbound meta-variable in a premise, what we really mean is
For all expressiong andE’, typesT, and context§’, if - - E: T andE — E’, then- - E': T.

Further, when we mention a judgemegntike that, we mean it as shorthand for “there is a derivatiofr of
So we're saying

For all expressiong& andE’, typesT, and contextd’, if there is a derivation of - E: T and
there is a derivation df — E’, then there exists a derivation of- E': T.

However, we can just as easily give names to the derivations (even iévex nse them later on), which in
this case is the only difference between an “if” and a “for all”; it also ge¢s“there exists” to look more
like we want it to:

For all expressionk andE’, typesT, and context§’, for all derivationsD; of - + E: T andDs
of E — E’, there exists a derivatioR; of - - E': T.

Now we have dls-sentence!

5The most-frequently encountered examples of proofs that cansily &a checked with Twelf's meta-theorem checker are
proofs by logical relations; these proofs require more complex quenstitharil, sentences afford.

11

3.1 Relations are Proofs ofl, Sentences

A Il sentence of the forrd x1 : ALl...¥xn : Andyl : B1...9ym: Bmis connected to the + m-
ary relations among canonical LF terms of typg, ... An, B1, ... Bm In particular, such a relation that
contains at least one entry for all possible combinations of canonical noistef typesAl,... Anis a
proof of the sentence: for any given inpais:Al,. .. an:An, there will be an entry corresponding to those
inputs that provides thb1:B1,... bn:Bn witnessing the existentials. In other words, if we think of the
universally-quantified types as the inputs to the relation and the existentiadhytitjied types as the outputs,
a total relation from inputs to outputs is a proof of that sentence. Note thatowet enforce that the
relation has exactly one output for each of the inputs, which is the only adalittmndition necessary for
the relation to be a function.

This is fortunate, since we've already seen how to represent relatging dependent types: a type
family and its inhabitants represent a relation between the family’s indicesewridices are related when
that element of the family is inhabited. For example, the tgpm and its inhabitants represent a rela-
tion among threeats , where particulaN1, N2, andN3 are related when the tymaim N1 N2 N3is
inhabited. With the signature from Section2,z, andz are in the relation specified lgum because
sum z z z isinhabited; in contrask, z, ands z are not related because there is no canonical LF term
of typesum z z (s z) . Thus, we can represent relations using the machinery we've already-d
oped; Twelf's meta-theorem checker is just a mechanism for verifyirtgoréicular type families and their
inhabitants represeidtal relations from their inputs to their outputs.

3.2 Meta-Theorem Statements
For example, say we want to prove that sum judgement is commutative. That is,

For all numbers\N;, N, andNs, for all derivations ofN; + N, = N3, there exists a derivation
of No + N7 = Ns.

By adequacy, it suffices to show

For allnat snl, n2, andn3, for all canonical LF terms of typgum nl n2 n3, there exists
a canonical LF term of typsum n2 nl n3.

Following the discussion above, this-statement can be proven by exhibiting a relation of type (loosely)
(nl:nat, n2:nat, n3:nat, dl:sum nl n2 n3, d2:sum n2 nl n3) that is total from its
first four entries to its fifth. This type of relation corresponds to the follgutipe family:

sum-commutes : {nl:nat} {n2:nat} {n3:nat}
(sum nl1 n2 n3) -> (sum n2 nl n3) -> type.

The inhabitants of this type family define a relation, where there is an entry neldit@n when
sum-commutes nl1 n2 n3 dl1 d3 is inhabited. However, with just this declaration, we haven't yet
told Twelf which parameters are the inputs to the relation: we've lost the intamabout which variables
are universally-quantified and which are existentially-quantified. Famgse. this type family also corre-
sponds to all the following sentences: “for all andn2, there exists an3 such thasum nl1 n2 n3 is
derivable andum n2 nl n3 is derivable”; “for allnl, n2, andn3, there exists a derivation siim nl

n2 n3 and a derivation cfum n2 nl n3”. We fix this using anodedeclaration:

%mode sum-commutes +N1 +N2 +N3 +D1 -D2.

+ means “universally-quantified” or “input to the relation” andneans “existentially-quantified” or “output
of the relation”, and the variable names here can be chosen arbitrarily.
Here’s a rough guideline:

12

GUIDELINE 3.1: ENCODING META-THEOREMSTATEMENTS. To encode the statement of a meta-theorem,
declare a family-level constant whose kind specifies a relation amonglifez®iof the theorem, along with

a mode declaration identifying which parameters of the type family are the inpthts telation and which
are the outputs of the relation.

3.3 Twelf Niceties: Term Reconstruction;<-

3.3.1 Implicit Arguments

Writing out all the meta-variables from the informal description as explicitizents gets tedious. For-
tunately, Twelf allows implicit arguments. If you use an identifier that starts witwar-case letter, then
Twelf assumes that it will be bound somewhere. However, if you use bownd identifier that starts with
an upper-case letter in the type/kind declaration of a constant, Twelf implicittisbinn a at the front. So,
the following would be an equivalent definition sfim-commutes :

sum-commutes : (sum N1 N2 N3) -> (sum N2 N1 N3) -> type.

The{Ni:nat} are really still there; you just can’t see them. How do you apply a constame of its
implicit argument? You don’t. Twelf infers the argument based the type athwhie constant is used. This
process is called term reconstruction.

The mode declaration correspondingly omits the implicit arguments; we’'d write

%mode sum-commutes +D1 -D2.

By default, implicit arguments are quantified according to these rules:
¢ If the variable occurs only in universally-quantified argumems then it is universally quantified.
o If the variable occurs only in existentially-quantified argumenjs then it is existentially quantified.
e If a variable appears in both kinds of arguments, then the universakikde precedence.

Note that this is usually what we mean when we use implicitly-quantified meta-lesiedinformal math.
We can use implicit arguments to tighten up the inference rule declarationd&fore as well:

sum-z : sum z N N.
sum-s : sum N1 N2 N3 -> sum (s N1) N2 (s N3).

Now, rather than applyingum-z to a number yourself, you can let Twelf figure out what number you
meant from the context you use it in.

3.3.2 Backward Arrow

Another nice bit of Twelf syntax is that you can write-an backward instead. That is, we could equivalently
have written

sum-s : sum (s N1) N2 (s N3)
<- sum N1 N2 N3.

This makes it easy to see what type a constant ends up at when it is fuligcapp

13

3.4 Proofs of Meta-Theorems

Now that we know how to (concisely) state meta-theorems, how do we prew&?tiWe have to write the
constants inhabiting the type family representing the relation and then verifyhindamily represents a
total relation.

To provesum-commutes , we'll need a couple of lemmas that are the analogues of the inferenee rule
definingsum but for the right-hand, rather than left-hand, summand. First, we’llgrov

sum-z-rh : {n : nat} sum n z n -> type.
%mode sum-z-rh +N -D.

This type family corresponds to the following sentence:“for all (canonicadf type nat , there exists a
(canonical) derivation of typsum n z n”.

By adequacy, this statement is equivalent to saying, “foNathere exists a derivation @akro + N =
zero”. Let’s look at the on-paper proof first:

Proof. By induction onN.
e Case forzero: zero + zero = zero is derivable by axiom.

e Case fors (N): By induction, there exists a derivatidd’ of N’ + zero = N’. Then, we apply the
successor rule to this derivation as follows:

D
N’ + zero = N’

succ (N’) + zero = succ (N')

In Twelf, the corresponding cases are:

case-for-z : sum-z-rh z sum-z.
case-for-s : sum-z-rh (s N) (sum-s D)
<- sum-z-th N (D : sum N z N).

Let's take a look at what's going on here. dase-for-z , sum-z is precisely the the axiom we cited in
the paper proof. ltase-for-s , we “call the theorem inductively” oN, producing a derivatiol, just as
we did on paper; then, we simply apym-s to it, the result of which is equivalent to the derivation we
wrote out in full on paper. So, by analogy at least, this seems perfecibjde.

Now let’s check by hand that we've actually written a total relation. The tgpalyy sum-z-rh repre-
sents a relation whei¢andDare related ifsum-z-rh N D isinhabited. We want the canonical LF terms
of this type family to represent a relation that is totalrthat is, we want every canonical LF term of type
nat to be in the relation. Thus, we need to add enough constants to the signetiutbat for all canonical
LF termsn of typenat , sum-z-rh n D is inhabited for som®. case-for-z is a canonical LF term
and covers the case whaeris z. The signature says thaase-for-s X is a canonical LF term of type
sum-z-rh (s N’) (sum-s Dsum) as long axis a canonical term of typsum-z-rh N’ Dsum
But why do we get to assume that suchX@exists? The premise icase-for-s is justified by induction
over canonical formsBecause of the way we encoded the syntax of the language, inducgonanonical
forms of typenat in LF corresponds to informal structural induction on the syntaX.0fVhen on paper we
appeal to induction, in Twelf we write a constant of function type whosmjs®is the inductive call. That
the inductive call is valid is verified by induction over canonical forms. ¢&ivegg that relations are total is
tedious; fortunately, Twelf's meta-theorem checker does this for us.

14

3.5 Checking Proofs of Meta-Theorems
Now that we've written down the cases of the theorem, we enter the follovealgugtions:

%worlds () (sum-z-rh _).
%total N (sum-z-rh N).

The %worlds declaration defines the form of the LF contexts for which the theorem isistgtéke the
%modedeclaration, is another part of the theorem statement. In this case, we stateedhem only for
empty worlds. Thésototal declaration checks that the cases prove the stated theorem. To validate you
proof of a meta-theorem, Twelf checks the following:

1. Mode: This actually happens as you go, not when you check totality. That isn wbe enter a
declaration likecase-for-z ~ , in addition to checking that the declared type is well-formed, Twelf
checksmode correctnedsecause we gave the result tyjpan-z-rh - a mode declaration.

Mode correctness is part of what justifies that all the premises of theacaseasonable. To a rough
approximation, mode correctness checks that all the premises in the typlesafram case are them-
selves moded, and that all the inputs in these premises come from inputs entlesme. For example,
the constant

bogus : sum-z-rh N D.

is type-correct because Twelf infers the tygaem N z Nfor D. However, this “case” presumes a
derivationD, where Twelf has no way of knowing that this derivatiDrexists. Since Twelf can’t
verify that a case with this premise can ever be used to create canonialdétypesum N D it
doesn’t help prove the theorem; thus, Twelf rejects it. Indeed, thesponeling on-paper case would
read something like “Case for aly the derivation exists, so we're done”.

If we try to check this declaration, Twelf will respond
Occurrence of variable D in output (-) argument not necessar ily ground

Ground is a word from logic programming—this error message means th#tigweconvinced that
the output comes from the input.

A slightly different twist on this is to make up something to pass to a recursiVéocaa call to a
lemma): you're not allowed to make up inputs, either.

You might think the error in fobogus should be a violation of termination. If we write oobgus
explicitly, it says

bogus: {N : nat} {D : sum N z N} sum-z-rh N D.

So, why doesn’t Twelf tredtl as an input to the relaticsum and try to come up with an inhabitant of
sum N z N? Operationally, the answer is “because it doesn’t”; the rule is as follthy®mu write
the premise of a constant ag}a, then Twelf only tries to fill it in only by unification (i.e., checking
whether existing constraints imply that it must be equal to something else in the 1&gl write
the premise with ar> , as incase-for-s , Twelf tries to fill it in using the meta-theorem reasoning
(i.e., checking whether the inductive call is valid). This distinction comes freogic programming
operational semantics for LF, where premises are calleslbgoalsthe meta-theorem checker only
treats these subgoals as inductive calls. In contrast, the implicitly-quantéfiebies in a term (i.e.,
the capital-letter ones) are often calladification variables

15

2. Worlds: For now, we'll only prove theorems in the empty context, so worlds checkiligalways
succeed. We'll talk more about this later on.

