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Notes to proofreaders:

• I haven’t had time to do many of the adequacy proofs yet. If you know ofa way of streamlining these,
I’d love to hear it. I wonder if moving to a Kevin-style presentation would help?

• The theorem in Appendix A stating that equivalent worlds have the same canonical forms is true (in
the sense that I wrote out the proof on paper, but I haven’t had a chance to type it up yet). I haven’t
seen this written up anywhere, so please let me know if it exists.

These notes are a rough draft; please alert me to any errors or omissions!

1 Introduction

1.1 Motivation

Raise your hand if you have ever seen one of these phrases in a research paper:

• “The proof proceeds by a straightforward structural induction on the first premise.”

• “The remaining cases are similar.”

• “For brevity, we elide the proof, which can be found in our companion technical report.”

When I read one of these phrases, it makes me a little worried. How straightforward is it? Did they really
do that other case? I don’t usually worry enough to go and look at the tech report, though.

But, when Iwrite one of these phrases, that’s when I really worry. Fortunately, I don’twrite these phrases
very often. Instead, I mechanize the meta-theory of the programming languages I design in my day-to-day
research, and, in particular, I do it in Twelf [1, 16].

I’m not going to go to great lengths to sell you on mechanized metatheory here—many people have
made that case (e.g., the organizers of the POPLmark Challenge [5]). I’mnot even really going to try and
sell you on Twelf here, except by example. This guide is intended to be a document that I can point someone
towards and say, “this explains how I use Twelf in my research; give it a read and see if you think it will
be useful to you.” I presume no prior knowledge of LF or Twelf, thoughfamiliarity with the simply-typed
λ-calculus and System F will make some of the presentation and examples more understandable.
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1.2 Overview

So, what exactly is Twelf? Among other things, it includes

1. a type checker for the dependently-typedλ-calculus LF [9].

2. a meta-theorem checker.

3. an implementation of an operational semantics for LF as a logic-programming language.1

4. a (currently in-development) meta-theorem prover.

The first two are the focus of this guide, though I’ll touch on the third as well. Since the meta-theorem
prover is currently defunct (it doesn’t actually produce the proof it finds), I won’t discuss it at all.

Before jumping right in, it will be useful to get a big-picture sense of what’s involved in using Twelf.
The first step in using Twelf is encoding your language of interest in the logical framework LF. For clarity,
we call the language that you wish to study theobject language(it is the object of your study) and LF
the meta-language. To encode a language in LF, you write an LFsignature—a sequence of LF constant
declarations—defining LF types and terms that fully and faithfully model yourobject language. To check
that you’ve encoded your object language correctly, you prove a theorem calledadequacythat establishes
a bijection between the informal description of the object language (i.e., whatyou write on paper) and the
terms of particular LF types in your signature. Once you have proven this theorem, you can reason about
your object language by reasoning about its LF encoding.

LF is designed for representing deductive systems with binding—for example, programming languages
and logics. Oftentimes, you will be able to represent binding in your object language with binding in LF;
by doing so, you get the machinery of binding for free from the meta-language. At the level of syntax,
this means that there is no need to define capture-avoiding substitution andα-equivalence for each object
language you design. This technique is often calledhigher-order abstract syntax. For the judgements of your
object language, you get hypothetical judgements for free by using binding in LF to represent hypotheses.
This is part of thejudgements-as-typesmethodology.

Once you have encoded your object language in LF, you can begin proving meta-theorems about it. First,
why do we use the word “meta”-theorem? In this usage, the theorems of a deductive system are what you can
provein it. For example, after encoding a logic in LF you can create a derivation showing that a proposition
is true; after encoding a type system, you can create a derivation showingthat a program is well-typed;
after encoding an operational semantics, you can create a derivation showing that a programs evaluates to a
particular value. Twelf includes a “theorem checker” because it includes a type checker for LF: judgements
are encoded as LF types classifying only valid derivations, so checkingthe validity of a derivation is the
same as type checking its LF representation. On the other hand, the meta-theory of a deductive system is
what you can proveabout it. Twelf provides separate facilities for checking meta-theorems about encoded
logics and languages.

1.3 Outline

The rest of this tutorial will teach you how to encode languages in LF and prove meta-theorems about them.
In Section 2, you’ll learn how to encode simple languages in LF. In Section 3, you’ll see some first examples
of meta-theorems. To keep things simple, these first object languages do not include binding. In Section 4
and Section 5 you’ll learn how to encode and prove meta-theorems about languages with bindings. Since
there is a lot that I won’t get to cover, I am including some pointers to other examples and documentation in

1The original implementation of this was named Elf. You’ll need a German dictionary to figure out how we got from there to
here.
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Section 6. Finally, I tease some advanced Twelf techniques in Section 7. Adequacy theorems and their proofs
are discussed throughout, but detailed presentations of these proofs are saved for Appendix B; Appendix A
presents enough of LF that we can do these proofs.

All of the examples in this document are available online [2]. They were developed and checked using
the latest CVS release (Twelf 1.5R3, August 30, 2005), which I got from the anonymous CVS server:

cvs -d:pserver:guest_lf@cvs.concert.cs.cmu.edu:/cvsr oot login
[enter blank password]
cvs -d:pserver:guest_lf@cvs.concert.cs.cmu.edu:/cvsr oot checkout twelf

I imagine that they’d work in Twelf 1.5R1, which is available on the Twelf Web page.

2 Encoding Languages in LF: Natural Numbers with Addition

Before we can prove meta-theorems in Twelf, we need to understand how torepresent the languages we’ll
be proving these theorems about. That is, we need to be able to representthe languages we wish to study
using the logical framework LF. As a first example, adapted from Crary and Sarkar [6], let’s encode a simple
language of natural numbers with addition.

2.1 Natural Numbers, Informally

In informal mathematical notation, we’d write the abstract syntax of natural numbers with the following
grammar:

N ::= zero | succ N.

The single judgement in this language,N1 + N2 = N3, relates two natural numbers to their sum.2 One way
of axiomatizing this relation is through the following inference rules:

zero + N = N

N1 + N2 = N3

succ (N1) + N2 = succ (N3).

Then, for example,

zero + succ (succ (zero)) = succ (succ (zero))

succ (zero) + succ (succ (zero)) = succ (succ (succ (zero)))

is a derivation of the judgement that1 + 2 = 3. Now that we have defined the syntax and judgements of
natural numbers with addition, we can set about formalizing it. To do so, we first must define the fragment
of LF that we’ll use.

2.2 Simply-typed LF

LF contains the simply-typedλ-calculus. Because we will soon be working entirely in Twelf, I’m going
to present LF using an abstract syntax that is close to Twelf’s concrete syntax. Here’s the grammar for
simply-typed LF:

2To be precise,N1 + N2 = N3 is a judgement schema: there is a judgementN1 + N2 = N3 whenever the meta-variablesN1,
N2, andN3 are filled in with particular natural numbers. I’m going to be sloppy about this distinction from now on.
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Types A ::= a base type
A2 -> A function type

Terms M ::= c constant
x variable
[x:A] M λ-abstraction
M1 M2 application

In its actual concrete syntax, Twelf allows any characters except: . ( ) [ ] { } % " and whites-
pace in the identifiers used for variables and constants. Parentheses are used for grouping, and the usual
λ-calculus association rules apply:λ-abstractions extend as far to the right as possible, so[x:A] M1 M2 is
[x:A] (M1 M2) rather than([x:A] M1) M2 ; application left-associates, soM1 M2 M3is (M1 M2) M3.

LF makes a distinction between constants and variables. Type and term constants are declared in a
signature; variables are bound by abstractions. The typing rules for the simply-typed fragment of LF are
what you would expect. In addition to the typing judgement, LF also contains a notion of definitional
equalityof terms. Definitional equality is a congruent equivalence relation containing αβη-rules. Theβ-
normal,η-long terms are taken ascanonical forms—the canonical representatives of theαβη-equivalence
classes of terms modulo definitional equality. We will see why term equality is important soon.

2.3 Representing Syntax in LF

Here’s a rough first guideline: to represent the syntax of an object language in LF, declare base types
corresponding to its syntactic categories and constants corresponding toits terms. These declarations form
the LF signature that encodes your object language.

For example, we can represent the syntax of natural numbers with the following signature:

nat : type.
z : nat.
s : nat -> nat.

Notice that in the Twelf syntax,: is overloaded: it is used both to declare types and to declare terms of a
given type; also,. is used to end declarations. Until you get used to thinking in LF, it can help to read these
declarations out in detail. For example, the first line of the signature means “nat is an LF type”; the second
means “z is an LF constant of typenat ”; the third means “s is an LF constant of typenat -> nat ”.

For this particular example, it should be intuitive how these constants represent the object-language syn-
tax. However, we should nevertheless specify this correspondence precisely by writing down the mapping
from informal object-language syntax to LF terms. We’ll call this theencoding mapping, and denote it with
p·q . The encoding mapping is defined is defined as follows:

pzeroq = z

psucc Nq = s pNq .

2.4 Adequacy of the Encoding

Is this a good encoding? Our goal in representing a language in LF is to be able to throw away the informal
description of the object language and reason using only its representation. What justifies doing so? We
need a theorem that implies that any reasoning we do in or about the language as it is encoded in LF could
just as well have been done in or about the informal description. In particular, this theorem would imply that
when we prove meta-theoretic properties about a language’s LF encoding, they are also true for the informal
presentation of the language.
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What should such a theorem look like? At the very least, if we say that we represent an object-language
syntactic category with the elements of a particular LF type, then the encoding should be a function and
its co-domain should be the desired LF type (otherwise, we haven’t represented the whole object language,
or we haven’t represented it the way we said we would). In this case, weshould check the following
proposition:

PROPOSITION2.1. If N is a syntactically-correct natural number, then there exists a uniqueN such that
pNq = N andN is an LF term of typenat.

Proof. By induction onN. The case forzero is immediate, sincepzeroq = z andz is declared to have
typenat . To show uniqueness, assume some otherN’ such thatpzeroq = N’ ; then, by inversion on the
encoding,N’ is z because there is only one clause that applies.

For succ N′, by induction we get that there exists a uniqueN’ such thatpN′
q = N’ , whereN’ has type

nat . TakeN to bes N’ ; then psucc Nq = s pNq = s N’ , so such anN exists. To show uniqueness,
assume some otherN’’ such thatpsucc Nq = N’’ ; then by inversionN’’ is s pNq because there is only
one clause of the encoding that applies; this implies uniqueness becausepN′

q = N’ uniquely. By the
declaration in the signature we know thats has typenat -> nat , so by LF’s function-application typing
rule,s pNq has typenat .

That’s a start, but it’s not sufficient for throwing away the informal description of the object language
and reasoning solely about its encoding in LF. For example, if we come up withan LF term of typenat ,
is it necessarily the encoding of some natural numberN? If not, then if we prove in the formalization that
there exists anat with some properties, we don’t know whether thatnat is “real” according to the informal
description—the formalized proof does not prove anything about the object language we have in our heads
and on paper. Additionally, is there necessarily only one informal naturalnumber gets mapped to any given
LF term? If not, then when we come up with a particular LF term of typenat , we can’t read back the
corresponding informal object-language term.

To reason entirely in LF, the encoding mapping must be a bijection (i.e., an injective and surjective
function, or a pair of mutually inverse functions); this addresses the problems in the previous paragraph. If
an encoding is a bijection, then it and its inverse operation allow us to “port” any reasoning in or about the
language between the informal description and its LF representation.