3. Termination: When we do proofs by induction, the induction argument must be explicit.Nlhe
%total N ... tells Twelf that the proof is by induction on the first argument to the type family.

Twelf permits inductive calls (i.e., a constant of function type has a suligatls the relation cur-
rently being shown total) on any term whose canonicity was derived whileimig the canonicity of

the induction argument; you can find the rules for canonicity in Appendix ractitally, for type

families in empty worlds whose canonical forms are simply constants appliedénical subterms,
this amounts to allowing induction on constructor-guarded subterms of thetiodwargument. Be-
cause of the way we have encoded syntax and judgements, this givasarstrinduction on syntax
and derivations.

For example, in the case

case-for-s : sum-z-rh (s N) (sum-s Dsum)
<- sum-z-rh N’ Dsum.

observe thalN’ is a strict subterm o N’ . If we tried a bogus induction, as in

bogus2 : sum-z-rh N D
<- sum-z-rh N D.

We’'d get an error such as

Termination violation:
—> (N) < (N)

Twelf also supports mutual and lexicographic induction, but we won’t@geany examples of this in
this guide.

4. Coverage: Termination checking shows that each case of the proof is valid. Hoytevgive a total
relation, we need to know not just that each case that we have givelidisbea that we have covered
all of the inputs to the relation. Coverage checking happens in threegphase

(a) Input Coverage. This part checks whether a proof covers all inputs to the relation. In our
example, the cases

case-for-z : sum-z-rh z sum-z.
case-for-s : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ Dsum.

do cover all of the inputs to the relation. However, if we left off the firstecand tried to check
totality with justcase-for-s , we'd get an error saying that there were uncovered inputs:

Coverage error --- missing cases:
{X1l:sum z z z} |- sum-z-th z X1.

This error message says that we haven't inhabited the relatian &ord, helpfully, tells us what
the type of the output of the relation should be in this case.

16

(b) Output Freeness. Output-freeness checking ensures that we don’t erroneouslynasthat
the output of an inductive calls or call or a call to another lemma is somethingt tisaot.
Roughly, the implicitly-quantified variables appearing in the outputs of calls nlius distinct
unless they are constrained by the input to the call.

As a somewhat contrived example, say we wigse-for-s as follows:

bogus4 : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ D.
<- sum-z-rh N’ D.

As an LF term, this case is well-typed, well-moded, and it satisfied the dedam@thation
order. However, if you check totality (fum-z-rh with this case andase-for-z , you'll
see the error

Constant bogus4
Occurrence of variable D in output (-) argument not free.

In this case, the problem is theim-z-rh is a relation, not a function, so there is no guarantee
that it produces the same derivationsafm N’ z N’ in each of the two calls. Thus, it is
wrong to writeD in both places, as doing so insists that the two calls output the same term.

(c) Output Coverage. Output coverage is another part of checking that we don'’t errsig@s-
sume something about the output of inductive calls or calls to lemmas. In partioutput
coverage checking ensures that we don’t mistakenly assume sometbinigtiad shape of an
output.

In a case like

case-for-s : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ Dsum.

the output of the inductive call is a single implicitly-quantified variable, and gfdahtput free-
ness check succeeds, it must be unconstrained. Thus, this varigets ath possible outputs of
the theorem.

However, sometimes we want to pattern match the output of an inductive calcall to a
lemma. For example, say we wanted to writsuan-z-rh case for a double-successor—not
that we do, but it illustrates the output coverage problem. The case wantdilee this:

case-for-ss : sum-z-rh (s (s N’)) _
<- sum-z-rh (s N’) Dsum.

Now, Dsumhas typesum (s N) z (s N’) . Suppose that to finish this case we need to
invertthis derivation to extract the derivationsfim N’ z N’ . Thatis, we reason as follows:
by inspection of the rules, the only rule that could have derbsdmis sum-s (because no
other rule derives a conclusion of the fosum (s _) _ _), and in that case, we derived
along the way thasum N’ z N’ . In Twelf, we can do this inversion by pattern matching the
result of the inductive call:

case-for-ss : sum-z-rh (s (s N)) _
<- sum-z-rh (s N’) (sum-s Dsum’).
whereDsum’ has typesum N’ z N’ . In this example, this reasoning is fine. However, if our

inversion reasoning had been wrong —if there had been some otherfwayiving the output
of the call—this case would not cover this other derivation. The outpugregye check ensures

17

that all such inversions are correct—that there is indeed only one waytpet could have been
produced.

When you enter a constant, Twelf checks that its type is well-formed andt ieatell-moded. Twelf
checks worlds when you run tBéworlds declaration. When you run tétotal , it first checks termina-
tion for each case, and then it does coverage checking. Each pasarhge checking happens in a separate
phase, so once your proof passes the input-coverage cheakdrggbany output freeness bugs; once those
are eliminated, you'll find out about any output coverage errors e@mat goes through, you have a correct
proof!

3.6 Finishingsum commut es

Now that we understand what Twelf does when it checks a meta-thearérhaav things can go wrong,
we can quickly finish up proving thaum commutes. We’ll need another lemma, this time the analogue of
sum-s for the right-hand side:

sum-s-rh : sum N1 N2 N3 -> sum N1 (s N2) (s N3) -> type.
%mode sum-s-rh +D1 -D2.

- . sum-s-rh sum-z sum-z.
- sum-s-rh (sum-s (D : sum N1' N2 N3)) (sum-s D’
<- sum-s-rh D (D’ : sum N1' (s N2) (s N3)).

%worlds () (sum-s-rh).
%total D (sum-s-rh D).

Make sure that you can read the type family and mode declarations @S #tatement that they represent,
and that you understand the proof. Because | never refer to theaoctsthat constitute the proof of a meta-
theorem, | usually call them all as I've started to do here. Earlier constantsarenamed out of the way
of later ones, so you can't refer to them, but Twelf still knows the earl@ssaxist.

With these lemmas proven, we can show our result:

sum-commute : sum N1 N2 N3 -> sum N2 N1 N3 -> type.
%mode sum-commute +D1 -D2.

- sum-commute (sum-z : sum z N N) D
<- sum-z-rh N D.

- sum-commute (sum-s D : sum (s N1) N2 (s N3)) D”
<- sum-commute D (D’ : sum N2 N1 N3)
<- sum-s-rh D’ (D” : sum N2 (s N1) (s N3)).

%worlds () (sum-commute _).
%total D (sum-commute D _).

Let’s walk through each case. In the first, we are given a derivati@uwf z N N so we need to show
sum N z N We do this by appealing to the lemmmam-z-rh onN. In the second, we are given a deriva-
tion of sum (s N1) N2 (s N3) , sowe needtoshoaum N2 (s N1) (s N3) . By induction on
the derivationD of sum N1 N2 N3 we get thasum N2 N1 N3 and thersum-s-rh applied to this
gives the result.

18

3.7 Interactive Proving

In the previous section, | presented the finished proofs to you, explaiiw Twelf checks them. How-
ever, Twelf is also useful as you are writing a proof. We’'ll discussvaviays to use Twelf during proof
development here by developing the prookafm-commutes interactively.

3.7.1 Finding Out Which Cases are Left

First, if you give a theorem statement and try to check it without supplyiggases, as in

sum-commute : sum N1 N2 N3 -> sum N2 N1 N3 -> type.
%mode sum-commute +D1 -D2.

%worlds () (sum-commute _).
%total D (sum-commute D _).

Twelf will complain that you haven't given any cases:

Coverage error --- missing cases:
{N1l:nat} {N2:nat} {N3:nat} {X1:sum N1 N2 N3} {X2:sum N2 N1 N3 }
[- sum-commute X1 X2.

So it's up to you to pick a first case and start filling it.
Once you get one case in, if you recheck worlds and totality, Twelf will say

Coverage error --- missing cases:
{NL:nat} {N2:nat} {N3:nat} {X1:sum N1 N2 N3} {X2:sum N2 (s N1) (s N3)}
[- sum-commute (sum-s X1) X2.

That is, once we've given one case, Twelf guesses how we are splitiitiee cases (here, with one for each
derivation ofsum N1 N2 N3, and tells us which cases we are missing. This saves you from figurtng ou
which cases are left, and it checks that you and Twelf agree on whdtgue already proven.

3.7.2 Type Inference

You can also get Twelf to help you fill in an individual case. Say we stawtititing

- . sum-commute (sum-z : sum z N N) D.

and try to check that. Twelf responds

- {Nmnat} {D:sum N z N} sum-commute sum-z D.
Occurrence of variable D in output (-) argument not necessar ily ground.

In addition to telling us there is a mode error, Twelf did type inference, tellindpeisype of the term that
we need to fill in—in this case, the type Df Thus, you can get Twelf to specialize the theorem statement
for the particular case for you. In this case, the specialized theoremmstaite suggests the lemma that we
need; if I hadn'’t told you up front that we'd nesdim-z-rh , this is how we would have discovered that
we do. Now, we can fill in the call to the lemma and complete the case.

As another example, if we start with

- . sum-commute (sum-s D : sum (s N1) N2 (s N3)) D"

19

Twelf does type inference, specializing the theorem statement, and répontede error:

' {N1l:nat} {N2:nat} {N3:nat} {D:sum N1 N2 N3} {D":sum N2 (s N1) (s N3)}

sum-commute (sum-s D) D”.
Occurrence of variable D” in output (-) argument not necess arily ground.

Say we didn’t know how to finish the case. Rather than figuring out wieatam get by induction ourselves,
we could have Twelf tell us by putting in the inductive call and asking it to de tgpference. Checking

- . sum-commute (sum-s D : sum (s N1) N2 (s N3)) D”
<- sum-commute D D

gives the following message:

{Nl:nat} {N2:nat} {N3:nat} {D:sum N1 N2 N3} {D:sum N2 N1 N3}
{D”:sum N2 (s N1) (s N3)} sum-commute D D’ -> sum-commute (su m-s D) D".
Occurrence of variable D” in output (-) argument not necess arily ground

Twelf reports the type oD’ telling us what we got by induction. The typesf andD” suggest the
lemma we need to apply to finish the proof.

3.7.3 Type Annotations

In Twelf’s concrete syntax, you can put a type annotation on any termrtlipng M : A. This is useful
for guiding type inference in giving you clearer error messages. Aiso.can use it to name the implicit
arguments to type families so you don’t havedtdename them yourself when you're staring at Twelf’s
output.

3.7.4 Underscores

Instead of naming every implicitly quantified parameter with a capital letter, youetide some of the
names by replacing them with an This is useful, for example, when a particular part of the input is not
relevant to a case of the proof. For now, you can think of this as beirgatine as giving the variable a name
that you can’t refer to; there is, however, a slight difference thatesup when we talk about binding.

3.8 Lies, Damn Lies, and Logic Programming

In this whole section, I've been lying to you about what Twelf's meta-tagochecker is doing. Sort of.
It is verifying that the constants inhabiting a type family represent a total relation inputs to outputs.

However, it is doing this in a very particular way: it is checking that, whenfdéimeily is interpreted as

a higher-order logic program according to Twelf’s logic-programmingraponal semantics, the family
represents a total logic program from the inputs to the outputs. This isaeunivto what I've been telling
you, as the logic programming interpretation boils down to searching for itamab of the type family;

thus, proving that the type family gives a total logic program shows that e figmily is inhabited for

all inputs. | prefer the relation abstraction because it means | don’ttoaenk about higher-order logic
programming.

20

4 Encoding a Language with Binding: System F

Now that we have a basic understanding of LF and Twelf, let's move onne snore-realistic examples.
In this section, we’ll see how to encode programming languages with bindidig;ias an example, we use
System F, the polymorphik-calculus [7, 18].

4.1 Encoding the Syntax
4.1.1 Higher-Order Abstract Syntax

On paper, we'd write the syntax of System F as follows:
Types T:= u type variable
T, — T arrow type
Yu. T forall type

Terms E:= x term variable
Ax:T.E function
Ei Ex application
Au.E type function
E[T] type application
Let's try to encode this in LF. Per our above methodology from Section 23]efine one LF type for
each syntactic class. In particular, we define the following LF types:

tp : type. %% System F types
tm : type. %% System F terms

Next, we inhabitant these types with constants for each of the syntactic.fdfarssome forms, we can
follow our above methodology:

arrow : tp -=> tp -> tp. %% function type

app : tm -> tm -> tm. %% application
tapp : tm -> tp -> tm. %% type application

But what do we do about binding forms and variables? One option woutd bse de Bruijn indices
with our typenat from before; then we would, for example, represent term variablddwarctions with
the following constants:

var : nat -> tm.
fn : pat -> tp -> tm -> tm.

However, if we take this approach, then we have to manually create the rapclihbinding, capture-
avoiding substitution, and-equivalence for each object language (or somehow encapsulate libiary
that we can reuse). Moreover, to do the meta-theory, we will need tdogepeoperties of binding for each
object language.

In LF, one can avoid this tedium by usihggher-order abstract syntax he idea of higher-order abstract
syntax (HOAS) is that you represent object-language binding with metaxaye binding; consequently,
you get the machinery of binding (capture-avoiding substitutisequivalence) for the object language
for free. Clearly, this only works if the object language’s notion of bigdi coincides with LF’s (so, for
example, one probably cannot use HOAS to represent broken vexsidisp), but this is usually the case.

21

Concretely, when using HOAS, we represent object-language veagialifle meta-language variables.
This means that the representation of the part of an object-language #iigiththe scope of a variable will
have a free meta-language variable; the term must bind these variabileg HBAS to represent System F,
we arrive at the following signature:

tp : type.
arrow : tp -> tp -> tp.
forall : (tp -> tp) -> tp.

tm : type.

fn : tp -> (tm -> tm) -> tm.
app : tm -> tm -> tm.

tin : (tp -> tm) -> tm.

tapp : tm -> tp -> tm.

In the type offn , we represent the body of the function with an LF term of type-> tm ; this represents
the fact that the syntactic forthx:A. E bindsx in E. Au. E also binds a variable, but the variable that it
binds ranges over types, not terms; correspondingly, the argumgént ts a function of typdp -> tm
which binds a type variable in the body. Finaligrall ~ binds a type in a type. There are no constants for
System F variables: we said that we represent object-language vanatiieneta-language variables, and
LF variables are already LF terms.

This encoding gives us capture-avoiding substitution for free. Asluagause™ "' to denote the en-
coding mapping from the informal object language description to LF. Tloeexample, the representation
of a function\x:To.Eisan LFtermfn "T,7 ([x] "E™) wherex is (potentially) free in"E™. We
will show that the object-language capture-avoiding substitution of afgrfor x in E, written {E, /x}E, is
represented by the meta-language capture-avoiding substitutide,ofinto "E™, written["Ex™ /x] TE™.

More formally, we define the encoding mapping as follows:

Ul = u
My —T7 = arrow T T
™Wu.T? = forall (u] "T7)
x1 = X
PAxT.ET = fn "T7 ([x] "ET)
|_E1 E2—| — app |_E1—| |_E2—|
"Au.E? = tfn ([u] TET)
FE[T]—I — tapp I_E“I I_T“I

In the variable cases, what we are really saying is that the System Fleatigbrepresented as the LF
variablex that is spelled with the same text; note the different fonts on each side of tlaésesign. This
ensures that when we bind the variable in LF[&h ...) we are binding the variable that shows up in
the encoding of the term in which it is bound.

4.1.2 Adequacy and World Equivalence

Now that we have given an encoding, we should check adequacyr previous adequacy statements, the
encoding of the object language was always well-formed in the empty ¢ohew that we have introduced

22

variables, this will no longer be true; for example, the encoding of a Vanals not an LF term of typém
in the empty context. The statement of adequacy about a language with bindétdgnoiude a statement
about the LF contexts in which the representation is adequate:

PROPOSITION4.1: ADEQUACY OF SYSTEM F ENCODING. Relative to the signaturE above,

1. there is a bijection between System F types with free type variablgs inu, and LF termsT such
thatu;:tp...up:tp by T : tp.

Moreover, this bijection is compositional in the sense §&t/u}Tis [Ty /Tu] T,

2. There is a bijection between System F terms with free type variabigs. inu,, and free term vari-
ables inxy,...x, and LF termsE such thatu; :tp...up:tp,x1:tm...x,:tm by E T tm

Moreover, this bijection is compositional in the sense fitat/x}Eis [TE, /"< 7| TE™T and{Ty/u}E
iS [I—Tz—l / I—u—l] I_E—I .

In the proof of the second part, we would like to use the first. For examplenwonsideringapp "E™" " T,
we would like to know that T adequately represents The first part of the theorem establishes this fact
for contexts of the formu, : tp...u, : tp. But does this fact imply anything about the canonical forms of
typetp in contexts of the formuy : tp...u, : tp,xg :tm...x, :tm?

We say that avorld is a set of LF contexts; in particular, we will consider worlds that are gded
by regular expressions. For examp(le; tp)* describes the world of LF contexts for which we stated the
first part of this adequacy theorem. Then, the more general questi@amditis this: if the canonical forms
of a type adequately represent some object-language entity in one wortbey necessarily adequately
represent the same entity in another world? In general, the answer ismexample, if we add another
variable junk : tp to the world, the canonical forms of type will no longer adequately represent System
F types with free type variables in.. .u,.

Is it always the case that adding any extra variables to the world brealegldguacy of a type family?
No. In the example at hand, going from the warld tp. . .u, : tp tothe worldu; : tp...u, : tp,x; : tm...x, : tm
does not change the canonical forms of typebecause variables of LF typa cannot appear in LF terms
of type tp. This makes sense: System F terms cannot appear in System F typeshdus the general
rule?

To answer this question, we define an order on worlds, with the intentiowtrldt W, <, W if all the
canonical forms of typé in W, are also present in,. Then, two worlds arequivalentfor a type familyA
if each is less-than the other. This definition makes use of the concepbofdination In general, we say
that a type familya is subordinate to a type family if canonical forms of type. can appear in canonical
forms of typeB. For exampletp is subordinate tam but not vice versa. Twelf tracks the subordination
relation among type families in your signature.

Two worlds that are equivalent for one type family may not be equivdtgrdanother, as the definition
depends on which other type families are subordinate to the one in questicaudgeequivalent worlds
differ only in assumptions that are not relevant to the type familyis a theorem that the adequacyhos
preserved in all equivalent worlds. | present these definitions moneaity in Appendix A.

We can now prove ROPOSITION4. 1:

Proof. First, prove that the worlds in the two parts are equivalent; then, the fobtofvs the techniques
from Section 2. See Appendix A. O

23

4.2 Encoding the Static Semantics
4.2.1 Informal Static Semantics

For the static semantics of System F, we employ the following contexts:

A=A utype
o= 0x:T

A contextA is well-formed when all variables in it are distinct. A contéxis well-formed with respect
to a contextA when all variables are distinct and every type is well-formed accordingeddifowing
judgement.

WF-VAR
A, utype, A’ I utype
A FTytype A FTtype A, utype F T type
WF-ARROW WF-FORALL
A FTy,— Ttype A FVu.Ttype

Type formation amounts to checking that all type variables are bound. , Tinging is defined by the
following judgement.

A:THE:T

OF-VAR
A Dox:T,IV Fx: T

AFTotype A;Dx:To FE:T OF-EN A;THFE:To—-T A; T FE:T) OF-APP
A; T FAxT.E:To— T A; T FELE:T

Ajutype; ' FE: T OF-TEN A;TFE:Vu.T A FTsytype OF-TAPP
AT FAuwE:Vu.T AT Eq[To] : {To/u}T

We employ the convention that there are implicit side-conditions on binding fermaring that bound
variables are not already boundAnor T". Then the typing rules maintain the invariant that the contexts are
well-formed, so there is no need to check that the context is well-formee &dkies (e.g., iDF-VAR). We

will check in Section 5that\; T" - E: T impliesA + T type.

4.2.2 Encoding Type Formation

In Section 2, we saw how to encode categorical judgements in LF; howbeestatic semantics of System
F include hypothetical judgements. Following the guidelines in Section 2.9, wet pigiulate that we
should represent the judgemeXtt T type with a type family

wf : ctx -> tp -> type.

wherectx is some LF type representing the encoding of a type context. While this is [@yssib not the
representation of hypothetical judgements that makes the best use of LF.
Let’'s consider what we expect of a hypothetical judgement:

24

e The hypothesis rule—e.gwF-vAR—should hold. If we have assumed a derivation of a judgement,
we should be able to conclude that judgement.

e The hypothetical judgement should satisfy a substitution principle. For traghe above, the desired
theorem is the following: 1A, utype + T type andA + T; type thenA + {T,/u}T type. Thatis,
when we substitute an actual thing for the hypothesis, the judgement still holds

One of the observations that makes Twelf so useful is this: we can espregpothetical judgements
using the binding structure of LF. That is, we represent an object-tayegderivation of a hypothetical judge-
ment as an LF term with free variables, where the variables stand for pfuthgses. Then the substitution
principle for the judgement is just substitution in LF.

For example, we can encode the judgem&nt T type with the following signature:

%% well-formed type
wf : tp -> type.

wf-arrow : wf (arrow T2 T)
<- wf T2
<- wf T.
wf-forall : wf (forall (Ju : tp] (T w)))
<- ({u:tp} {du : wf u} wf (T u)).

The encoding of derivations is defined as follows:

TA,utype, A’ F utype” = du
Dy D
A FTortype A FTtype
r A FTy— Ttype 1 = wfarrow DT "Dy

D
A,utype - T type
T AFVu.Ttype ™

wi-forall ([u : tp] [du : wf u] D)

What's going on here? Hopefully the casevdrarrow is straightforward. Fowf-var , we said that
we we wanted to represent uses of hypotheses as LF variablessbdbate is only one well-formedness
hypothesis for each object-language variabléve chosen as a naming convention tbatwill stand for the
well-formedness hypothesis abautThe type ofwf-forall requires some explanation. In the premise,
we have a derivatio® with free variablesA, u that may use the hypothesis rulee-varR on any of these
variables. Thus] D" will be an LF term with free variables including, du, and similarly for the other
variables inA. Butu is bound in the on-paper application\wF-FORALL, So neithew nor the applications
of WF-VAR for it can appear below the line. Consequently, the LF representatier-&foRALL binds both
u anddu. Thus, the premise offF-FORALL is represented as a dependent function that, given autyoel
a derivationdu of its well-formedness, produces a derivation thati is well-formed. This is reflected in
the type ofwF-FORALL and in the encoding.

Some other things to note:

e Because we use the LF context to represent the object-languagetctimtecontext does not appear
as an argument to the type family representing the judgement.

25

¢ I've used Twelf’s syntactic niceties here to suppress the binding of sysé® Section 3.3). In a purer
syntax, the signature would look like

wf-arrow : {T2:tp} {T:tp}
wf T2 -> wf T -> wf (arrow T2 T).

wf-forall ;. {T:tp -> tp}
({u:tp} {du : wf u} wf (T u))
-> wf (forall (Ju : tp] (T u))).