Unfortunately, if we read what we said literally—every LF term of typenat has a preimage under the
encoding—surjectivity will never be true. It’s certainly not the case thateveryLF term of typenat directly
has a preimage by the encoding: that would imply that a preimage exists for anyarbitrary sequence of
functions and applications that winds up with typenat ! However, we can rescue the situation by making use
of the structure we’ve assumed about the space we’re mapping into: we said that terms in LF are considered
up to αβη-equivalence, but we didn’t mention this equivalence when we stated surjectivity. Let’s try to
respect equivalence:

• Surjectivity: Every LF term of typenat is equivalent to one for which a preimage exists.

• Injectivity: Any two equivalent LF terms have at most one preimage.

But what this really says is that there is a bijection between the natural numbers and theequivalence classes
of LF terms of typenat . Observe that this is still sufficient for throwing away the informal description
of the object language; for example, every LF term of typenat represents a true object-language number,
namely the number that is the preimage of something in that term’s equivalence class.

Rather than dealing with equivalence classes directly, we take the canonical (β-normal,η-long) forms
as canonical representatives of the equivalence classes. So, to setup a bijection with the equivalence classes
of LF terms of typenat , we set up a bijection with the canonical forms of typenat . This methodology
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is feasible for two reasons. First, every LF term has a canonical form (up to α-equivalence), and two
terms have the same canonical form iff they are in the same equivalence class. Second, the canonical
(i.e., β-long, η-normal) LF terms can be characterized by an alternate, inductive definition; this simplifies
proving bijections. For now, the important fact about this inductive characterization is that a constant or
variable applied to canonical arguments of the correct types is canonical,as long as the iterated sequence
of applications reaches base (i.e., non-function) type. For example,s N is canonical whenN is canonical,
but s by itself is not canonical according to this definition (indeed, nor is itη-long). Throughout, we write
Γ `Σ M

←

: A to denote thatM is a canonical LF term of typeA, where the signatureΣ will usually be clear
from the context.

We collect the properties we require of a sensible encoding in a theorem called adequacy.

PROPOSITION2.2: ADEQUACY OF NATURAL NUMBER SYNTAX . Let Σ be the signature above. Then
there is a bijection between the (informal) natural numbers as defined by thegrammar and LF termsN such
that · `Σ N

←

: nat.

We require the LF term to be well-typed in the empty context. This makes sense: the encoding we have
proposed does not mention any variables, so allowing variables would break the bijection. For example,
there would be no informal natural number corresponding to the LF variable w, butw : nat `Σ w : nat.

We sketch the proof here; a more complete treatment is given in Appendix B.

Proof. First, we prove something a little stronger than Proposition 2.1, showing thatp·q is a function whose
range iscanonicalterms of typenat . This proof is very similar to the above, but in each case we derive
canonicity rather than well-typedness. Roughly, in the first case,z is canonical because it is a constant of
base type; in the second, we get thatpNq is canonical by induction, and thens pNq is canonical because it
is a constant applied to canonical arguments and of base type.

Having established thatp·q is a function of the correct type, there are two easy ways to establish this
bijection:

1. Define an inverse encodingxNy on canonical LF terms of typenat , show that it is a function to
syntactically correct natural numbers, and then show that both compositions are the identity (x pNq y

= N and p xNy q = N).3

2. Show that for all canonical LF termsNof typenat , there exists a unique natural numberN such that
pNq = N. If you expand out the definitions, this is just proving injectivity and surjectivity at once.4

Let’s do the first approach. First, you’ll have to take on faith claim that, in this signature, the only
canonical terms of typenat are z and s N, in which case we also derive as a subderivation thatN is
canonical (or you can look at Appendix A now). Then, we definexNy in the obvious way:

xzy = zero

xs Ny = succ ( xNy )

Now, we check properties:

• x·y is a function. By induction on the derivation thatM is canonical. It’s defined forz , andzero

is syntactically correct; in the other case, we knowN is canonical by above, soxNy is defined and
a correct natural number by induction, and thusxs Ny by definition exists and is correct by the
grammar. Checking uniqueness is straightforward.

3This implies the alternate definition of a bijection as an injective and surjective function: x pNq y = N implies injectivity and
p xNy q = N implies surjectivity.

4This implies that an inverse top·q exists: takexNy to be the uniqueN such thatpNq = N.
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• p xMy q = M. By induction on the derivation thatMis canonical. It works forz . In the other case, by
induction it works forN. Then xs Ny = succ ( xNy ), so p xs Ny q = psucc ( xNy )q = s p xNy q ,
so we get what we wanted by induction.

• x pNq y = N. By induction on the syntax of the natural number. It works forzero. For succ (N), by
induction it works forN, and then we plug through.

You might think that this is an awful lot of trouble to go through to establish something this simple,
but keep in mind two things: first, all adequacy proofs that I’ve seen have gone something like this, so now
you’ve got the model; second, adequacy is a formal way of ensuring that you’re representing the language
you think you’re representing, which is the only way to know that all work you do in Twelf actually means
anything at all.

2.5 Representing Judgements in LF, Take 1

Now that we’ve represented the syntax, we need to represent theN1 + N2 = N3 judgement. By analogy
with our treatment of the syntax, let’s postulate that we represent the judgement N1 + N2 = N3 with an LF
type, and the derivations of that judgement as terms of that type. For example, let’s say we represent the
judgement with a typesum:

sum : type.

Now, we need to write constants with which we can encode the derivations. For example, we could try
defining the constants

sum-z : nat -> sum.
sum-s : nat -> nat -> nat -> sum -> sum.

and encoding the object-language derivations as follows:

p zero + N = N q = sum-z pNq

p

D1

N1 + N2 = N3

succ (N1) + N2 = succ (N3) q = sum-s pN1q pN2q pN3q pD1q .

Then, for example,sum-z (s z) is the representation of the derivation

zero + succ (zero) = succ (zero)

andsum-s z (s z) (s z) (sum-z (s z)) is the representation of the derivation

zero + succ (zero) = succ (zero)

succ (zero) + succ (zero) = succ (succ (zero))

Now, let’s check adequacy:

CONJECTURE2.3: ADEQUACY OF SUM . There is a bijection between derivations ofN1 + N2 = N3 and
canonical LF termsD such that· `Σ D : sum.
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Proof. First, we show thatp·q is a function to canonical terms of typesum by rule induction onD. The
proof is straightforward; it is analogous to the above proof for syntax.

However, we will not be able prove that the encoding is a bijection, as this theorem is not true! In
particular, surjectivity fails. Consider the LF term

sum-s z z (s z) (sum-z z)

It is a canonical term of typesum because it is a constant applied to canonical arguments, but it is not the
encoding of any actual derivation. Here’s why: in the encoding definition, the only case whose result has
the formsum-s pN1q pN2q pN3q pD1q has the property thatD1 derivesN1 + N2 = N3. However, in
this case, but the preimage of(sum-z z) does not derivezero + zero = succ (zero).

The cause of this problem is that the typesum is not precise enough, so the type ofsum-s does not capture
howD1 relates to the other arguments. Fortunately, we can fix this problem with dependent types.

2.6 Dependently Typed LF

In a dependently-typed language, types are allowed to contain terms. For example, rather than a typesum
that classifies (the representations of) all derivations of the judgementN1 + N2 = N3, we could define a
typesum N1 N2 N3that classifies only derivations relating those particularN1, N2, andN3.

The terms of dependently typed LF are the same as those of simply typed LF. However, the simple
function typeA1 -> A2 is generalized to a dependent function type5, written {x:A1} A2 . The depen-
dent function type is a binding form;x is bound inA2. Intuitively, the argument to a dependent func-
tion is allowed to appear free in the result type; application substitutes the argument into the body of the
type. For example, ifc is a constant of type{x:nat} sum z x x , the applicationc (s z) has type
sum z (s z) (s z) . Twelf allows the traditionalA1 -> A2 notation as a synonym for a dependent
function type{x:A2} A wherex is not free inA2.

For dependent types to be useful, equality of types should respect equality of the terms embedded in
them. For example, it is desirable that a term with typesum (([x:nat] x) z) z z also has type
sum z z z . This is accomplished by extending the definitional equality relation for terms to arelation
between two types that compares the embedded terms forαβη-equality.

2.7 Representing Judgements in LF, Take 2

Let’s see how we use dependent types to fix oursum judgement. First, we postulate atype familysum N1 N2 N3
that is well-formed whenever allNi have typenat ; we’ll see how to declare such a type in an LF signature
in a little while. We call theNi the indicesof the type family. This terminology has set-theoretic origins:
sum defines a family of types indexed by threenat s; there is one type in the family for each choice of
indices.

Given this type family, we give more precise types to the constants representing the inference rules:

sum-z : {n : nat} sum z n n.
sum-s : {n1 : nat} {n2 : nat} {n3 : nat}

sum n1 n2 n3 -> sum (s n1) n2 (s n3)

These constants seem like they capture the object language judgements muchmore precisely. We use the
same encodings as before:

p zero + N = N q = sum-z pNq

5In standard abstract syntax, this type is writtenΠ x:A1. A2.
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p

D1

N1 + N2 = N3

succ (N1) + N2 = succ (N3) q = sum-s pN1q pN2q pN3q pD1q

Now we can check adequacy:

PROPOSITION2.4: ADEQUACY OF SUM . There is a bijection between derivations ofN1 + N2 = N3 and
LF termsD such that· `Σ D

←

: sum pN1q pN2q pN3q .

Again, we sketch the proof here; a more detailed presentation is in AppendixB.

Proof. First, we show thatp·q is a function to canonical terms of typesum by structural induction onD.

• Let D bezero + N = N. We know thatpNq is a canonical term of typenat by adequacy of syntax
(PROPOSITION2.2). Further, the constantsum-z has type{n:nat} sum z n n by the signa-
ture. ThereforepDq = sum-z pNq exists, and it is canonical at typesum z pNq pNq because
it is a constant applied to a canonical argument of the appropriate type (note the substitution ofpNq

for n in the result type of the application!), and the application reaches a base type. To show unique-
ness, assume some otherN’ such thatpDq = N’ ; then inversion on the encoding function and the
uniqueness ofpNq give the result.

• LetD be
D1

N1 + N2 = N3

succ N1 + N2 = succ N3

By adequacy of syntax,pNiq are canonical terms of typenat . By induction pD1q is a canonical
term of typesumpN1q pN2q pN3q . By the signature,sum-s is a constant of type
{n1:nat } {n2:nat } {n3:nat } sum n1 n2 n3 -> sum (s n1) n2 (s n3) . ThuspDq

= sum-s pN1q pN2q pN3q pD1q exists. It is unique by the usual inversion argument, using
uniqueness of the subterms. It is canonical at typesum (s pN1q ) pN2q (s pN3q )—again, note
the substitution ofNi for ni —because it is a constant applied to type-correct, canonical arguments
down to base type. Then, rewriting using the definition of the syntax encoding (psucc (N)q = s
pNq ) implies that this is what we need to show.