The encoding function would then apply these constants to the syntaxiegs@$ defined above:

2 D
A FTotype A T type
T AFT,—>Ttype ' = wlarrow TT,7 "T? "D, "D
A, utype F T type
T AFVYu.Ttype ™ = wf-forall ([u:tp] "T")([u : tp] [du : wf u] D)
This last line points out that my notation is slightly confusing. The consta&tORALL must abstract
over the body of the argument to tharall , but there is no way in LF to abstract over a term with a

free variable without internalizing that free variable as a function; thims typep -> tp . Thus,
TT7, which is supposed to be an LF term with a free variablés notT, but(T u) . I find the
mnemonic of using “T” in both places to be more helpful than hurtful, though.

e With respect to the fully explicit constants in the previous bullet, our originaktants that use the
backward-arrow syntax¢) (while still writing subgoals in the order that we'd write them on paper)
end up with their arguments swapped: contrast the ord& afidD,. This is annoying until you get
used to it, but you'll internalize it fairly quickly. When you get a weird typeoe, look for this as a
possible cause.

e ForwF-FORALL, where did the implicit side condition thatis not already imA go? This is handled
by a-conversion in LF: because the premise of the rule binds an LF varialdenversion ensures
that this variable is not already in the LF context.

We should check adequacy for this encoding; the contexts in which tloglimgds adequate result from
the discussion above:

PROPOSITION4.2: ADEQUACY OFA F T type. There is a bijection between derivations of
ui type,...,untype F T type (Whereus type, ..., u, type is a well-formed context) and LF ternbssuch
thatu, :tp,dug :wfuy,... Fx D @ wf TT'.

Proof. This proof is similar to the proof fosum, though here we must deal with binding. In particular,
you will have to ascertain that the worlds in this theorem statement are &miifar types and terms to
the worlds in which the syntax encodings are adequate. Give it a try if yeydikd then take a look at
Appendix B. O
4.2.3 Encoding Typing

Encoding the typing rules is mostly straightforward now that we have hyposihgudgements under our
belts. We extend the signature as follows:

of : tm -> tp -> type.

26

of-fn : of (fn T2 ([x:tm] (E x))) (arrow T2 T)
<- wf T2
<- ({x : tm} {dx : of x T2} of (E x) T).
of-app : of (app E1 E2) T
<- of E1 (arrow T2 T)
<- of E2 T2.
of-ttn : of (tfn ([u:tp] (E u))) (forall ([u:itp] T u))
<- ({u : tp} {du : wf u} of (E u) (T u)).
of-tapp : of (tapp E T2) (T T2)
<- of E (forall (Ju] T u))
<- wf T2.

Then, we use the encoding:
A T,x:T, TV Fx:T7 = dx

Dy D
AFTotype A; I ,x:To HE:T
T AT FAxTE:To—>T 7

of-fn ([x:tm] [dx : of x "T2'] D7) "Dy

D Do
A;TFE::T,—»T A;T FE:T)
r A; T FELE:T 17 = ofapp "Dy "SD;i!

D
A,utype; ' HFE:T
"TA; T FAuE:Vu. T = oftfn (u : tp] [du : wf U] D7)

D, D,
A; T FE :VuT AFTstype

T AT FE[To] :{To2/u}T T

of-tapp "D, "Dy

We once again represent typing assumptions using LF assumptions: tleiabledx corresponds to
the use of the on-paper use of the ralevaRr for x. The constanbF-FN is analogous tavF-FORALL, but
in this rule we are adding a typing assumption to the context. As before, fivthéeabstraction over the
meta-variables that appear in the syntax implicit. Additionally, note again thatrdee of the derivations
flips when we use the backward-arrew to declare the constants corresponding to the inference rules.

Given the discussion off, this encoding should be mostly straightforward. However, one subtlety
is the result type iroF-TAPP. On, paper the result type of this rule{$,/u}T. By adequacy of syntax
(PROPOSITION4.1), thisis[" T /u] "T". As discussed aboveé, T isreally(T u) (whereT is an LF
term of typetp -> tp that is well-formed independently of the bound variabjesoT "T," is indeed
[FT27 /u]"T7. This all must be reasoned out formally in the proof of adequacy:

PROPOSITION4.3: ADEQUACY OFA; T' HE:T.
There is a bijection between

e derivations ofu; type, ... ; x1: T1,... F E: T, whereA = uj type, ..., u,type is well-formed and
I'=x1:T1,...,Xm: Tm is well-formed with respect td; and
e LFtermsD such thatu; : tp,duy :wf ug,...,x1:tm,dxy:0f x4 "T1',... kb2 D T of TET TTT

Proof. See Appendix B if you get stuck. You will need to consider world equivadeto reuse the proofs of
adequacy for syntax and type formation. O

27

4.3 Encoding the Dynamic Semantics
4.3.1 Informal Dynamic Semantics

We'll employ a call-by-value, left-to-right dynamic semantics for closed temhgre type abstractions are
considered values.

ValuesV ::= Ax:T2.E |Au.E
E— E

E1E —E E STER-APP- ViEs o Vi B STER-APP-

T2 E) Va = [Va/xJE STER-APP-BETA

El — Ell 1
STEP-TAPP- STEP-TAPP-BETA
El[Tz] —> E?I. [Tg] (/\ u. E)[Tz] — {T2/X}E

4.4 Encoding the Dynamic Semantics

The dynamic semantics is, for the most part, easier to encode than the statitisgnférst, the dynamic
semantics is given as a categorical, rather than hypothetical, judgemenérsomi don'’t introduce any
extra binding structure here. Second, substitution in the object languageleded as substitution in LF, so
there is no need to define any machinery for substitution.

The one mildly tricky part is handling the subsynté>of values. LF doesn’t give us a way to define
subtypes, which is what the subsyntax would correspond to if we wantetetpret it literally. However,
we can equivalently think of the subsyntax as defining a judgefentue over all expressions such that
E value is derivable exactly wheh is also produced by the grammar defining values (Eds also aVv).
For example, on paper this judgement would be defined as follows:

————— VALUE-FN —— VALUE-TFN
Ax:T. E value Au. E value .

In the LF encoding, we make use of such a judgement, and interpretrarreéeto the meta-variablé
in a rule as am E with an extra premise ofalue E . We enrich the signature as follows:

%% values
value : tm -> type.

value-fn : value (fn A E).
value-tfn : value (tfin E).

%% operational semantics
step : tm -> tm -> type.

step-app-1 : step (app E1 E2) (app E1’ E2)
<- step E1 EI.

step-app-2 : step (app V1 E2) (app V1 EZ2)
<- value V1

28

<- step E2 EZ2'.
step-app-beta : step (app (fn T2 ([x:tm] (E x))) E2) (E E2)
<- value E2.
step-tapp-1 : step (tapp E1 T) (tapp E1' T)
<- step E1 E1'.
step-tapp-beta : step (tapp (tfn (Juitp] E u)) T2) (E T2).

To define the encoding, we make use of the following lemma:
LEMMA 4.4: ADEQUACY OF VALUE JUDGEMENT. There exists a bijection between terMswith free
variables inuq,. .. x1,...and canonical LF termB such thatu; :tp,...,x; :tm Fx D:value "V.
Proof. See Appendix B. O

Then the encoding is defined as follows:

Dy
E; — E}

"E1 Ep — E] Ep” step-app-1 "D

Dy
E2 = E/2
"V1 Ep — Vi B}

step-app-2Dvl ™D,

"(Ax:T2.E) Vo — {Va/x}E™ step-app-beta Dv2

D,
E]_ = Ell
"E1[T2] — E1[T2]

step-tapp-1 ™Dy

T(ANu.E)[To] — {T2/x}E step-tapp-beta

whereDvi is the LF term corresponding ¥ by LEMMA 4.4.
The statement of adequacy is straightforward:

PROPOSITION4.5: ADEQUACY OF DYNAMIC SEMANTICS. For closed expressions and E/, there is a
bijection between derivations &f— E’ and canonical LF termd such that -y D:step E™ "E'™.

Proof. See Appendix B if you get stuck. O

5 Meta-theory of Languages with Binding: Properties of System F

5.1 Preservation

Preservation is relatively straightforward. For the most part, it uses teahniques that we covered in
Section 3. The type family representing the theorem statement is

preserv : of E T
-> step E F
> of EET
-> type.
%mode preserv +X1 +X2 -X3.

29

Make sure that you understand how the translation of this type family iinté-statement gives the usual
definition of type preservation. Later, in tB&worlds declaration, we will declare that we are proving this
theorem for closed terms; keep this in mind as you try to understand the proof

The proof of preservation is usually given by induction on the dynamic sgosalerivation. We expect
to have once case for eastep rule. Let’s start withstep-app-1

- . preserv
(of-app (DofE2 : of E2 T2) (DofEl : of E1 (arrow T2 T)))
(step-app-1 (DstepEl : step E1 E1))

(of-app DofE2 DofE1’)
<- preserv DofE1l DstepEl (DofEl’ : of E1' (arrow T2 T)).

Some notes on this case:

e Inversion: In this case, we use inversion as follonstep-app-1 concludesstep (app E1
E2) (step app E1' E2) |, sothe typing premise concludet (app E1 E2) T ;byinspec-
tion of the typing rules, the only rule that can make this conclusion for the aymfarm (app E1
E2) is of-app , in which case we have derivatioD®fE2 andDofE1 with the types noted in the
case.

In Twelf, the inversion is written by pattern-matching the typing premise as weda If the inver-
sion reasoning were incorrect (i.e., if there were another rules thit bave derived the conclusion),
this case itself would still type check and mode check. However, if we didth@rwise cover that
other rule, we would get an input coverage error when we tried to ctiectheorem. Thus, we can
inline the inversion lemma, rather than stating it explicitly.

¢ Induction: After the inversion, it is simple to finish off the theorem by appealing to induaiiothe
subderivatiorDstepE1l and the typing derivation fdg1 that we got from inversion.

e Order of Arguments: As we discussed a little in Section 4 when we were doing the encoding, the
order of the arguments to, for examptd;app is the reverse of the left-to-right order that we wrote
on paper. If you see a strange type clash during the proof, look foashéscause. For example, if we
forget that the arguments should be swapped here, we get the follomwarg e

Type mismatch

Expected: of ‘E2 ‘T2

Inferred: of ‘E1 (arrow ‘T2 ‘T)
Head mismatch

Ascription did not hold

(Index object(s) did not match)

Type mismatch

Expected: of X2 (arrow (arrow ‘T2 ‘T) X1)
Inferred: of ‘E1’ (arrow ‘T2 ‘T)

Head mismatch

Argument type did not match function domain type
(Index object(s) did not match)

Type mismatch
Expected: of (app ‘E1" ‘E2) ‘T

30

Inferred: of (app X2 ‘El) X1

Free variable clash

Argument type did not match function domain type
(Index object(s) did not match)

3 errors found

On to the next case:

- . preserv
(of-app Dof2 Dofl)
(step-app-2 (Dstep2 : step E2 E2’) (Dvall : value E1))
(of-app Dof2’ Dofl)
<- preserv Dof2 Dstep2 (Dof2’ : of E2' T2).

This case is very similar to the previous one. Note that the type annotation® amptits are (usually)
optional; I've left them off this case because they are the same as in theyseAs it turns out, we do not
needDvall for this case, so we could have elided its name, using imstead.

Now, the case fof-reduction:

- . preserv
(of-app
(DofE2 : of E2 T2)
(of-fn (DofE : {x} {dx : of x T2} of (E x) T) (DwfT2 . wf T2)))
(step-app-beta (Dv2 : value E2))
(DofE E2 DofE2).

Some things to note:

e Inversion: In this case, we do two inversion—first on the application, and then on tiegidun. Both
of these are justified by the syntactic form of the left-hand side of dynamnasics derivation,
whichis(app (fn) _). When we have nested inversions like this, we just extend the pattern
matching deeper.

e Substitution: As we've noted, we get both substitution for terms and the proof that sulmstitu
preserves typing for free by encoding the syntax and judgements aaweelh this case, there is no
substitution lemma necessary; we simply apply the LF function to the appropmaieants.

The remaining cases are similar:

- . preserv
(of-tapp (DwWfT2 : wf T2) (DofE1l : of E1 (forall ([u] (T u)))))
(step-tapp-1 (DstepEl : step E1 E1%))

(of-tapp DwfT2 DofEl")

<- preserv DofE1l DstepEl (DofEl’ : of E1' (forall ([u] (T u)))).
- . preserv
(of-tapp
(DwfT2 : wf T2)
(of-tfn

(DofE : {u : tp} {du: wf u} of (E u) (T u))))
step-tapp-beta
(DofE T2 DwiT2).

31

We now check the theorem as follows:

%worlds () (preserv _).
%total D (preserv _ D).

Some notes on checking this theorem:

e Termination: In each inductive call, the dynamic semantics derivation is a subderivatiothis
particular proof, the typing derivation in each call is also smaller, so thef mauld also be viewed
as being by induction on typing (switch tBeand the first in the%total declaration).

e Worlds: We state this theorem for the empty world. However, the empty wontigquivalent to
the world for which typing derivations are adequate for the type faofilySo why does this theorem
statement make any sense?

First, the empty world is a subworld of the worlds in which types, terms, typefaetiedness deriva-
tions, and typing derivations are adequate (in the sense that the contéstisngséhe empty world are
a subset of the contexts matching those worlds). This means that the cdhdénierms of these types
in the empty worlds will all be the image of some informal object, but it's not reardy the case that
they cover all informal objects. Indeed, if we look at the statements ofueagdor types, terms, type
well-formedness derivations, and typing derivations, we see that thiy éfRgontext corresponds to
closed expressions and empty-context derivations. Thus, this statehtleatheorem doesot cover
all of the informal object language, just those programs that are weltHiypthe empty context. This
is intentional: on paper, we usually only state preservation for terms thatedlréyped in the empty
context, as we only plan on evaluating closed programs.

¢ Input Coverage: We thought of this proof as proceeding by case-analysis of the dynamiargics
derivation, employing inversion on the typing derivation. It works jusivedl by case-analyzing
the typing derivation and inverting the dynamic semantics derivation. Fongheawhen the typing
derivation ends irof-app , there are three transition rules that might apply, and we have a case for
each. But then why don’t we need cases where the typing derivatidsm iaof-fn or of-tfh ?
If of-fn was used, we have as a premise a derivatiostedy (fn) _; however, no constants
inhabit this type, so the case is contradictory. The input-coverage ehadkomatically rules out
cases where the indices to type families are contradictory.

5.2 Progress

With preservation under our belts, we can move on to progress. The statdraewe usually make on
paper is

If -; - = E:T then eithelE value or there exists af’ such that — E’.

The first question is how we represent this in Twelf. Vi statements over LF types, there is no built-in
general sum construct that we can use for the “or”. However, it$y eaough to define such sums on a
case-by-case basis: we define a judgement representing the desielt shis case, we write:

val-or-step : tm -> type.
val-or-step-step : val-or-step E
<- step E E.

val-or-step-value : val-or-step E
<- value E.

32

That is,val-or-step E is derivable when eithdkt is a value oIE can take a step.
Then the statement of progress is straightforward:

progress : of E T
-> val-or-step E
-> type.
%mode progress +X1 -X2.

Let's start the proof, which, since we do not have any lemmas to do on, milbasly work by case-
analyzing the typing judgement. As a warm-up, the cases for functions padusctions are easy, as both
are values:

- . progress
(of-fn DofE)
(val-or-step-value value-fn).

- . progress
(of-tfn DofE)
(val-or-step-value value-tfn).

Note that I've begun to leave the types to inference and elide the namesle¥amnt derivations (for example,
the type well-formedness derivation that is the second argumeitfto). Now that I'm used to Twelf,
| find it easier to read code without these annotations. Also, note thatd®the syntax arguments to
value-fn andvalue-tfn are implicit, Twelf here figures out which function we’re saying is a value
based on the type of the theorem.

Now for application:

- . progress
(of-app (DofE2 : of E2 T2) (DofE1l : of E1 (arrow T2 T)))

<- progress DofE1l (Dvsgl : val-or-step E1)
<- progress DofE2 (Dvsg2 : val-or-step E2).

In this incomplete case, I've left anfor the missing result derivation. We get started by observing that, by
induction,val-or-step E1 andval-or-step E2 . To finish off the case, we’ll have to case-analyze
these derivations ofal-or-step

1. whenE1 takes a step, we can aptep-app-1
2. whenEl is a value andE2 takes a step, we can ap@iep-app-2

3. when they are both values, by a canonical forms lentthianust have the fornffn ...) and then
we can applystep-app-beta

How do we do this in Twelf? You might think that we could do the case-analyspatiern-matching,
for example by writing out the first case as follows:

-1 : progress
(of-app (DofE2 : of E2 T2) (DofE1l : of E1 (arrow T2 T)))
(step-app-1 DstE1)
<- progress DofEl ((val-or-step-step DstE1l) : val-or-step El)
<- progress DofE2 (Dvsg2 : val-or-step E2).

33

Then we would write two other constant® (and-3) corresponding to the other two cases. Unfortunately,
this turns out not to work. The problem is that Twelf checks output @meon a case-by-case basis, not
considering the other constants inhabiting the same type family. Thus, it inooglke thatl , -2 , and-3
together cover the output; each one must cover it individually.

However, Twelf obviously allowsnput coverage to be split across cases, so we can get around this
problem by moving the case-analysis of the output into case-analysisioptiigo a lemma. This is called
factoring In this example, we can start with a lemma

progress/app : val-or-step E1
-> val-or-step E2
-> val-or-step (app E1 E2)
-> type.

%mode progress/app +X1 +X2 -X3.

that takes as input the two inductive results from progress and prediaeenecessary output. However, a
little thought (or trying to go through the proof) reveals that this lemma is false-example E1 could be
(tin ...) , Which is a value. Thugrogress needs to pass the typing derivation it to the lemma
as well:

progress/app : of E1 (arrow T2 T1)
-> val-or-step E1
-> val-or-step E2
-> val-or-step (app E1 E2)
-> type.
%mode progress/app +X1 +X2 +X3 -X4.

The proof of this lemma is straightforward; the cases correspond to treertiestioned above:

- . progress/app

(_val-or-step-step DstepEl)

(_val-or-step-step (step-app-1 DstepEl)).
- . progress/app

(_val—or—step—value DvalEl)

(val-or-step-step DstepE2)

(val-or-step-step (step-app-2 DstepE2 DvalEl)).
- . progress/app

(_val-or-step-value DvalE1l)

(val-or-step-value DvalE2)

(val-or-step-step (step-app-beta DvalE2)).

%worlds () (progressfapp _ _ _).
%total {} (progressfapp _).

Some things to note:

34

e Underscores:In the first case, I've elided the name for the derivationE@r as the application can
make progress regardless of wEZ does. In all cases, I've elided the name for the typing derivation,
as we never need to refer to it.

e Canonical Forms: If we never refer to the typing derivation, how does it solve the problequivE
alently, what happened to the canonical forms lemma that we mentioned whirought through
the case above? The answer is that, because the lemma presuntek hlagttypearrow T2 T ,
Twelf can do the canonical forms lemma for us just by checking for confiieteeen indices. That
is, the only terms for whiclkralue E1 is derivable aré¢fn T’ ...) and(tfn ...) ; because
of E1 (arrow T2 T) isalsoderivableEl mustbe(fn T2 ..)) because that is the only one
of these two syntactic forms for which the judgement is inhabited. Thus, tltbdhse, which on the
face of it seems to just assume tEdtis of the right shape, really does cover all the cases.

Returning to theorogress theorem, this lemma makes theEapp case easy:
- . progress
(of-app (DofE2 : of E2 T2) (DofEl : of E1 (arrow T2 T)))
DvsApp
<- progress DofEl (Dvskl : val-or-step E1)
<- progress DofE2 (Dvsk2 : val-or-step E2)
<- progress/app DofEl Dvsgl DvskE2 (DvsApp : val-or-step (ap p E1 E2)).

The case for type application is similar; we need another little factoring lemma:

progress/tapp : of E1 (forall T)
-> val-or-step E1

> {T2 : tp}
val-or-step (tapp E1 T2)
-> type.
%mode progress/tapp +X1 +X2 +X3 -X4.
- . progress/tapp
Dof

(val-or-step-step DstepE1)

(_val-or-step-step (step-tapp-1 DstepEl)).
- . progress/tapp

Dof

(val-or-step-value DvalE1)

(_val-or-step-step step-tapp-beta).

%worlds () (progressftapp _).
%total {} (progressitapp _ _ _).
- . progress
(of-tapp (_ : wf T2) DofEl)
DvsTpp

<- progress DofEl DvskEl
<- progress/tapp DofE1l DvsgEl T2 DvsTpp.

35

Note that we simply pass the argument tyzitself to the lemma since the lemma does not require any
derivation of a fact about the type (Check yourself: what would gongrif we left T2 implicit?). As
above, Twelf is doing this canonical forms lemma for us in checking that thescafprogress/tapp
are sufficient.

Now that we've covered all typing derivations that are possible in the eogptiext, we can successfully
check the theorem:

%worlds () (progress _).
%total D (progress D).

5.3 Regularity and Non-empty Contexts

We now prove a theorem calledgularity (or oftenvalidity), which states the subjects of judgements are
well-formed. This lemma is necessary when developing more complicated typetdere, it is simply a
useful sanity check. For System F as we have specified it, the onlympydpeheck is

If A is well-formed,I" is well-formed with respect td\, andA ; I - E: T thenA + T type.

As we mentioned before, a type-formation cont&xs well-formed if all variables in it are distinct; a typing
context is well-formed with respect to a type-formation contiext all variables are distinctand + Ttype
for all typesT in it.

Observe that, unlike all theorems we have proven so far, this theoremad &ta arbitrary contexts.
How do we encode this in the LF theorem statement? This is whergotharlds declaration is used.
The %worlds declaration specifies the form of the LF contexts in which\tHestatement specified in a
theorem statement should hold. Because we represent the objectgaraguriext with the LF context, this
is how we encode the context present in the informal theorem statementtheikemodedeclaration, the
%worlds declaration is part of the theorem statement; we have not paid it much attentibnaw only
because we only stated theorems about the empty context (type safdtysknt programs). Below, we will
see two theorem statements that differ only their worlds (i.e., they are spdnjfibe same type family and
mode declaration) where one theorem is true and the other is false. This saise: changing the worlds
changes the canonical forms that the theorem statement quantifies over.

The type family and mode for regularity are simple enough:

reg: of ET -> wf T -> type.
%mode reg +X1 -X2.

First, itis instructive to see that we cannot prove regularity by inductiahetyping derivation if stated
for empty worlds (i.e., if ; - - E: T then- - T type). Consider the case for functions:

- . reg (offn ([x] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow Dwf T DwfT2)
<- ??7?

We need to appeal to induction on the typing premise, but we are stuck: tbandnly be applied to a
derivation in the empty context, but the premise appears in a hon-empty tohiekwelf, this problem
manifests itself aBofE having typelx:tm} {dx : of x T2} of (E X) T , SO it is not even type-
correct to call the theorem inductively @ofE .