Checking the rest is left as an exercise. It’s probably easier to do it in thesecond style mentioned above
(there exists a unique preimage of every canonical term) rather than the first (defining the inverse explicitly).
Further, you’ll need to assume that the only canonical terms of typesum N1 N2 N3are

• sum-z N , where we derived as a subderivation thatN is canonical and of typenat

• sum-s N1 N2 N3 D, where all the arguments are canonical and of the appropriate type by sub-
derivations.

unless you want to go look at the rules for canonicity in Appendix A yourself. Then, the proof proceeds by
induction on the canonicity derivation.

2.8 Higher Kinds and Full LF

Our one undischarged promise is showing how to actually declare the typesum N1 N2 N3in a signature.
For this, we generalize to full LF, which allows kinds (the “types” of type families) other thantype :
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Kinds K ::= type the kind of types
{x:A} K dependent-function kind

Type Families A ::= a family constant
{x:A2} A dependent-function type
A M application of a type family to a term

Terms M ::= c term constant
x variable
[x:A] M λ-abstraction
M1 M2 application

Kinds classify families, and type families with the particular kindtype classify terms. In a signature,
you can define the type of a term-level constant or the kind of a family-levelconstant. For example, we
could declaresum as follows

sum : {n1 : nat} {n2 : nat} {n3 : nat} type.

Note how in the Twelf syntax, the dependent-function kind is written the same asthe dependent-function
type, except you can tell the difference because the kind-level one must ultimately end intype (the only
base kind). Also, just as with the dependent-function type, Twelf allows you to write a dependent-function
kind with an arrow when the parameters are not free in the body. So, we could also declare

sum : nat -> nat -> nat -> type.

since theni don’t get mentioned later on. The application formA Mis used to apply type families of
dependent-function kind to terms; for example,sum N1 N2 N3is the (iterated) application of the constant
sum to three terms. Just like the term-level dependent-function application, the family-level application rule
substitutes arguments for bound variables in the body of dependent-function kinds; if A has type{x:A2 }
K andMhas typeA2, thenA Mhas type[M/x] K .

2.9 Summary: the LF Methodology

Let’s quickly sum up what we’ve learned.

GUIDELINE 2.5: ENCODING SYNTAX . To encode the syntax of your object language, declare a type for
each syntactic category and a constant for each piece of syntax. You should be able to prove a bijection
between syntactic objects and canonical LF terms (in the empty LF context) of the corresponding types.

In particular, it often works if you encode a grammar entry of the formS ::= . . . | t S1 . . . Sn | . . . using
a constant of typeS1 -> . . . Sn -> S , whereSi is the type classifying the encodings of abstract
syntax ranged over by the meta-variableSi.

GUIDELINE 2.6: ENCODING JUDGEMENTS. To encode the judgements of your object language, declare
a type family for each judgement and a constant for each inference rule.If the judgement relatesn things,
the type family should haven parameters. You should be able to prove a bijection between valid derivations
and canonical LF terms (in the empty context) of the corresponding types. This is known as called the
judgements-as-typesmethodology, since we represent judgements as types that classify only their valid
derivations.

In particular, it often works if you encode a judgement that we write on paper with the meta-variables
S1 . . . Sn using a family-level constant of kindpS1q -> . . . pSnq -> type and if you encode an inference
rule that we write on paper as

J1 . . . Jm

J
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(with free meta-variablesS1 . . . Sn) using a constant of type

{s1 : S1 } ... {sn : Sn } J1 -> ... Jm -> J

whereSi is the type classifying the encodings of abstract syntax ranged over by the meta-variableSi and
Ji is the type classifying the encodings of derivations ofJi.

3 Proving Meta-theorems in Twelf: Addition is Commutative

Now we can throw away the informal descriptions and get to the good stuff.For example, I’m now going
to use “syntactic category” to mean both the on-paper syntactic category and the LF type representing the
syntactic category.

Π2 Sentences

Twelf’s meta-theorem checker allows you to validate proofs of statements ofthe form
∀ x1 : A1 . . .∀ xn : An ∃ y1 : B1 . . .∃ ym : BmwhereAi andBj are all (canonical) LF types; statements of
this form are often calledΠ2 sentences. The quantifiers range overcanonicalLF terms of those types. While
at first this might seem restrictive, it is strong enough to express much of the meta-theory of programming
languages. Why is that? First, we represent our object language using canonical LF terms and types, so
the restriction to canonical terms and types is no problem. Second, becausewe represent judgements as
LF types, these quantifiers range not just over (the encodings of) syntactic categories, but also over (the
encodings of) judgements. Third, many of the theorems we prove show that,under certain assumptions
about some judgements being derivable, other judgements are also derivable.6

As an example of this third point, consider the usual statement of type preservation for the simply-typed
λ-calculus. Presuming judgements· ` E :T (typing) andE 7→ E′ (small-step operational semantics), we’d
say

If · ` E : T andE 7→ E′ then· ` E′ : T.

When we mention an unbound meta-variable in a premise, what we really mean is

For all expressionsE andE′, typesT, and contextsΓ, if · ` E : T andE 7→ E′, then· ` E′ :T.

Further, when we mention a judgementJ like that, we mean it as shorthand for “there is a derivation ofJ ”.
So we’re saying

For all expressionsE andE′, typesT, and contextsΓ, if there is a derivation of· ` E : T and
there is a derivation ofE 7→ E′, then there exists a derivation of· ` E′ : T.

However, we can just as easily give names to the derivations (even if we never use them later on), which in
this case is the only difference between an “if” and a “for all”; it also gets the “there exists” to look more
like we want it to:

For all expressionsE andE′, typesT, and contextsΓ, for all derivationsD1 of · ` E : T andD2

of E 7→ E′, there exists a derivationD3 of · ` E′ :T.

Now we have aΠ2-sentence!

6The most-frequently encountered examples of proofs that cannot easily be checked with Twelf’s meta-theorem checker are
proofs by logical relations; these proofs require more complex quantifiers thanΠ2 sentences afford.
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3.1 Relations are Proofs ofΠ2 Sentences

A Π2 sentence of the form∀ x1 : A1 . . .∀ xn : An ∃ y1 : B1 . . .∃ ym : Bmis connected to then + m-
ary relations among canonical LF terms of typeA1, . . . ,An, B1, . . . ,Bm. In particular, such a relation that
contains at least one entry for all possible combinations of canonical LF terms of typesA1,. . . ,An is a
proof of the sentence: for any given inputsa1 :A1,. . . ,an :An, there will be an entry corresponding to those
inputs that provides theb1 :B1,. . . ,bn :Bn witnessing the existentials. In other words, if we think of the
universally-quantified types as the inputs to the relation and the existentially-quantified types as the outputs,
a total relation from inputs to outputs is a proof of that sentence. Note that wedo not enforce that the
relation has exactly one output for each of the inputs, which is the only additional condition necessary for
the relation to be a function.

This is fortunate, since we’ve already seen how to represent relations using dependent types: a type
family and its inhabitants represent a relation between the family’s indices, where indices are related when
that element of the family is inhabited. For example, the typesum and its inhabitants represent a rela-
tion among threenats , where particularN1, N2, andN3 are related when the typesum N1 N2 N3is
inhabited. With the signature from Section 2,z , z , andz are in the relation specified bysum because
sum z z z is inhabited; in contrast,z , z , ands z are not related because there is no canonical LF term
of type sum z z (s z) . Thus, we can represent relations using the machinery we’ve already devel-
oped; Twelf’s meta-theorem checker is just a mechanism for verifying that particular type families and their
inhabitants representtotal relations from their inputs to their outputs.

3.2 Meta-Theorem Statements

For example, say we want to prove that oursum judgement is commutative. That is,

For all numbersN1, N2, andN3, for all derivations ofN1 + N2 = N3, there exists a derivation
of N2 + N1 = N3.

By adequacy, it suffices to show

For allnat sn1 , n2 , andn3 , for all canonical LF terms of typesum n1 n2 n3 , there exists
a canonical LF term of typesum n2 n1 n3 .

Following the discussion above, this∀∃-statement can be proven by exhibiting a relation of type (loosely)
(n1:nat, n2:nat, n3:nat, d1:sum n1 n2 n3, d2:sum n2 n1 n3) that is total from its
first four entries to its fifth. This type of relation corresponds to the following type family:

sum-commutes : {n1:nat} {n2:nat} {n3:nat}
(sum n1 n2 n3) -> (sum n2 n1 n3) -> type.

The inhabitants of this type family define a relation, where there is an entry in therelation when
sum-commutes n1 n2 n3 d1 d3 is inhabited. However, with just this declaration, we haven’t yet
told Twelf which parameters are the inputs to the relation: we’ve lost the information about which variables
are universally-quantified and which are existentially-quantified. For example. this type family also corre-
sponds to all the following sentences: “for alln1 andn2 , there exists ann3 such thatsum n1 n2 n3 is
derivable andsum n2 n1 n3 is derivable”; “for alln1 , n2 , andn3 , there exists a derivation ofsum n1
n2 n3 and a derivation ofsum n2 n1 n3 ”. We fix this using amodedeclaration:

%mode sum-commutes +N1 +N2 +N3 +D1 -D2.

+ means “universally-quantified” or “input to the relation” and- means “existentially-quantified” or “output
of the relation”, and the variable names here can be chosen arbitrarily.

Here’s a rough guideline:
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GUIDELINE 3.1: ENCODING META-THEOREMSTATEMENTS. To encode the statement of a meta-theorem,
declare a family-level constant whose kind specifies a relation among the subjects of the theorem, along with
a mode declaration identifying which parameters of the type family are the inputs tothe relation and which
are the outputs of the relation.

3.3 Twelf Niceties: Term Reconstruction;<-

3.3.1 Implicit Arguments

Writing out all the meta-variables from the informal description as explicit arguments gets tedious. For-
tunately, Twelf allows implicit arguments. If you use an identifier that starts with alower-case letter, then
Twelf assumes that it will be bound somewhere. However, if you use an unbound identifier that starts with
an upper-case letter in the type/kind declaration of a constant, Twelf implicitly binds it in a at the front. So,
the following would be an equivalent definition ofsum-commutes :

sum-commutes : (sum N1 N2 N3) -> (sum N2 N1 N3) -> type.

The {Ni:nat} are really still there; you just can’t see them. How do you apply a constantto one of its
implicit argument? You don’t. Twelf infers the argument based the type at which the constant is used. This
process is called term reconstruction.

The mode declaration correspondingly omits the implicit arguments; we’d write

%mode sum-commutes +D1 -D2.

By default, implicit arguments are quantified according to these rules:

• If the variable occurs only in universally-quantified arguments (+), then it is universally quantified.

• If the variable occurs only in existentially-quantified arguments (- ), then it is existentially quantified.

• If a variable appears in both kinds of arguments, then the universal ruletakes precedence.

Note that this is usually what we mean when we use implicitly-quantified meta-variables in informal math.
We can use implicit arguments to tighten up the inference rule declarations frombefore as well:

sum-z : sum z N N.
sum-s : sum N1 N2 N3 -> sum (s N1) N2 (s N3).

Now, rather than applyingsum-z to a number yourself, you can let Twelf figure out what number you
meant from the context you use it in.

3.3.2 Backward Arrow

Another nice bit of Twelf syntax is that you can write an-> backward instead. That is, we could equivalently
have written

sum-s : sum (s N1) N2 (s N3)
<- sum N1 N2 N3.

This makes it easy to see what type a constant ends up at when it is fully applied.
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3.4 Proofs of Meta-Theorems

Now that we know how to (concisely) state meta-theorems, how do we prove them? We have to write the
constants inhabiting the type family representing the relation and then verify that the family represents a
total relation.