Thus, our ultimat&sworlds declaration will be non-empty. In the statement of adequacyrRioH> St
TION 4.3, we said that we represented object language context of the form

ui type,...,untype;xs:T1, ., Xm: T

36

with LF contexts of the form
ugitp,dug cwf ug,...,xpitmdxyiofx "1,
We now need to know how to describe LF contexts of this form to Twelf. Afiiysis this:

%block wif-block : block {u : tp} {du: wf u}.
%block of-block : some {T1 : tp} block {x : tm} {dx : of x T1}.
%worlds (of-block | wf-block) (reg _).

A block declares a sequence of bindings appearing together in the tdoteexample, the first block dec-
laration declares a unit : tp, du : wf u , and the second : tm, dx : of x T1 for some

T1. A theorem in worldgwf-block) is declared for contexts containing any number of blocks of the
form specified bywf-block ; a theorem in worldgof-block | wf-block) is declared for contexts
containing any number of eithef-block or wf-block in any interleaving. That is, in this case, the
theorem is defined for contexts matching the regular expregsfaolock | wf-block)* . Conse-
guently, these contexts are callegjular worlds(the phonetic collision with regularity is coincidental).

This regular expression describes all contexts mentioned in the adesfatemnent. However, we can
actually give a more precise statement about the worlds described in tipeeagiestatement. In particular,
consider the typd@1 in a typing assumption, which in the statement of adequacy is the encoding of
someT; in the object-language typing contéRt In the statement of adequacy, we assume that the typing
contextl" is well-formed with respect té\, which means that this typEL is well-formed with respect to the
type well-formedness assumptions in the ambient context. Thus, a bettirregoression for the worlds
mentioned in the adequacy statement is this:

%block of+wf-block : some {T1 : tp} {dT1 : wf T1} block {x : tm} { dx : of x T1}.
%worlds (of+wf-block | wf-block) (reg _).

That is, in typing blocks, we require that there be some derivation that plesityquestion is well-formed.
This will be important later on.

Now that we know how to state a more general theorem, how do we exploit thisigi¢y in its proof?
We can make inductive calls to the theorem in any world matching the declapeelssion. For example,
we can complete thef-fn case as follows:

- 2 reg (of-fn ([x : tm] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow DwfT DwiT2)
<- ({x : tm} {dx : of x T2}
reg (DofE x dx) (DwfT : wf T)).

This call is world-correct because it calls the theorem in a context camgeame block matchingf-block
(note that the derivatioBwfT2 satisfies thesome condition thafT2 is well-formed). To call a theorem in
an extended context, we make the premise of the case higher-order,goihdimariables in the extended
context. Thinking offeg Dof Dwf as defining a relation frorbof to Dwf based on inhabitation of the
type, this constant provides an inhabitant of tifién ... part of the argument space provided that, for
arbitrary variablex anddx, we can always come up with an inhabitanted (DofE x dx) DwfT for
someDwIT. The meta-theorem checker justifies this inductive call by induction ovesrgeal forms—in
this case, the canonical forms of higher type. Because LF respeaxiaversion, the variables bound in this
case are automatically “fresh”.

The case for the other binding form follows a similar pattern:

- : reg (of-ttn ([u] [du : wf u] Dof u du)) (wf-forall Dwf)
<- ({u} {du : wf u}
reg (Dof u du) ((Dwf : {u} {du} wf (T u)) u du)).

37

Here, we make the inductive call in a context matchirfgblock . In the previous case, we did not allow
the result derivation ofvf T to mention the new variables in the contextanddx . Here, we express that
Dwf does have free variables by giving it a function type and applyingut &amddu in pattern-matching
the output of the inductive call. This makes sense for our object langug®ations of type formation
cannot refer to terms or typing derivations, but they can refer to typdgyping derivations. Below, we
will discuss how Twelf verifies that we have done this correctly.

As one would expect based on the form of the rules, the other cases deed induction in extended
contexts:

- . reg (of-app DofE2 DofEl) DwiT
<- reg DofEl (wf-arrow DwfT _).

- : reg (of-tapp Dwf2 Dofl) (Dwf _ Dwif2)
<- reg Dofl (wf-forall (Dwf : {u : cn} {du : wf u} wf (T u))).

In both cases, I've inverted the output derivation, pattern-matchinigsigae form that it must have based
on the shape of the type in question. In the first case, I've left part efotitput unnamed since it is
unnecessary. In the second, I've elided the type annotations that wamdT2, so I've also let Twelf
figure out what type I'm applyin@wf to by writing an_ in the output (though we could just as easily name
it T2 right there).

Now, we can enter th&worlds declaration that we discussed above:

%worlds (of+wf-block | wf-block) (reg _).

Note that this must come after the cases of the theorem; unlike mode, Tweliatagreck worlds incremen-
tally. In checking this declaration, Twelf verifies that all the callsg¢g are in contexts of the appropriate
form.

Finally, we can check totality

%total D (reg D).
and get a coverage error!

Coverage error --- missing cases:
{XL:itp} {#of-block:{x:tm} {dx:of x X1}} {X2:wf X1} |- reg #o f-block_dx X2.

What went wrong? Input coverage checks that the type farey Dof Dwf is inhabited for all
canonical LF terms of typef E T in the signature and worlds provided. In this case, the varidblm a
context block of the fornof-block is one such LF term, but we did not give a constant inhabitéw
dx D for someD.

Translating back using adequacy, this says that we did not cover tiabdleacase; on paper, we prove
theof-var case by appealing to well-formednesdpfwhich implies that all types in it are well-formed.
Thus, this is where we need to make use of the type formation derivatioofthat-block requires to
exist. Unfortunately, it is not enough just to have such a derivation; wat aiso give Twelf a case ogg
that tells it how to find it (i.e., inhabit the relation representeddry for dx). Moreover, because the only
place we can mention variables is in the context, we have to put the case tbetrem in the context. In
particular, we extend the typing context blocks as follows:

%block of+reg-block : some {T : tp} {dT : wf T}
block
{x : tm} {dx : of x T}
{ : reg dx dT}

38

This block ensures that whenever we add a term and its typing derivat®mlso add a case foeg
showing why the type in question is well-formed.
If we try to recheck the theorem in these worlds

%worlds (of+reg-block | wf-block) (reg _).
we get a world violation on thef-fn case:

- 2 reg (of-fn ([x : tm] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow DwfT DwfT2)
<- ({x : tm} {dx : of x T2}
reg (DofE x dx) (DwfT : wf T)).

This is understandable, as we changed the shape of the contexts inretpidk valid, and this constant
does not match the new shape. To fix the problem, we need to revise thartassfollows:

- . reg (of-fn DofE DwfT2) (wf-arrow DwfT DwfT2)
<- ({x} {dx : of x T2}
{ : reg dx DwfT2}
reg (DofE x dx) (DwfT : wf T)).

Note that we now usBwfT2 in defining the context. This corresponds closely to the on-paper cageefo
theorem, where we would need this derivation to arguelthat T, is well-formed.

And that does it! Though I've developed this theorem through sevalsg &tarts for pedagogical pur-
poses, the final result is quite simple:

reg: of ET -> wf T -> type.
%mode reg +X1 -X2.

. reg (of-fn DofE DwfT2) (wf-arrow DwfT DwfT2)
<- ({x} {dx : of x T2}
{_ : reg dx DwfT2}
reg (DofE x dx) (DwfT : wf T)).
. reg (of-app DofE2 DofEl) DwiT
<- reg DofEl (wf-arrow DwfiT _).
. reg (of-tfn Dof) (wf-forall Dwf)
<- ({u} {du : wf u}
reg (Dof u du) ((Dwf : {u} {du} wf (T u)) u du)).
. reg (of-tapp Dwf2 Dofl) (Dwf _ Dwif2)
<- reg Dofl (wf-forall (Dwf : {u} {du : wf u} wf (T u))).

%Dblock wi-block : block {u : tp} {du: wf u}.
%block of+reg-block : some {T : tp} {dT : wf T}

block
{x : tm} {dx : of x T}
{_ : reg dx dT}

%worlds (of+reg-block | wf-block) (reg _).
%total D (reg D).

Some notes on this theorem:

39

e Adequacy: Since our theorem is not stated for the world in which the encoding of SyBtésn
adequate, there is a danger that we haven't proven the theorem tisainiesd talking about using
on-paper notation. To check that we've proven the right theorem, wé chesk that the world we
provedreg total in is equal, foof andwf, to the worlds in which these type families are adequate.

The blockwf-block is exactly what we derived from the statement of adequacy. The ongrelifte
betweenof+wf-block , which we justified by adequacy, amd+reg-block is the additional
reg cases; we must check that these do not alter the canonical forms. &efyithey do not, as
reg is not subordinate to any of the type families in question.

e Termination: The only non-obvious part is why the inductive calls in the extended ctntae
justified. As we said above, the meta-theorem checker justifies these lstiomdover canonical
forms. For the canonical forms of function type, this allows you to extendctimeext with fresh
variables and then call a theorem inductively on a higher-order sulntetine input applied to these
variables. You can see the rules for canonical forms in Appendix A.

Up until now, we've been thinking that inductive calls are justified if the induncargument is a strict
subterm of the input. Induction on the canonical forms of higher typegigefrom this mental model
slightly: callingDofE x dx a subexpression of the input is suspicious, as we're applying a subterm
of the input to other terms! Intuitively, however, these other expressiggariables, and-renaming

does not change the size of a term. If we had substituted non-varialdesowd get a termination
error.

e Input Coverage: Straightforward, given that the case in the context covers the typirigatien
bound in the context.

e Output Freeness and CoverageFreeness is straightforward. However, to check output coverage,
we must check that the outputs from calls in extended contexts do noteéatgrignore some bound
variables. It is only permissible to assume that bound variables do natiocan output when Twelf
can verify that terms of the variable’s type can never appear in terms ofithat’s type. For example,
intheof-fn case, terms of typem orof x T can never appear in terms of typ# T . In contrast,
intheof-tfn case, terms of typg andwf u can appear in terms of typef (T u) , so we must
make the result dependent on these variables. If did not do so, fomdeas in

- . reg (of-ttn Dof) _
<- ({u} {du : wf u}
reg (Dof u du) (Dwf : wf (T w))).

it would be an output coverage error (assuming we can even write actypeet case, which seems
difficult in this instance).

As we mentioned above, Twelf tracks when terms of one type can appeammdéanother in some-
thing called the subordination relation; you can see the subordination rebgttgpingPrint.subord

in the Twelf server buffer (where it displays its output to you). Note thatdinrent printout shows
only immediate dependencies; the true relation is the transitive closure of/atnaee. You are only
allowed to form a dependent function spgeed} B when terms of typé\ may appear in terms of
type B; however, rather than making you specify this relation up front andkihgdt, Twelf infers
the relation based on the dependent function types that you include in tiedsig. This is part of
why world checking is not done incrementally.

Note that an underscore is parametrized by all relevant variables, sohtd replace®wf by _, it
would not lead to a coverage error (assuming we could complete the casetvéferring to it, which
in this case we cannot). This is howis different from an unparameterized capital-letter variable.