To provesum-commutes , we’ll need a couple of lemmas that are the analogues of the inference rules
definingsum but for the right-hand, rather than left-hand, summand. First, we’ll prove

sum-z-rh : {n : nat} sum n z n -> type.
%mode sum-z-rh +N -D.

This type family corresponds to the following sentence:“for all (canonical)n of type nat , there exists a
(canonical) derivation of typesum n z n”.

By adequacy, this statement is equivalent to saying, “for allN, there exists a derivation ofzero + N =
zero”. Let’s look at the on-paper proof first:

Proof. By induction onN.

• Case forzero: zero + zero = zero is derivable by axiom.

• Case fors (N′): By induction, there exists a derivationD’ of N′ + zero = N′. Then, we apply the
successor rule to this derivation as follows:

D
N′ + zero = N′

succ (N′) + zero = succ (N′)

In Twelf, the corresponding cases are:

case-for-z : sum-z-rh z sum-z.
case-for-s : sum-z-rh (s N) (sum-s D)

<- sum-z-rh N (D : sum N z N).

Let’s take a look at what’s going on here. Incase-for-z , sum-z is precisely the the axiom we cited in
the paper proof. Incase-for-s , we “call the theorem inductively” onN, producing a derivationD, just as
we did on paper; then, we simply applysum-s to it, the result of which is equivalent to the derivation we
wrote out in full on paper. So, by analogy at least, this seems perfectly sensible.

Now let’s check by hand that we’ve actually written a total relation. The type family sum-z-rh repre-
sents a relation whereNandDare related iffsum-z-rh N D is inhabited. We want the canonical LF terms
of this type family to represent a relation that is total onN—that is, we want every canonical LF term of type
nat to be in the relation. Thus, we need to add enough constants to the signature such that for all canonical
LF termsn of typenat , sum-z-rh n D is inhabited for someD. case-for-z is a canonical LF term
and covers the case whenn is z . The signature says thatcase-for-s X is a canonical LF term of type
sum-z-rh (s N’) (sum-s Dsum) as long asX is a canonical term of typesum-z-rh N’ Dsum .
But why do we get to assume that such anX exists? The premise incase-for-s is justified by induction
over canonical forms. Because of the way we encoded the syntax of the language, induction over canonical
forms of typenat in LF corresponds to informal structural induction on the syntax ofN. When on paper we
appeal to induction, in Twelf we write a constant of function type whose premise is the inductive call. That
the inductive call is valid is verified by induction over canonical forms. Checking that relations are total is
tedious; fortunately, Twelf’s meta-theorem checker does this for us.
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3.5 Checking Proofs of Meta-Theorems

Now that we’ve written down the cases of the theorem, we enter the following declarations:

%worlds () (sum-z-rh _ _).
%total N (sum-z-rh N _).

The%worlds declaration defines the form of the LF contexts for which the theorem is stated; it, like the
%modedeclaration, is another part of the theorem statement. In this case, we state the theorem only for
empty worlds. The%total declaration checks that the cases prove the stated theorem. To validate your
proof of a meta-theorem, Twelf checks the following:

1. Mode: This actually happens as you go, not when you check totality. That is, when you enter a
declaration likecase-for-z , in addition to checking that the declared type is well-formed, Twelf
checksmode correctnessbecause we gave the result typesum-z-rh a mode declaration.

Mode correctness is part of what justifies that all the premises of the caseare reasonable. To a rough
approximation, mode correctness checks that all the premises in the type of atheorem case are them-
selves moded, and that all the inputs in these premises come from inputs to theorem case. For example,
the constant

bogus : sum-z-rh N D.

is type-correct because Twelf infers the typesum N z N for D. However, this “case” presumes a
derivationD, where Twelf has no way of knowing that this derivationD exists. Since Twelf can’t
verify that a case with this premise can ever be used to create canonical terms of typesum N D, it
doesn’t help prove the theorem; thus, Twelf rejects it. Indeed, the corresponding on-paper case would
read something like “Case for anyN: the derivation exists, so we’re done”.

If we try to check this declaration, Twelf will respond

Occurrence of variable D in output (-) argument not necessar ily ground

Ground is a word from logic programming—this error message means that Twelf isn’t convinced that
the output comes from the input.

A slightly different twist on this is to make up something to pass to a recursive call (or a call to a
lemma): you’re not allowed to make up inputs, either.

You might think the error in forbogus should be a violation of termination. If we write outbogus
explicitly, it says

bogus: {N : nat} {D : sum N z N} sum-z-rh N D.

So, why doesn’t Twelf treatNas an input to the relationsum and try to come up with an inhabitant of
sum N z N? Operationally, the answer is “because it doesn’t”; the rule is as follows.If you write
the premise of a constant as a{} , then Twelf only tries to fill it in only by unification (i.e., checking
whether existing constraints imply that it must be equal to something else in the term). If you write
the premise with an-> , as incase-for-s , Twelf tries to fill it in using the meta-theorem reasoning
(i.e., checking whether the inductive call is valid). This distinction comes fromthe logic programming
operational semantics for LF, where-> premises are calledsubgoals; the meta-theorem checker only
treats these subgoals as inductive calls. In contrast, the implicitly-quantified variables in a term (i.e.,
the capital-letter ones) are often calledunification variables.
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2. Worlds: For now, we’ll only prove theorems in the empty context, so worlds checkingwill always
succeed. We’ll talk more about this later on.

3. Termination: When we do proofs by induction, the induction argument must be explicit. TheN in
%total N ... tells Twelf that the proof is by induction on the first argument to the type family.

Twelf permits inductive calls (i.e., a constant of function type has a subgoalthat is the relation cur-
rently being shown total) on any term whose canonicity was derived while deriving the canonicity of
the induction argument; you can find the rules for canonicity in Appendix A. Practically, for type
families in empty worlds whose canonical forms are simply constants applied to canonical subterms,
this amounts to allowing induction on constructor-guarded subterms of the induction argument. Be-
cause of the way we have encoded syntax and judgements, this gives structural induction on syntax
and derivations.

For example, in the case

case-for-s : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ Dsum.

observe thatN’ is a strict subterm ofs N’ . If we tried a bogus induction, as in

bogus2 : sum-z-rh N D
<- sum-z-rh N D.

We’d get an error such as

Termination violation:
---> (N) < (N)

Twelf also supports mutual and lexicographic induction, but we won’t getto any examples of this in
this guide.

4. Coverage:Termination checking shows that each case of the proof is valid. However, to give a total
relation, we need to know not just that each case that we have given is valid, but that we have covered
all of the inputs to the relation. Coverage checking happens in three phases:

(a) Input Coverage. This part checks whether a proof covers all inputs to the relation. In our
example, the cases

case-for-z : sum-z-rh z sum-z.
case-for-s : sum-z-rh (s N’) (sum-s Dsum)

<- sum-z-rh N’ Dsum.

do cover all of the inputs to the relation. However, if we left off the first case and tried to check
totality with justcase-for-s , we’d get an error saying that there were uncovered inputs:

Coverage error --- missing cases:
{X1:sum z z z} |- sum-z-rh z X1.

This error message says that we haven’t inhabited the relation forz , and, helpfully, tells us what
the type of the output of the relation should be in this case.
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(b) Output Freeness. Output-freeness checking ensures that we don’t erroneously assume that
the output of an inductive calls or call or a call to another lemma is something thatit is not.
Roughly, the implicitly-quantified variables appearing in the outputs of calls must all be distinct
unless they are constrained by the input to the call.

As a somewhat contrived example, say we wrotecase-for-s as follows:

bogus4 : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ D.
<- sum-z-rh N’ D.

As an LF term, this case is well-typed, well-moded, and it satisfied the declaredtermination
order. However, if you check totality ofsum-z-rh with this case andcase-for-z , you’ll
see the error

Constant bogus4
Occurrence of variable D in output (-) argument not free.

In this case, the problem is thatsum-z-rh is a relation, not a function, so there is no guarantee
that it produces the same derivation ofsum N’ z N’ in each of the two calls. Thus, it is
wrong to writeD in both places, as doing so insists that the two calls output the same term.

(c) Output Coverage. Output coverage is another part of checking that we don’t erroneously as-
sume something about the output of inductive calls or calls to lemmas. In particular, output
coverage checking ensures that we don’t mistakenly assume something about the shape of an
output.

In a case like

case-for-s : sum-z-rh (s N’) (sum-s Dsum)
<- sum-z-rh N’ Dsum.

the output of the inductive call is a single implicitly-quantified variable, and, if the output free-
ness check succeeds, it must be unconstrained. Thus, this variable covers all possible outputs of
the theorem.

However, sometimes we want to pattern match the output of an inductive call ora call to a
lemma. For example, say we wanted to write asum-z-rh case for a double-successor—not
that we do, but it illustrates the output coverage problem. The case would start like this:

case-for-ss : sum-z-rh (s (s N’)) _
<- sum-z-rh (s N’) Dsum.

Now, Dsumhas typesum (s N’) z (s N’) . Suppose that to finish this case we need to
invert this derivation to extract the derivation ofsum N’ z N’ . That is, we reason as follows:
by inspection of the rules, the only rule that could have derivedDsum is sum-s (because no
other rule derives a conclusion of the formsum (s _) _ _ ), and in that case, we derived
along the way thatsum N’ z N’ . In Twelf, we can do this inversion by pattern matching the
result of the inductive call:

case-for-ss : sum-z-rh (s (s N’)) _
<- sum-z-rh (s N’) (sum-s Dsum’).

whereDsum’ has typesum N’ z N’ . In this example, this reasoning is fine. However, if our
inversion reasoning had been wrong —if there had been some other way of deriving the output
of the call—this case would not cover this other derivation. The output coverage check ensures
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that all such inversions are correct—that there is indeed only one way theoutput could have been
produced.

When you enter a constant, Twelf checks that its type is well-formed and thatit is well-moded. Twelf
checks worlds when you run the%worlds declaration. When you run the%total , it first checks termina-
tion for each case, and then it does coverage checking. Each part ofcoverage checking happens in a separate
phase, so once your proof passes the input-coverage checker, you’ll get any output freeness bugs; once those
are eliminated, you’ll find out about any output coverage errors. Once that goes through, you have a correct
proof!

3.6 Finishingsum-commutes

Now that we understand what Twelf does when it checks a meta-theorem and how things can go wrong,
we can quickly finish up proving thatsum commutes. We’ll need another lemma, this time the analogue of
sum-s for the right-hand side:

sum-s-rh : sum N1 N2 N3 -> sum N1 (s N2) (s N3) -> type.
%mode sum-s-rh +D1 -D2.

- : sum-s-rh sum-z sum-z.
- : sum-s-rh (sum-s (D : sum N1’ N2 N3’)) (sum-s D’)

<- sum-s-rh D (D’ : sum N1’ (s N2) (s N3’)).

%worlds () (sum-s-rh _ _).
%total D (sum-s-rh D _).

Make sure that you can read the type family and mode declarations as the∀∃ statement that they represent,
and that you understand the proof. Because I never refer to the constants that constitute the proof of a meta-
theorem, I usually call them all- as I’ve started to do here. Earlier constants areα-renamed out of the way
of later ones, so you can’t refer to them, but Twelf still knows the earlier ones exist.

With these lemmas proven, we can show our result:

sum-commute : sum N1 N2 N3 -> sum N2 N1 N3 -> type.
%mode sum-commute +D1 -D2.

- : sum-commute (sum-z : sum z N N) D
<- sum-z-rh N D.

- : sum-commute (sum-s D : sum (s N1) N2 (s N3)) D’’
<- sum-commute D (D’ : sum N2 N1 N3)
<- sum-s-rh D’ (D’’ : sum N2 (s N1) (s N3)).

%worlds () (sum-commute _ _).
%total D (sum-commute D _).

Let’s walk through each case. In the first, we are given a derivation ofsum z N N, so we need to show
sum N z N. We do this by appealing to the lemmasum-z-rh onN. In the second, we are given a deriva-
tion of sum (s N1) N2 (s N3) , so we need to showsum N2 (s N1) (s N3) . By induction on
the derivationD of sum N1 N2 N3, we get thatsum N2 N1 N3, and thensum-s-rh applied to this
gives the result.
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3.7 Interactive Proving

In the previous section, I presented the finished proofs to you, explaining how Twelf checks them. How-
ever, Twelf is also useful as you are writing a proof. We’ll discuss a few ways to use Twelf during proof
development here by developing the proof ofsum-commutes interactively.

3.7.1 Finding Out Which Cases are Left

First, if you give a theorem statement and try to check it without supplying any cases, as in

sum-commute : sum N1 N2 N3 -> sum N2 N1 N3 -> type.
%mode sum-commute +D1 -D2.

%worlds () (sum-commute _ _).
%total D (sum-commute D _).

Twelf will complain that you haven’t given any cases:

Coverage error --- missing cases:
{N1:nat} {N2:nat} {N3:nat} {X1:sum N1 N2 N3} {X2:sum N2 N1 N3 }

|- sum-commute X1 X2.

So it’s up to you to pick a first case and start filling it.
Once you get one case in, if you recheck worlds and totality, Twelf will say

Coverage error --- missing cases:
{N1:nat} {N2:nat} {N3:nat} {X1:sum N1 N2 N3} {X2:sum N2 (s N1 ) (s N3)}

|- sum-commute (sum-s X1) X2.

That is, once we’ve given one case, Twelf guesses how we are splittingup the cases (here, with one for each
derivation ofsum N1 N2 N3), and tells us which cases we are missing. This saves you from figuring out
which cases are left, and it checks that you and Twelf agree on what you have already proven.

3.7.2 Type Inference

You can also get Twelf to help you fill in an individual case. Say we start by writing

- : sum-commute (sum-z : sum z N N) D.

and try to check that. Twelf responds

- : {N:nat} {D:sum N z N} sum-commute sum-z D.
Occurrence of variable D in output (-) argument not necessar ily ground.

In addition to telling us there is a mode error, Twelf did type inference, telling usthe type of the term that
we need to fill in—in this case, the type ofD. Thus, you can get Twelf to specialize the theorem statement
for the particular case for you. In this case, the specialized theorem statements suggests the lemma that we
need; if I hadn’t told you up front that we’d needsum-z-rh , this is how we would have discovered that
we do. Now, we can fill in the call to the lemma and complete the case.

As another example, if we start with

- : sum-commute (sum-s D : sum (s N1) N2 (s N3)) D’’.
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Twelf does type inference, specializing the theorem statement, and reportsthe mode error:

- :
{N1:nat} {N2:nat} {N3:nat} {D:sum N1 N2 N3} {D’’:sum N2 (s N1 ) (s N3)}

sum-commute (sum-s D) D’’.
Occurrence of variable D’’ in output (-) argument not necess arily ground.

Say we didn’t know how to finish the case. Rather than figuring out what we can get by induction ourselves,
we could have Twelf tell us by putting in the inductive call and asking it to do type inference. Checking

- : sum-commute (sum-s D : sum (s N1) N2 (s N3)) D’’
<- sum-commute D D’.

gives the following message:

- :
{N1:nat} {N2:nat} {N3:nat} {D:sum N1 N2 N3} {D’:sum N2 N1 N3}

{D’’:sum N2 (s N1) (s N3)} sum-commute D D’ -> sum-commute (su m-s D) D’’.
Occurrence of variable D’’ in output (-) argument not necess arily ground

Twelf reports the type ofD’ , telling us what we got by induction. The types ofD’ andD’’ suggest the
lemma we need to apply to finish the proof.

3.7.3 Type Annotations

In Twelf’s concrete syntax, you can put a type annotation on any term bywriting M : A. This is useful
for guiding type inference in giving you clearer error messages. Also,you can use it to name the implicit
arguments to type families so you don’t have toα-rename them yourself when you’re staring at Twelf’s
output.

3.7.4 Underscores

Instead of naming every implicitly quantified parameter with a capital letter, you can elide some of the
names by replacing them with an_. This is useful, for example, when a particular part of the input is not
relevant to a case of the proof. For now, you can think of this as being thesame as giving the variable a name
that you can’t refer to; there is, however, a slight difference that comes up when we talk about binding.

3.8 Lies, Damn Lies, and Logic Programming

In this whole section, I’ve been lying to you about what Twelf’s meta-theorem checker is doing. Sort of.
It is verifying that the constants inhabiting a type family represent a total relation from inputs to outputs.
However, it is doing this in a very particular way: it is checking that, when thefamily is interpreted as
a higher-order logic program according to Twelf’s logic-programming operational semantics, the family
represents a total logic program from the inputs to the outputs. This is equivalent to what I’ve been telling
you, as the logic programming interpretation boils down to searching for inhabitants of the type family;
thus, proving that the type family gives a total logic program shows that the type family is inhabited for
all inputs. I prefer the relation abstraction because it means I don’t haveto think about higher-order logic
programming.
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4 Encoding a Language with Binding: System F

Now that we have a basic understanding of LF and Twelf, let’s move on to some more-realistic examples.
In this section, we’ll see how to encode programming languages with binding inLF; as an example, we use
System F, the polymorphicλ-calculus [7, 18].

4.1 Encoding the Syntax

4.1.1 Higher-Order Abstract Syntax

On paper, we’d write the syntax of System F as follows:
Types T ::= u type variable

T2 → T arrow type
∀ u. T forall type

Terms E ::= x term variable
λ x:T. E function
E1 E2 application
Λ u. E type function
E[T] type application

Let’s try to encode this in LF. Per our above methodology from Section 2.9, we define one LF type for
each syntactic class. In particular, we define the following LF types:

tp : type. %% System F types
tm : type. %% System F terms

Next, we inhabitant these types with constants for each of the syntactic forms. For some forms, we can
follow our above methodology:

arrow : tp -> tp -> tp. %% function type

app : tm -> tm -> tm. %% application
tapp : tm -> tp -> tm. %% type application

But what do we do about binding forms and variables? One option would beto use de Bruijn indices
with our typenat from before; then we would, for example, represent term variables and functions with
the following constants:

var : nat -> tm.
fn : nat -> tp -> tm -> tm.

However, if we take this approach, then we have to manually create the machinery of binding, capture-
avoiding substitution, andα-equivalence for each object language (or somehow encapsulate it in alibrary
that we can reuse). Moreover, to do the meta-theory, we will need to develop properties of binding for each
object language.

In LF, one can avoid this tedium by usinghigher-order abstract syntax. The idea of higher-order abstract
syntax (HOAS) is that you represent object-language binding with meta-language binding; consequently,
you get the machinery of binding (capture-avoiding substitution,α-equivalence) for the object language
for free. Clearly, this only works if the object language’s notion of binding is coincides with LF’s (so, for
example, one probably cannot use HOAS to represent broken versions of Lisp), but this is usually the case.
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Concretely, when using HOAS, we represent object-language variables with meta-language variables.
This means that the representation of the part of an object-language term that is in the scope of a variable will
have a free meta-language variable; the term must bind these variables. Using HOAS to represent System F,
we arrive at the following signature:

tp : type.
arrow : tp -> tp -> tp.
forall : (tp -> tp) -> tp.

tm : type.
fn : tp -> (tm -> tm) -> tm.
app : tm -> tm -> tm.
tfn : (tp -> tm) -> tm.
tapp : tm -> tp -> tm.

In the type offn , we represent the body of the function with an LF term of typetm -> tm ; this represents
the fact that the syntactic formλ x:A. E bindsx in E. Λ u. E also binds a variable, but the variable that it
binds ranges over types, not terms; correspondingly, the argument totfn is a function of typetp -> tm ,
which binds a type variable in the body. Finally,forall binds a type in a type. There are no constants for
System F variables: we said that we represent object-language variables with meta-language variables, and
LF variables are already LF terms.

This encoding gives us capture-avoiding substitution for free. As usual, we usep·q to denote the en-
coding mapping from the informal object language description to LF. Then,for example, the representation
of a functionλ x:T2. E is an LF termfn pT2q ([x] pEq ) wherex is (potentially) free inpEq . We
will show that the object-language capture-avoiding substitution of a termE2 for x in E, written{E2/x}E, is
represented by the meta-language capture-avoiding substitution ofpE2q into pEq , written [ pE2q /x] pEq .

More formally, we define the encoding mapping as follows:

puq = u

pT2 → Tq = arrow pT2q pTq

p∀ u. Tq = forall ([u] pTq )

pxq = x

pλ x:T. Eq = fn pTq ([x] pEq )

pE1 E2q = app pE1q pE2q

pΛ u. Eq = tfn ([u] pEq )

pE[T]q = tapp pEq pTq

In the variable cases, what we are really saying is that the System F variable x is represented as the LF
variablex that is spelled with the same text; note the different fonts on each side of the equals sign. This
ensures that when we bind the variable in LF (in[x] ... ) we are binding the variable that shows up in
the encoding of the term in which it is bound.

4.1.2 Adequacy and World Equivalence

Now that we have given an encoding, we should check adequacy. In our previous adequacy statements, the
encoding of the object language was always well-formed in the empty context. Now that we have introduced
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variables, this will no longer be true; for example, the encoding of a variable x is not an LF term of typetm
in the empty context. The statement of adequacy about a language with binding must include a statement
about the LF contexts in which the representation is adequate:

PROPOSITION4.1: ADEQUACY OF SYSTEM F ENCODING. Relative to the signatureΣ above,

1. there is a bijection between System F types with free type variables inu1,. . .un and LF termsT such
thatu1 : tp . . . un : tp `Σ T

←

: tp.

Moreover, this bijection is compositional in the sense that{T2/u}T is [ pT2q / puq ] pTq .

2. There is a bijection between System F terms with free type variables inu1,. . .un and free term vari-
ables inx1,. . .xm and LF termsE such thatu1 : tp . . . un : tp, x1 : tm . . . xn : tm `Σ E

←

: tm.

Moreover, this bijection is compositional in the sense that{E2/x}E is [ pE2q / pxq ] pEq and{T2/u}E
is [ pT2q / puq ] pEq .

In the proof of the second part, we would like to use the first. For example, when consideringtapp pEq pTq ,
we would like to know thatpTq adequately representsT. The first part of the theorem establishes this fact
for contexts of the formu1 : tp. . .un : tp. But does this fact imply anything about the canonical forms of
typetp in contexts of the formu1 : tp. . .un : tp,x1 : tm. . .xn : tm?