40

For the proof of this theorem, we only needed contexts that introduce lonk &t a time; however,
it is perfectly fine to introduce any sequence of blocks that match the reguoldds. For example, if
our language had existential types, the caseegf for their unpack elimination form would use both a
wf-block and anof-block

6 Related Documentation

If you'd like to read more on LF and Twelf, here are just a few of the mamjlable resources:

e The Twelf Wiki [3] is where | intend to post examples of all the advanceelftechniques that |
haven’t covered in this tutorial. Keep an eye on it.

e The Twelf User's Guide (available from the Twelf Web page [1]) diseagke features of Twelf and
includes some small examples of proving and checking meta-theorems.

e Crary and Harper have written a high-level overview of how to believe@lflproof [8].
e Harper, Honsell, and Plotkin’s first paper on LF introduces the reptason methodology [9].

e Pfenning’s logical-frameworks notes discuss representation in detaifjtiitbey only touch on meta-
theory [15].

e Pfenning’s notes on Computation and Deduction cover, among other thliafjsing adequate LF
representations and proving meta-theorems relationally [12]. Howeetatést version of these
notes predates much of the meta-theorem checker, and thus does ngsdtse particularities of
working with it.

e Theexamples directory of the Twelf distribution contains many examples of deductive sysénd
their meta-theory. These examples should, for the most part, be undiadsiauigiven what you know
now.

e Over the years, Frank Pfenning and his students have written manyspmapiermalizing meta-theory
in LF. However, many of these papers predate the meta-theorem chatt¢hus they present proofs
in the style we have seen but do not discuss checking them. The codatging many of these
papers is included in the Twelf distribution, and much of it seems to have hgatad to use the
meta-theorem checker.

Here are some examples:

Michaylov and Pfenning give some of the meta-theory of MinML [11].

Pfenning gives a proof of the Church-Rosser theorem for the simpbdtygalculus [13].

Pfenning gives a proof of cut elimination for intuitionistic logic [14].
Schirmann et al. work out some of the meta-theory6f[21].

e Crary and Sarkar [6] give a brief tutorial on representing naturallvers and provingum-commutes ,
which | have fleshed out in this guide. The remainder of the paper pgseseme of the LF represen-
tation and meta-theory of typed assembly language, with application to paoyirg code.

e Simmons’s undergraduate thesis presents the meta-theory of a languagefevithces [22], though
it does not discuss adequate representations.

¢ If you are interested in the meta-theory of LF itself, you should consulpétaand Pfenning [10].

41

If you are interested in the meta-theory of Twelf's meta-theorem chethkere are many papers
available. For example:

— Schirmann’s thesis and related papers discuss coverage checking [20].

— Pientka and Pfenning discuss termination checking [17].

— Anderson and Pfenning discuss a new feature, uniqueness chékirithis would save you
from having to prove that certain judgements’ outputs are uniquely detedrbyéneir inputs
when you could get Twelf to do so for you.

The EIf bibliography, linked from the Twelf Web page [1], cites many add#loelated papers.

7 What's Next?

If you've made it this far, you're well on your way to becoming a Twelf wizaYou've seen how higher-
order syntax and judgements make it easy to encode deductive systemdnditigb You've seen how to
prove that the formalized system you reason about is equivalent to $bamten you wrote on paper. And
you've seen how to write machine-checkable proofs of meta-theorems.

However, there are a lot of Twelf techniques that | haven't yet eaveSome of these techniques rely
on aspects of Twelf that | haven't discussed in this tutorial; others arelpiger uses of the machinery I've
presented—but uses that | didn’t think of until I'd seen them once. Itimersome here so you know what
you have to look forward to; hopefully, there will be some documented ebesnaih these techniques up on
the Twelf Wiki soon.

World Subsumption: In this tutorial, any time a theorem calls a lemma, both the theorem and the
lemma are declared to have the same worlds. This doesn’t have to be thenggesseral, you can call

a lemma declared in one world from a theorem declared in another if Twelfkttmat its argument

for the totality of the lemma is still valid in the world of the theorem. This is related torslitation

and world equivalence. There are techniques for dealing with situatibasawvorld subsumption is
insufficient, too.

Catch-all Cases:In the regularity example, we saw how to put cases for a theorem in thextonte
This is slightly annoying, as you then have to deal with the theorem every timengée a call in an
extended context. Sometimes, you can avoid putting cases in the contexiting &rcatch-all case
that covers the variable case without explicitly mentioning it.

Mutual and Lexicographic Induction: You will sometimes need to prove two mutually referential
theorems at once. Alternatively, you will need to prove a theorem by Igrégdic induction on more
than one of its arguments. Sometimes you will need to do both at once. Twptissigll this through
fancier%total declarations.

Explicit Termination Metrics: Sometimes, your proof will not be structurally recursive on any of its
subjects; instead, it will work by some size metric on one of the inputs. Youaode up the metric
as a judgement relating the derivation to its size and then induct arathe

% educes Declarations: These allow you to track when the output of a theorem is smaller than the
input. Consequently, you can make inductive calls on the output of a lemmeethats a smaller
derivation. In some situations, this can save you from having to use a metric.

42

e Reasoning from False:The coverage checker rules out many contradictory cases for ybapine-
times you will need to reason from contradictory assumptions yourselfcaowo this by declaring
an uninhabited typdalse , proving that certain assumptions are contradictory, and then writing
lemmas that conclude anything from a term of typlse

e Identity Types: When you are, say, proving that a judgement representing a functionse unique
output, you will need to define equality. The most useful thing is often artitgdyppe, whose only
inhabitant is reflexivity. For example, for equality tpf s:

id : tp -> tp -> type.
refl :id T T.

With this definition, it is easy to show that congruence rules are admissibdgjusdity of subexpres-
sions implies equality of the whole, and it is easy to show that other type famitipsceequality.

e Reverse the Polarity: When you're working with translations from one language to anothennjtbu
often stumble upon a limitation of the coverage checker. Roughly, while yoypeatheorem cases
in the context as we did witheg , these cases cannot themselves have premises (this is sometimes
called “third-order coverage checking”). There is a simple workaddhat often works; it involves
simultaneously proving an analogous theorem with a different mode, titpay to an3.

e Assumptions of Different Type: Sometimes, rather than using the kinds of higher-order encodings
we have seen here, it is useful to give assumptions a different typehbamnain judgement. This
comes up, for example, when doing the semantics of a programming langiithgestore—the usual
judgement is that a term is well-typed in a particular context and store typihgakiable assumptions
are made for all store typings.

8 Acknowledgments

Karl Crary taught me this material in his version@dmputation and Deductiamere at CMU in Fall 2004,

and he has provided invaluable Twelf help thereafter. Many of the exarptais guide are derived from
examples we did in class. Karl Crary, William Lovas, Susmit Sarkar, andnKé/atkins all provided

pointers to related sources of documentation. Thanks!

References

[1] http://www.twelf.org
[2] http://www.cs.cmu.edu/ drl/
[3] http://fp.logosphere.cs.cmu.edu/twelf/

[4] P. Anderson and F. Pfenning. Verifying unigueness in a logieah&work. Innternational Conference
on Theorem Proving in Higher Order Logic2004.

[5] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. B&gP. Sewell, D. Vytiniotis, G. Wash-
burn, S. Weirich, , and S. Zdancewic. Mechanized metatheory for theesiaghe POPLmark chal-
lenge. Ininternational Conference on Theorem Proving in Higher Order Log2€95.

43

[6] K. Crary and S. Sarkar. Foundational certified code in a metaloffimadework. InNineteenth Inter-
national Conference on Automated Deductia@03.

[7] J.-Y. Girard. Interprétation fonctionelle eglimination des coupures de l'arittétigue d’ordre
sugerieur. PhD thesis, UnivergtParis VII, 1972.

[8] R. Harper and K. Crary. How to believe a Twelf proof. http://www.cs.ceau/ rwh/, 2005.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining I@gi@ournal of the Association for
Computing Machinery40(1), 1993.

[10] R. Harper and F. Pfenning. On equivalence and canonicaidan the LF type theoryTransactions
on Computational Logic2003.

[11] S. Michaylov and F. Pfenning. Natural semantics and some of its metaytin EIf. InInternational
Workshop on Extensions of Logic Programmih§91.

[12] F. Pfenning. Computation and deduction. Draft course notes; ilabla from
http://www.cs.cmu.edu/ fp/

[13] F. Pfenning. A proof of the church-rosser theorem and itsesgtation in a logical framework.
journal. Journal of Automated ReasonintP93.

[14] F. Pfenning. A structural proof of cut elimination and its repred@ntan a logical framework. Tech-
nical Report CMU-CS-94-218, Department of Computer Science,gg&rMellon University, 1994.

[15] F. Pfenning. Logical framework$dandbook of Automated Reasonji§99.

[16] F. Pfenning and C. Schrmann. System description: Twelf - a metealogamework for deductive
systems. Irinternational Conference on Automated Deducti®®99.

[17] B. Pientka and F. Pfenning. Termination and reduction checking ilotfieal framework. InNorkshop
on Automation of Proofs by Mathematical Inducti@®00.

[18] J. C. Reynolds. Towards a theory of type structureSymposium on Programming974.

[19] S. Sarkar. Metatheory of LF extended with dependent pair aitdypes. Technical Report CMU-CS-
05-179, Carnegie Mellon University, 2005.

[20] C. Schurmann. Automating the meta-theory of deductive systems.nitattiReport CMU-CS-00-
146, Department of Computer Science, Carnegie Mellon University,.2000

[21] C. Schurmann, D. Yu, and Z. Ni. A representationfgfin LF. Electronic Notes in Theoretical
Computer Scien¢&8(1), 2001.

[22] R. Simmons. Twelf as a unified framework for language formalizatiahisaplementation. Technical
report, Princeton University, 2005.

A Interface to LF

In this section, | present as much of LF as is necessary for the adepreads below.

44

A.1l Syntax

I'm now going to use a more mathematical notation for LF, rather than stickirgjose to the concrete
syntax. Here is the correspondence with the notation we have been adag s

Kinds K = type type the kind of types
{x:A} K Ix:A.K dependent-function kind

Type Families A = a a family constant

{x:A2} A Ix:A2.A dependent-function type

A M AM application of a type family to a term
Terms M= ¢ c term constant

X X variable

[x:A] M Ax:A.M \-abstraction

M1 M2 M1 M2 application

A.2 Definition of Canonical Forms

The canonical forms of LF are defined by seven judgements:
I s:g, read X is a canonical signature”
o T c?x, read T' is a canonical context”
e ' K kfnd, read K is a canonical kind”
e I' Fy A K, read 4 is canonical aK”
o I' Fyv A K, read ‘4 is atomic ak”
e 'y M A read Mis canonical ap”
o' kv M : A, read Mis atomic at”
We make use of three auxiliary judgements,
e I' v, K = K'kind, read ‘K canonizes t&’”
e I' v A = A’:K, read ‘A canonizes ta’ at kindx”
e ' Fx M = M :A, read M canonizes tor’ at typeA”

We do not define the auxiliary judgements explicitly; many treatments are avdildhl&9]. We will only
interact with them through the properties cited below.
The primary judgements are defined by the following rules:

by szg

b s? s A type
& = yP CANON-SIG-TERM

——— CANON-SIG-EMPTY —
- sig >.,c:A sig

45

> sig - Fx K kind

CANON-SIG-FAM

—

Y,a:K sig
Fw. T c?,x
Fe T ctx T o A T type
— — CANON-CTX-EMPTY pa CANON-CTX-TERM
Fy - ctx Fy I',x:A ctx
[b5 K kind
I',x:A Fx K kind
—— CANON-KIND-TYPE —— CANON-KIND-PI
I' Fx type kind I' by Ix:A.K kind
ks A S K
[by Ay ¢ type D,x:Ay by A type [y A : type
x 72 yP . : > yP CANON-FAM-PI > — yP CANON-FAM-ATOM
I' by Ox:Ay.A @ type I't-x A : type
ks A K