We say that aworld is a set of LF contexts; in particular, we will consider worlds that are generated
by regular expressions. For example,(u : tp)∗ describes the world of LF contexts for which we stated the
first part of this adequacy theorem. Then, the more general question athand is this: if the canonical forms
of a type adequately represent some object-language entity in one world, do they necessarily adequately
represent the same entity in another world? In general, the answer is no: for example, if we add another
variablejunk : tp to the world, the canonical forms of typetp will no longer adequately represent System
F types with free type variables inu1. . .un.

Is it always the case that adding any extra variables to the world breaks the adequacy of a type family?
No. In the example at hand, going from the worldu1 : tp. . .un : tp to the worldu1 : tp. . .un : tp,x1 : tm. . .xn : tm
does not change the canonical forms of typetp because variables of LF typetm cannot appear in LF terms
of typetp. This makes sense: System F terms cannot appear in System F types. But what is the general
rule?

To answer this question, we define an order on worlds, with the intention thatworldW1 ≤A W2 if all the
canonical forms of typeA in W1 are also present inW2. Then, two worlds areequivalentfor a type familyA
if each is less-than the other. This definition makes use of the concept ofsubordination. In general, we say
that a type familyA is subordinate to a type familyB if canonical forms of typeA can appear in canonical
forms of typeB. For example,tp is subordinate totm but not vice versa. Twelf tracks the subordination
relation among type families in your signature.

Two worlds that are equivalent for one type family may not be equivalentfor another, as the definition
depends on which other type families are subordinate to the one in question. Because equivalent worlds
differ only in assumptions that are not relevant to the type familyA, it is a theorem that the adequacy ofA is
preserved in all equivalent worlds. I present these definitions more formally in Appendix A.

We can now prove PROPOSITION4.1:

Proof. First, prove that the worlds in the two parts are equivalent; then, the prooffollows the techniques
from Section 2. See Appendix A.
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4.2 Encoding the Static Semantics

4.2.1 Informal Static Semantics

For the static semantics of System F, we employ the following contexts:

∆ ::= · |∆, u type

Γ ::= · |Γ, x :T

A context∆ is well-formed when all variables in it are distinct. A contextΓ is well-formed with respect
to a context∆ when all variables are distinct and every type is well-formed according to the following
judgement.

∆ ` T type

∆, u type, ∆′ ` u type
WF-VAR

∆ ` T2 type ∆ ` T type

∆ ` T2 → T type
WF-ARROW

∆, u type ` T type

∆ ` ∀ u. T type
WF-FORALL

Type formation amounts to checking that all type variables are bound. Then, typing is defined by the
following judgement.

∆ ; Γ ` E : T

∆ ; Γ, x :T, Γ′ ` x : T
OF-VAR

∆ ` T2 type ∆ ; Γ, x :T2 ` E :T

∆ ; Γ ` λ x:T2. E : T2 → T
OF-FN

∆ ; Γ ` E1 : T2 → T ∆ ; Γ ` E2 :T2

∆ ; Γ ` E1 E2 : T
OF-APP

∆, u type ; Γ ` E :T

∆ ; Γ ` Λ u. E :∀ u. T
OF-TFN

∆ ; Γ ` E1 :∀ u. T ∆ ` T2 type

∆ ; Γ ` E1[T2] : {T2/u}T
OF-TAPP

We employ the convention that there are implicit side-conditions on binding formsensuring that bound
variables are not already bound in∆ or Γ. Then the typing rules maintain the invariant that the contexts are
well-formed, so there is no need to check that the context is well-formed at the leaves (e.g., inOF-VAR). We
will check in Section 5 that∆ ; Γ ` E : T implies∆ ` T type.

4.2.2 Encoding Type Formation

In Section 2, we saw how to encode categorical judgements in LF; however, the static semantics of System
F include hypothetical judgements. Following the guidelines in Section 2.9, we might postulate that we
should represent the judgement∆ ` T type with a type family

wf : ctx -> tp -> type.

wherectx is some LF type representing the encoding of a type context. While this is possible, it is not the
representation of hypothetical judgements that makes the best use of LF.

Let’s consider what we expect of a hypothetical judgement:
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• The hypothesis rule—e.g.,WF-VAR—should hold. If we have assumed a derivation of a judgement,
we should be able to conclude that judgement.

• The hypothetical judgement should satisfy a substitution principle. For the example above, the desired
theorem is the following: If∆, u type ` T type and∆ ` T2 type then∆ ` {T2/u}T type. That is,
when we substitute an actual thing for the hypothesis, the judgement still holds.

One of the observations that makes Twelf so useful is this: we can represent hypothetical judgements
using the binding structure of LF. That is, we represent an object-language derivation of a hypothetical judge-
ment as an LF term with free variables, where the variables stand for the hypotheses. Then the substitution
principle for the judgement is just substitution in LF.

For example, we can encode the judgement∆ ` T type with the following signature:

%% well-formed type
wf : tp -> type.

wf-arrow : wf (arrow T2 T)
<- wf T2
<- wf T.

wf-forall : wf (forall ([u : tp] (T u)))
<- ({u:tp} {du : wf u} wf (T u)).

The encoding of derivations is defined as follows:

p∆, u type, ∆′ ` u typeq = du

p

D2

∆ ` T2 type
D

∆ ` T type

∆ ` T2 → T type q = wf-arrow pDq pD2q

p

D
∆, u type ` T type

∆ ` ∀ u. T type q = wf-forall ([u : tp] [du : wf u] pDq )

What’s going on here? Hopefully the case forwf-arrow is straightforward. Forwf-var , we said that
we we wanted to represent uses of hypotheses as LF variables; because there is only one well-formedness
hypothesis for each object-language variableu, I’ve chosen as a naming convention thatdu will stand for the
well-formedness hypothesis aboutu. The type ofwf-forall requires some explanation. In the premise,
we have a derivationD with free variables∆, u that may use the hypothesis ruleWF-VAR on any of these
variables. Thus,pDq will be an LF term with free variables includingu, du , and similarly for the other
variables in∆. But u is bound in the on-paper application ofWF-FORALL, so neitheru nor the applications
of WF-VAR for it can appear below the line. Consequently, the LF representation ofWF-FORALL binds both
u anddu . Thus, the premise ofWF-FORALL is represented as a dependent function that, given a typeu and
a derivationdu of its well-formedness, produces a derivation thatT u is well-formed. This is reflected in
the type ofWF-FORALL and in the encoding.

Some other things to note:

• Because we use the LF context to represent the object-language context, the context does not appear
as an argument to the type family representing the judgement.
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• I’ve used Twelf’s syntactic niceties here to suppress the binding of syntax (see Section 3.3). In a purer
syntax, the signature would look like

wf-arrow : {T2:tp} {T:tp}
wf T2 -> wf T -> wf (arrow T2 T).

wf-forall : {T:tp -> tp}
({u:tp} {du : wf u} wf (T u))
-> wf (forall ([u : tp] (T u))).

The encoding function would then apply these constants to the syntax encodings as defined above:

p

D2

∆ ` T2 type
D

∆ ` T type

∆ ` T2 → T type q = wf-arrow pT2q pTq pD2q pDq

p

∆, u type ` T type

∆ ` ∀ u. T type q = wf-forall ([u:tp] pTq ) ([u : tp] [du : wf u] pDq )

This last line points out that my notation is slightly confusing. The constantWF-FORALL must abstract
over the body of the argument to theforall , but there is no way in LF to abstract over a term with a
free variable without internalizing that free variable as a function; thus,T has typetp -> tp . Thus,
pTq , which is supposed to be an LF term with a free variableu, is not T, but (T u) . I find the
mnemonic of using “T” in both places to be more helpful than hurtful, though.

• With respect to the fully explicit constants in the previous bullet, our original constants that use the
backward-arrow syntax (<- ) (while still writing subgoals in the order that we’d write them on paper)
end up with their arguments swapped: contrast the order ofD andD2. This is annoying until you get
used to it, but you’ll internalize it fairly quickly. When you get a weird type error, look for this as a
possible cause.

• For WF-FORALL, where did the implicit side condition thatu is not already in∆ go? This is handled
by α-conversion in LF: because the premise of the rule binds an LF variable,α-conversion ensures
that this variable is not already in the LF context.

We should check adequacy for this encoding; the contexts in which the encoding is adequate result from
the discussion above:

PROPOSITION4.2: ADEQUACY OF ∆ ` T type. There is a bijection between derivations of
u1 type, . . . , un type ` T type (whereu1 type, . . . , un type is a well-formed context) and LF termsD such
thatu1 : tp, du1 : wf u1, . . . `Σ D

←

: wf pTq .

Proof. This proof is similar to the proof forsum, though here we must deal with binding. In particular,
you will have to ascertain that the worlds in this theorem statement are equivalent for types and terms to
the worlds in which the syntax encodings are adequate. Give it a try if you like, and then take a look at
Appendix B.

4.2.3 Encoding Typing

Encoding the typing rules is mostly straightforward now that we have hypothetical judgements under our
belts. We extend the signature as follows:

of : tm -> tp -> type.
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of-fn : of (fn T2 ([x:tm] (E x))) (arrow T2 T)
<- wf T2
<- ({x : tm} {dx : of x T2} of (E x) T).

of-app : of (app E1 E2) T
<- of E1 (arrow T2 T)
<- of E2 T2.

of-tfn : of (tfn ([u:tp] (E u))) (forall ([u:tp] T u))
<- ({u : tp} {du : wf u} of (E u) (T u)).

of-tapp : of (tapp E T2) (T T2)
<- of E (forall ([u] T u))
<- wf T2.

Then, we use the encoding:

p∆ ; Γ, x :T, Γ′ ` x : Tq = dx

p

D2

∆ ` T2 type
D

∆ ; Γ, x :T2 ` E : T

∆ ; Γ ` λ x:T2. E :T2 → T q = of-fn ([x:tm] [dx : of x pT2q ] pDq ) pD2q

p

D1

∆ ; Γ ` E1 : T2 → T
D2

∆ ; Γ ` E2 : T2

∆ ; Γ ` E1 E2 :T q = of-app pD2q pSD1q

p

D
∆, u type ; Γ ` E :T

∆ ; Γ ` Λ u. E :∀ u. Tq = of-tfn ([u : tp] [du : wf u] pDq )

p

D1

∆ ; Γ ` E1 :∀ u. T
D2

∆ ` T2 type

∆ ; Γ ` E1[T2] : {T2/u}T q = of-tapp pD2q pD1q

We once again represent typing assumptions using LF assumptions: the LF variabledx corresponds to
the use of the on-paper use of the ruleOF-VAR for x. The constantOF-FN is analogous toWF-FORALL, but
in this rule we are adding a typing assumption to the context. As before, I’ve left the abstraction over the
meta-variables that appear in the syntax implicit. Additionally, note again that the order of the derivations
flips when we use the backward-arrow<- to declare the constants corresponding to the inference rules.

Given the discussion ofwf , this encoding should be mostly straightforward. However, one subtlety
is the result type inOF-TAPP. On, paper the result type of this rule is{T2/u}T. By adequacy of syntax
(PROPOSITION4.1), this is[ pT2q /u] pTq . As discussed above,pTq is really (T u) (whereT is an LF
term of typetp -> tp that is well-formed independently of the bound variableu), soT pT2q is indeed
[ pT2q /u] pTq . This all must be reasoned out formally in the proof of adequacy:

PROPOSITION4.3: ADEQUACY OF ∆ ; Γ ` E : T.
There is a bijection between

• derivations ofu1 type, . . . ; x1 :T1, . . . ` E :T, where∆ = u1 type, . . . , un type is well-formed and
Γ = x1 : T1, . . . , xm : Tm is well-formed with respect to∆; and

• LF termsD such thatu1 : tp, du1 : wf u1, . . . , x1 : tm, dx1 : of x1 pT1q , . . . `Σ D
←

: of pEq pTq

Proof. See Appendix B if you get stuck. You will need to consider world equivalence to reuse the proofs of
adequacy for syntax and type formation.
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4.3 Encoding the Dynamic Semantics

4.3.1 Informal Dynamic Semantics

We’ll employ a call-by-value, left-to-right dynamic semantics for closed terms, where type abstractions are
considered values.

ValuesV ::= λ x:T2. E |Λ u. E

E 7→ E′

E1 7→ E′

1

E1 E2 7→ E′

1
E2

STEP-APP-1
E2 7→ E′

2

V1 E2 7→ V1 E′

2

STEP-APP-2

(λ x:T2. E) V2 7→ {V2/x}E
STEP-APP-BETA

E1 7→ E′

1

E1[T2] 7→ E′

1
[T2]

STEP-TAPP-1
(Λ u. E)[T2] 7→ {T2/x}E

STEP-TAPP-BETA

4.4 Encoding the Dynamic Semantics

The dynamic semantics is, for the most part, easier to encode than the static semantics. First, the dynamic
semantics is given as a categorical, rather than hypothetical, judgement, so there we don’t introduce any
extra binding structure here. Second, substitution in the object language ismodeled as substitution in LF, so
there is no need to define any machinery for substitution.

The one mildly tricky part is handling the subsyntaxV of values. LF doesn’t give us a way to define
subtypes, which is what the subsyntax would correspond to if we wanted tointerpret it literally. However,
we can equivalently think of the subsyntax as defining a judgementE value over all expressions such that
E value is derivable exactly whenE is also produced by the grammar defining values (i.e.,E is also aV).
For example, on paper this judgement would be defined as follows:

λ x:T. E value
VALUE -FN

Λ u. E value
VALUE -TFN

.

In the LF encoding, we make use of such a judgement, and interpret a reference to the meta-variableV
in a rule as atm E with an extra premise ofvalue E . We enrich the signature as follows:

%% values
value : tm -> type.

value-fn : value (fn A E).
value-tfn : value (tfn E).

%% operational semantics
step : tm -> tm -> type.

step-app-1 : step (app E1 E2) (app E1’ E2)
<- step E1 E1’.

step-app-2 : step (app V1 E2) (app V1 E2’)
<- value V1
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<- step E2 E2’.
step-app-beta : step (app (fn T2 ([x:tm] (E x))) E2) (E E2)

<- value E2.
step-tapp-1 : step (tapp E1 T) (tapp E1’ T)

<- step E1 E1’.
step-tapp-beta : step (tapp (tfn ([u:tp] E u)) T2) (E T2).

To define the encoding, we make use of the following lemma:

LEMMA 4.4: ADEQUACY OF VALUE JUDGEMENT. There exists a bijection between termsV with free
variables inu1,. . . ,x1,. . . and canonical LF termsD such thatu1 : tp, . . . , x1 : tm `Σ D : value pVq .

Proof. See Appendix B.

Then the encoding is defined as follows:

p

D1

E1 7→ E′

1

E1 E2 7→ E′

1
E2q = step-app-1 pD1q

p

D2

E2 7→ E′

2

V1 E2 7→ V1 E′

2
q = step-app-2 Dv1 pD2q

p(λ x:T2. E) V2 7→ {V2/x}Eq = step-app-beta Dv2

p

D1

E1 7→ E′

1

E1[T2] 7→ E′

1
[T2]q = step-tapp-1 pD1q

p(Λ u. E)[T2] 7→ {T2/x}Eq = step-tapp-beta

whereDvi is the LF term corresponding toVi by LEMMA 4.4.
The statement of adequacy is straightforward:

PROPOSITION4.5: ADEQUACY OF DYNAMIC SEMANTICS. For closed expressionsE andE′, there is a
bijection between derivations ofE 7→ E′ and canonical LF termsD such that· `Σ D : step pEq pE′

q .

Proof. See Appendix B if you get stuck.

5 Meta-theory of Languages with Binding: Properties of System F

5.1 Preservation

Preservation is relatively straightforward. For the most part, it uses onlytechniques that we covered in
Section 3. The type family representing the theorem statement is

preserv : of E T
-> step E E’
-> of E’ T
-> type.

%mode preserv +X1 +X2 -X3.
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Make sure that you understand how the translation of this type family into a∀∃-statement gives the usual
definition of type preservation. Later, in the%worlds declaration, we will declare that we are proving this
theorem for closed terms; keep this in mind as you try to understand the proof.

The proof of preservation is usually given by induction on the dynamic semantics derivation. We expect
to have once case for eachstep rule. Let’s start withstep-app-1 :

- : preserv
(of-app (DofE2 : of E2 T2) (DofE1 : of E1 (arrow T2 T)))
(step-app-1 (DstepE1 : step E1 E1’))
(of-app DofE2 DofE1’)
<- preserv DofE1 DstepE1 (DofE1’ : of E1’ (arrow T2 T)).

Some notes on this case:

• Inversion: In this case, we use inversion as follows:step-app-1 concludesstep (app E1
E2) (step app E1’ E2) , so the typing premise concludesof (app E1 E2) T ; by inspec-
tion of the typing rules, the only rule that can make this conclusion for the syntactic form (app E1
E2) is of-app , in which case we have derivationsDofE2 andDofE1 with the types noted in the
case.

In Twelf, the inversion is written by pattern-matching the typing premise as we dohere. If the inver-
sion reasoning were incorrect (i.e., if there were another rules that could have derived the conclusion),
this case itself would still type check and mode check. However, if we did nototherwise cover that
other rule, we would get an input coverage error when we tried to checkthe theorem. Thus, we can
inline the inversion lemma, rather than stating it explicitly.

• Induction: After the inversion, it is simple to finish off the theorem by appealing to inductionon the
subderivationDstepE1 and the typing derivation forE1 that we got from inversion.

• Order of Arguments: As we discussed a little in Section 4 when we were doing the encoding, the
order of the arguments to, for example,of-app is the reverse of the left-to-right order that we wrote
on paper. If you see a strange type clash during the proof, look for thisas a cause. For example, if we
forget that the arguments should be swapped here, we get the following error:

Type mismatch
Expected: of ‘E2 ‘T2
Inferred: of ‘E1 (arrow ‘T2 ‘T)
Head mismatch
Ascription did not hold
(Index object(s) did not match)

Type mismatch
Expected: of X2 (arrow (arrow ‘T2 ‘T) X1)
Inferred: of ‘E1’ (arrow ‘T2 ‘T)
Head mismatch
Argument type did not match function domain type
(Index object(s) did not match)

Type mismatch
Expected: of (app ‘E1’ ‘E2) ‘T
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Inferred: of (app X2 ‘E1) X1
Free variable clash
Argument type did not match function domain type
(Index object(s) did not match)

3 errors found

On to the next case:

- : preserv
(of-app Dof2 Dof1)
(step-app-2 (Dstep2 : step E2 E2’) (Dval1 : value E1))
(of-app Dof2’ Dof1)
<- preserv Dof2 Dstep2 (Dof2’ : of E2’ T2).

This case is very similar to the previous one. Note that the type annotations on the inputs are (usually)
optional; I’ve left them off this case because they are the same as in the previous. As it turns out, we do not
needDval1 for this case, so we could have elided its name, using an_ instead.

Now, the case forβ-reduction:

- : preserv
(of-app

(DofE2 : of E2 T2)
(of-fn (DofE : {x} {dx : of x T2} of (E x) T) (DwfT2 : wf T2)))

(step-app-beta (Dv2 : value E2))
(DofE E2 DofE2).

Some things to note:

• Inversion: In this case, we do two inversion—first on the application, and then on the function. Both
of these are justified by the syntactic form of the left-hand side of dynamic semantics derivation,
which is (app (fn ) ) . When we have nested inversions like this, we just extend the pattern
matching deeper.

• Substitution: As we’ve noted, we get both substitution for terms and the proof that substitution
preserves typing for free by encoding the syntax and judgements as we have. In this case, there is no
substitution lemma necessary; we simply apply the LF function to the appropriate arguments.

The remaining cases are similar:

- : preserv
(of-tapp (DwfT2 : wf T2) (DofE1 : of E1 (forall ([u] (T u)))))
(step-tapp-1 (DstepE1 : step E1 E1’))
(of-tapp DwfT2 DofE1’)
<- preserv DofE1 DstepE1 (DofE1’ : of E1’ (forall ([u] (T u))) ).

- : preserv
(of-tapp

(DwfT2 : wf T2)
(of-tfn

(DofE : {u : tp} {du: wf u} of (E u) (T u))))
step-tapp-beta
(DofE T2 DwfT2).
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We now check the theorem as follows:

%worlds () (preserv _ _ _).
%total D (preserv _ D _).

Some notes on checking this theorem:

• Termination: In each inductive call, the dynamic semantics derivation is a subderivation.In this
particular proof, the typing derivation in each call is also smaller, so the proof could also be viewed
as being by induction on typing (switch theDand the first in the%total declaration).

• Worlds: We state this theorem for the empty world. However, the empty world isnot equivalent to
the world for which typing derivations are adequate for the type familyof . So why does this theorem
statement make any sense?

First, the empty world is a subworld of the worlds in which types, terms, type well-formedness deriva-
tions, and typing derivations are adequate (in the sense that the contexts matching the empty world are
a subset of the contexts matching those worlds). This means that the canonical LF terms of these types
in the empty worlds will all be the image of some informal object, but it’s not necessarily the case that
they cover all informal objects. Indeed, if we look at the statements of adequacy for types, terms, type
well-formedness derivations, and typing derivations, we see that the empty LF context corresponds to
closed expressions and empty-context derivations. Thus, this statementof the theorem doesnot cover
all of the informal object language, just those programs that are well-typed in the empty context. This
is intentional: on paper, we usually only state preservation for terms that arewell-typed in the empty
context, as we only plan on evaluating closed programs.

• Input Coverage: We thought of this proof as proceeding by case-analysis of the dynamic semantics
derivation, employing inversion on the typing derivation. It works just aswell by case-analyzing
the typing derivation and inverting the dynamic semantics derivation. For example, when the typing
derivation ends inof-app , there are three transition rules that might apply, and we have a case for
each. But then why don’t we need cases where the typing derivation ends in of-fn or of-tfn ?
If of-fn was used, we have as a premise a derivation ofstep (fn ) ; however, no constants
inhabit this type, so the case is contradictory. The input-coverage checker automatically rules out
cases where the indices to type families are contradictory.

5.2 Progress

With preservation under our belts, we can move on to progress. The statement that we usually make on
paper is

If · ; · ` E : T then eitherE value or there exists anE′ such thatE 7→ E′.

The first question is how we represent this in Twelf. In∀∃ statements over LF types, there is no built-in
general sum construct that we can use for the “or”. However, it is easy enough to define such sums on a
case-by-case basis: we define a judgement representing the desired sum. In this case, we write:

val-or-step : tm -> type.

val-or-step-step : val-or-step E
<- step E E’.

val-or-step-value : val-or-step E
<- value E.
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That is,val-or-step E is derivable when eitherE is a value orE can take a step.
Then the statement of progress is straightforward:

progress : of E T
-> val-or-step E
-> type.