ATOM-FAM-CONST

—

r I_Zl,a::K,E’ a : K

Dby A OxiAg. Ky D FgMT Ay T by M/x]K; = Kkind
ATOM-FAM-APP

Iy AM : K
Che M A
[by Ay © type I'x:Ay M A
» %2 ¢ WYpe SRR TR CANON-TERM-LAM
'y Ax:Ao.M @ TIx:Ay A
Iy M A (Aisa)or(AisA’ M)
= CANON-TERM-ATOM
'k M @ A
Chs M A
——— ATOM-TERM-VAR ——— ATOM-TERM-CONST
Dx:AT by x 0 A IFscay c @ A

Dby My : OxiAp Ay Dhxg My Ay I by [M/x]A; = A:type
Dby MyMy © A

ATOM-TERM-APP

46

A.3 Definition of Well-formedness for Non-Canonical Forms

Typing for non-canonical forms is defined by the following judgements:

Y sig, read 2 is a well-formed signature”

e Iy I'ctx, read T is a well-formed context”

e I' x, Kkind, read K is a well-formed kind”

o I' v A:K, read ‘A has kindK”

e ' by M: A, read ‘M has typer”

Because we will only interact with these judgements through the properties,dén eliding their
definitions.
A.4 Subordination and World Order

DEFINITION A.1: HEAD OF A TYPE FAMILY .

la| = a
[AM = [A]
Mx:Ay. A| = |4]

Observe that this defines a function from type families to family-level cotstan
Informally, a type familyA is subordinate to a type familig if canonical forms of typed can either
appear in canonical forms of tyge or appear in canonical indices of the type famity

DEFINITION A.2: SUBORDINATION.

e Fix a signatureX. Then a subordination relation between constants, writer a,, is a binary
relation between family-level constantsinthat satisfies the following properties:

Foralla,a < a.
— If a; < ay anda, < az thena; < as.
— If x:Oxq:Ay. .. . Ixp:Ay.AiSin X, then|A,| < [A].
— If a:Ixg:Ay. ... Ixy:A,. typeisin X, then|A,| < a.
e We then extend subordination to arbitrary type families by taking their haag: A, iff |A;] < |A3].
The following definition describes what it means to restrict a context to taoseés subordinate to a
type family:
DEFINITION A.3: RESTRICTION OF ACONTEXT.
|a
(F,XIA2)|A = P‘A,X:AQ if A2 j A
= [I'|yotherwise
A world W is a set of contexts.
DEFINITION A.4: WORLD ORDER.

o W, <y Whlifffor all Ty € W, there exists &', € W, such thaty |y = I'a|,.
o Wi =y Whiff Wi <y Whr andW, <, W

47

A.5 Properties

I now cite some properties of these judgements.

A.5.1 Assumptions
ASSUMPTIONA.5: SUBSTITUTION. If ¥sig, Fy T'ctx, andl’ Fx My: Ay, then
1. IfT',x: Ay, T by Kkind thenT', [My/x]|T" by [Ma/x]K kind.
2. fT,x: 85, 1" by A:K thenD, My /x]TV by [Ma/x]A: [Ma/x]K.
3. IfDx: Ay, TV By M:AthenD, [My/x]TY b5 [My/x]M: [My/x]A.
ASSUMPTIONA.6: CANONIZATION RESULTS ARECANONICAL. Assume: s?g andky T ctx.

1. IfT by Kkind andT by, K = K kind thenT Fy, K’ kind.

2. IfT b5 K kind, T b5 A:K,andl 5, A = A :Kthenl Fx A - K.

3. fT Fx A type, I’ Fx M:A,andl” -y M = M :Athenl Fy M A
ASSUMPTIONA.7: SOUNDNESS OFCANONICAL FORMS. If ¥ sigandty T ctx then

1. IfT by K kind thenD I, Kkind

2. fi0 Fx A T KorD s A © Kthenl Fy A:K.

3. Fx M AorT by M : Athenl by M:A.
ASSUMPTIONA.8: CANONICAL FORMS EXIST.
1. f " Fx Kkind then there exists ® such thatl’ -y K = K kind.

2. fT' g K ki_nd andT’ Fx, A:K then there exists & such thafl’ -, A = A’:K.

3. IfT Fx A & type andl' b M:A then there exists such thafl’ s M = M :A.
ASSUMPTIONA.9: FACTS ABOUT CANONIZATION.

e If T Fy a Mxy:Ay. ... Oxy:Ay. type, and T by Mj:[Mi_1/x5-1]...[Mi/x4]A; thenT kg
aMy ... M, = aM& ... M;l:type wherel’ }_Z M; = M; : [Mi—l/xi—l]- .. [Ml/Xl]Ai.

e If ' Fy A:type andT +y A = aM| ... M :type thenAisaM; ... M, andT +y M; =
M;_ : [Mi—l/xi—i]- .. [M1/X1]Ai for all 3.
A5.2 Lemmas
LEMMA A.10: CANONICAL CLASSIFIERS Assumes S:g andl_z T C?X.

1. fT Fxy M T AorT Fxy M : Athenl g A © type.

2. fT gy A T KorT Fyg A & Kthenl Fy K kind.

LEMMA A.11: EQUIVALENT WORLDS HAVE THE SAME CANONICAL FORMS. AssumeV; =, Wh. If
Iy e Wy andl'; Fs; M Athen there exists By € W, such thafls Fx M ¢ A; conversely, if"s € W
andly sy, M © Athen there exists B; € W; such thafl; Fs M - A.

LEMMA A.12: INVERSION.

o If " by, Mx:Ap. A : typethenD s A, : typeandl,x:A, Fx A : type.

48

B Adequacy

B.1 Natural Numbers
B.1.1 Syntax

The relevant definitions are

N ==
nat : type.
Z . nat.
S : nat -> nat.
Tzero!' =
Tsucc N

Now, the theorem in question is

zero | succ N

STN™.

PROPOSITIONB.1: ADEQUACY OF NATURAL NUMBER SYNTAX. Let be the above signature. Then
>} sig, and there is a bijection between the (informal) natural numbers as ddfiypéue grammar and LF

termsN such that s N ° nat.

Proof. First, we show that the signature is canonical; then, we show tKatis a function to canonical LF
terms at the appropriate type; finally, we show that for all LF terms such thatN : nat, there exists a

uniqueN such that” N =N.

3 s<i_g Let D stand for

CANON-SIG-EMPTY

—

- 8ig

CANON-KIND-TYPE

- . type kind

CANON-SIG-FAM

«—

-,nat:type sig

Let D, stand for

—

: l_-,nat:type nat

ATOM-FAM-CONST

type

CANON-FAM-ATOM

—

Dl) l_-,nat:type nat

type

«—

-,nat:type,z:nat sig

Then the derivation is

=
: }_Zl,nat:type,Eg nat type
pa

: }_Zlmat:type,zg nat type

ATOM-FAM-CONST

CANON-FAM-ATOM

CANON-SIG-TERM

?>type

. type

_:nat Fglmatnwpgz2 nat

~:nat bx, nat:type,s, Nat

Dy

: '_Zl,nat;type,gg II :nat.nat

?_type

«—

-,nat:type,z:nat,s:II_:nat.nat sig

CANON-SIG-TERM

whereX; = - andYs = nat:type, z:nat. In the future, we will leave the pattern-matching involved in

dividing the signature to the reader.

49

ATOM-FAM-CONST

CANON-FAM-ATOM

CANON-FAM-PI

For all N, there exists a uniquel such that "N7 =Nand- s, N : nat. The proof is by structural
induction onN.

e Case forzero. TakeN to bez; then "zero™ = z by definition, establishing existence exists. To show
unigueness, assume some otheuch that zero™ =Y. By inversion, the only case 6f.7 that applies
is the one forzero, and in this casg = z. Then the following derivation proves thais canonical at
the appropriate type:

ATOM-TM-CONST

—

: l_El,z:nat,Eg z : nat

CANON-TM-ATOM

—

by z : nat

e Case forsucc N’. To show: for allN’, if there exists a uniqui’ such that™N’" = N’ andD derives
- by, N nat, then there exists a uniquiesuch that"succ N7 =N and- ks, "succ N7 nat.

Make the assumptions. Then talkes s N'; by definition, "succ N'? =s "N’ = s N/, so such aml
exists. Now take some othsf such that"succ N7 =N”; then, there is only one case of the encoding
that applies taucc N/, soN” = succ "N’7'. By assumption” N’" = N’ uniquely, so we get the same
encoding in both cases. This shows uniqueness.

Now we must show Fsx Tsucc N7 ' nat, or, equivalently, Fx sN * nat. Hereis a
derivation:

ATOM-TERM-CONST D

—

- by s ¢ I _:nat. nat -Fx N @ nat - by [N’/_]natl = nat:type

— ATOM-TERM-APP
- Fx sN' : nat

CANON-TERM-ATOM

—

- by sN' : nat

The canonization premise follows froms&UMPTIONA. 9.

For all N such that- Fx N : nat, there exists a uniqueN such that "N™ = N. We first invert
- bx N : nat to discover the possible canonical forms. This derivation must have derdred using
CANON-TERM-ATOM, asnat is a constant, so we must have deriveds: N : nat. How could we have
derived this?

e Because the context is empty, we cannot have usedl-TERM-VAR.
¢ We might have usedTOM-TERM-CONST, but in this case, based on the signattireust bez.

e We might have usedtomM-TERM-APP, in which case we derivedt-s; Ny : Mx:As.Aq, - Fx Np
Ay, and- Fy [Ny/x|A; = nat:type. Then, by ASSUMPTIONA.9, A; must benat (note that we
use LEMMA A.10, LEMMA A.12, ASSUMPTIONA.7, and ASSUMPTIONA.5 to satisfy the premise).
Thus, we must consider how we could have derived; N; : x:A,.nat:

— Again, we cannot have usedOM-TERM-VAR.

— We might have usedTOM-TERM-CONST, but based on the signatuie is s andA, iSnat.

— We cannot have usedOM-TERM-APP, as this would require a premise-of s, N, : Hy:B;.lx:A}. nat.
However, there are ni, such that Fy N} B My;:B;....Dyk:Bx. Ix:A%. nat for k > 0. To
prove this, we assume one exists and derive a contradiction. One rulehawesbeen used
to derive- +y N} B Iyq:By....Myx:Bx. Ix:A5. nat. It cannot have beeATOM-TERM-VAR
because the context is empty; it cannot have beeym-TERM-CONST because there are no

50

constants of this form in the signature. The only rule that can have apphedig-TERM-APP.
However, this rule has as its premise a derivation; Nj B V0:Bo.Iy1:B}. ... Myx:By.Ix:A). nat,
so we get a contradiction by induction. Intuitively, there are no variablesmstants at which
we can root the applications.

Thus, eithelN is z, or N is s Ny, in which case we derived as a strict subderivation that N, . nat.
We now prove the theorem for each of these cases.

e Nisz. "zero' =z, so there exists aN such that" N = z. To show uniqueness, assume some other
N’ such that"N’" = z. By inversion on the definition of the encodiny, is zero.

e N is s Ny, in which case we derived as a strict subderivation thag: Ny : nat. By induction on
the subderivation, there exists a unique numfbesuch that™ N, = Nj.

Now takeN to besucc N, which is syntactically correct becausgis. "N7 = "succ N, =s "Ny™
= s N, by definition of the encoding, so a preimage exists. To show uniquerssssna anothex’
such that™N’" = s N,. By inversion on the definition of the encodiny;, is succ N5, where "N,
= N,. But N3 is unique number such th&fN, ™ is Ny, soN’ = N». Thus,N’ is succ N», establishing
unigueness.

O

B.1.2 sum Judgement
B.2 SystemF

B.2.1 Syntax

B.2.2 Static Semantics

B.2.3 Dynamic Semantics

51