%mode progress +X1 -X2.

Let’s start the proof, which, since we do not have any lemmas to do on, will obviously work by case-
analyzing the typing judgement. As a warm-up, the cases for functions and type functions are easy, as both
are values:

- : progress
(of-fn DofE _)
(val-or-step-value value-fn).

- : progress
(of-tfn DofE)
(val-or-step-value value-tfn).

Note that I’ve begun to leave the types to inference and elide the names of irrelevant derivations (for example,
the type well-formedness derivation that is the second argument toof-fn ). Now that I’m used to Twelf,
I find it easier to read code without these annotations. Also, note that because the syntax arguments to
value-fn andvalue-tfn are implicit, Twelf here figures out which function we’re saying is a value
based on the type of the theorem.

Now for application:

- : progress
(of-app (DofE2 : of E2 T2) (DofE1 : of E1 (arrow T2 T)))
_
<- progress DofE1 (DvsE1 : val-or-step E1)
<- progress DofE2 (DvsE2 : val-or-step E2).

In this incomplete case, I’ve left anfor the missing result derivation. We get started by observing that, by
induction,val-or-step E1 andval-or-step E2 . To finish off the case, we’ll have to case-analyze
these derivations ofval-or-step :

1. whenE1 takes a step, we can applystep-app-1 ;

2. whenE1 is a value andE2 takes a step, we can applystep-app-2 ;

3. when they are both values, by a canonical forms lemma,E1 must have the form(fn ...) and then
we can applystep-app-beta .

How do we do this in Twelf? You might think that we could do the case-analysis by pattern-matching,
for example by writing out the first case as follows:

-1 : progress
(of-app (DofE2 : of E2 T2) (DofE1 : of E1 (arrow T2 T)))
(step-app-1 DstE1)
<- progress DofE1 ((val-or-step-step DstE1) : val-or-step E1)
<- progress DofE2 (DvsE2 : val-or-step E2).
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Then we would write two other constants (-2 and-3 ) corresponding to the other two cases. Unfortunately,
this turns out not to work. The problem is that Twelf checks output coverage on a case-by-case basis, not
considering the other constants inhabiting the same type family. Thus, it is not enough that-1 , -2 , and-3
together cover the output; each one must cover it individually.

However, Twelf obviously allowsinput coverage to be split across cases, so we can get around this
problem by moving the case-analysis of the output into case-analysis of theinput to a lemma. This is called
factoring. In this example, we can start with a lemma

progress/app : val-or-step E1
-> val-or-step E2
-> val-or-step (app E1 E2)
-> type.

%mode progress/app +X1 +X2 -X3.

that takes as input the two inductive results from progress and produces the necessary output. However, a
little thought (or trying to go through the proof) reveals that this lemma is false—for example,E1 could be
(tfn ...) , which is a value. Thus,progress needs to pass the typing derivation forE1 to the lemma
as well:

progress/app : of E1 (arrow T2 T1)
-> val-or-step E1
-> val-or-step E2
-> val-or-step (app E1 E2)
-> type.

%mode progress/app +X1 +X2 +X3 -X4.

The proof of this lemma is straightforward; the cases correspond to the three mentioned above:

- : progress/app
_
(val-or-step-step DstepE1)
_
(val-or-step-step (step-app-1 DstepE1)).

- : progress/app
_
(val-or-step-value DvalE1)
(val-or-step-step DstepE2)
(val-or-step-step (step-app-2 DstepE2 DvalE1)).

- : progress/app
_
(val-or-step-value DvalE1)
(val-or-step-value DvalE2)
(val-or-step-step (step-app-beta DvalE2)).

%worlds () (progress/app _ _ _ _).
%total {} (progress/app _ _ _ _).

Some things to note:
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• Underscores: In the first case, I’ve elided the name for the derivation forE2, as the application can
make progress regardless of whatE2 does. In all cases, I’ve elided the name for the typing derivation,
as we never need to refer to it.

• Canonical Forms: If we never refer to the typing derivation, how does it solve the problem? Equiv-
alently, what happened to the canonical forms lemma that we mentioned when wethought through
the case above? The answer is that, because the lemma presumes thatE1 has typearrow T2 T ,
Twelf can do the canonical forms lemma for us just by checking for conflictsbetween indices. That
is, the only terms for whichvalue E1 is derivable are(fn T’ ...) and(tfn ...) ; because
of E1 (arrow T2 T) is also derivable,E1 must be(fn T2 ...) because that is the only one
of these two syntactic forms for which the judgement is inhabited. Thus, the third case, which on the
face of it seems to just assume thatE1 is of the right shape, really does cover all the cases.

Returning to theprogress theorem, this lemma makes theof-app case easy:

- : progress
(of-app (DofE2 : of E2 T2) (DofE1 : of E1 (arrow T2 T)))
DvsApp
<- progress DofE1 (DvsE1 : val-or-step E1)
<- progress DofE2 (DvsE2 : val-or-step E2)
<- progress/app DofE1 DvsE1 DvsE2 (DvsApp : val-or-step (ap p E1 E2)).

The case for type application is similar; we need another little factoring lemma:

progress/tapp : of E1 (forall T)
-> val-or-step E1
-> {T2 : tp}

val-or-step (tapp E1 T2)
-> type.

%mode progress/tapp +X1 +X2 +X3 -X4.

- : progress/tapp
Dof
(val-or-step-step DstepE1)
_
(val-or-step-step (step-tapp-1 DstepE1)).

- : progress/tapp
Dof
(val-or-step-value DvalE1)
_
(val-or-step-step step-tapp-beta).

%worlds () (progress/tapp _ _ _ _).
%total {} (progress/tapp _ _ _ _).

- : progress
(of-tapp (_ : wf T2) DofE1)
DvsTpp
<- progress DofE1 DvsE1
<- progress/tapp DofE1 DvsE1 T2 DvsTpp.
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Note that we simply pass the argument typeT2 itself to the lemma since the lemma does not require any
derivation of a fact about the type (Check yourself: what would go wrong if we left T2 implicit?). As
above, Twelf is doing this canonical forms lemma for us in checking that the cases ofprogress/tapp
are sufficient.

Now that we’ve covered all typing derivations that are possible in the emptycontext, we can successfully
check the theorem:

%worlds () (progress _ _).
%total D (progress D _).

5.3 Regularity and Non-empty Contexts

We now prove a theorem calledregularity (or oftenvalidity), which states the subjects of judgements are
well-formed. This lemma is necessary when developing more complicated type theories; here, it is simply a
useful sanity check. For System F as we have specified it, the only property to check is

If ∆ is well-formed,Γ is well-formed with respect to∆, and∆ ; Γ ` E : T then∆ ` T type.

As we mentioned before, a type-formation context∆ is well-formed if all variables in it are distinct; a typing
context is well-formed with respect to a type-formation context∆ if all variables are distinct and∆ ` Ttype

for all typesT in it.
Observe that, unlike all theorems we have proven so far, this theorem is stated for arbitrary contexts.

How do we encode this in the LF theorem statement? This is where the%worlds declaration is used.
The %worlds declaration specifies the form of the LF contexts in which the∀∃-statement specified in a
theorem statement should hold. Because we represent the object-language context with the LF context, this
is how we encode the context present in the informal theorem statement. Likethe%modedeclaration, the
%worlds declaration is part of the theorem statement; we have not paid it much attention until now only
because we only stated theorems about the empty context (type safety for closed programs). Below, we will
see two theorem statements that differ only their worlds (i.e., they are specified by the same type family and
mode declaration) where one theorem is true and the other is false. This makes sense: changing the worlds
changes the canonical forms that the theorem statement quantifies over.

The type family and mode for regularity are simple enough:

reg : of E T -> wf T -> type.
%mode reg +X1 -X2.

First, it is instructive to see that we cannot prove regularity by induction onthe typing derivation if stated
for empty worlds (i.e., if· ; · ` E :T then· ` T type). Consider the case for functions:

- : reg (of-fn ([x] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow Dwf T DwfT2)
<- ???

We need to appeal to induction on the typing premise, but we are stuck: the IHcan only be applied to a
derivation in the empty context, but the premise appears in a non-empty context. In Twelf, this problem
manifests itself asDofE having type{x:tm} {dx : of x T2} of (E x) T , so it is not even type-
correct to call the theorem inductively onDofE .

Thus, our ultimate%worlds declaration will be non-empty. In the statement of adequacy in PROPOSI-
TION 4.3, we said that we represented object language context of the form

u1 type, . . . , un type; x1 :T1, . . . , xm : Tm
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with LF contexts of the form

u1 : tp, du1 : wf u1, . . . , x1 : tm, dx1 : of x1 pT1q , . . .

We now need to know how to describe LF contexts of this form to Twelf. A first try is this:

%block wf-block : block {u : tp} {du: wf u}.
%block of-block : some {T1 : tp} block {x : tm} {dx : of x T1}.
%worlds (of-block | wf-block) (reg _ _).

A block declares a sequence of bindings appearing together in the context; for example, the first block dec-
laration declares a unitu : tp, du : wf u , and the secondx : tm, dx : of x T1 for some
T1. A theorem in worlds(wf-block) is declared for contexts containing any number of blocks of the
form specified bywf-block ; a theorem in worlds(of-block | wf-block) is declared for contexts
containing any number of eitherof-block or wf-block in any interleaving. That is, in this case, the
theorem is defined for contexts matching the regular expression(of-block | wf-block)* . Conse-
quently, these contexts are calledregular worlds(the phonetic collision with regularity is coincidental).

This regular expression describes all contexts mentioned in the adequacystatement. However, we can
actually give a more precise statement about the worlds described in the adequacy statement. In particular,
consider the typeT1 in a typing assumption, which in the statement of adequacy is the encodingpT1q of
someT1 in the object-language typing contextΓ. In the statement of adequacy, we assume that the typing
contextΓ is well-formed with respect to∆, which means that this typeT1 is well-formed with respect to the
type well-formedness assumptions in the ambient context. Thus, a better regular expression for the worlds
mentioned in the adequacy statement is this:

%block of+wf-block : some {T1 : tp} {dT1 : wf T1} block {x : tm} { dx : of x T1}.
%worlds (of+wf-block | wf-block) (reg _ _).

That is, in typing blocks, we require that there be some derivation that the type in question is well-formed.
This will be important later on.

Now that we know how to state a more general theorem, how do we exploit this genericity in its proof?
We can make inductive calls to the theorem in any world matching the declared expression. For example,
we can complete theof-fn case as follows:

- : reg (of-fn ([x : tm] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow DwfT DwfT2)
<- ({x : tm} {dx : of x T2}

reg (DofE x dx) (DwfT : wf T)).

This call is world-correct because it calls the theorem in a context containing one block matchingof-block
(note that the derivationDwfT2 satisfies thesome condition thatT2 is well-formed). To call a theorem in
an extended context, we make the premise of the case higher-order, binding the variables in the extended
context. Thinking ofreg Dof Dwf as defining a relation fromDof to Dwf based on inhabitation of the
type, this constant provides an inhabitant of theof-fn ... part of the argument space provided that, for
arbitrary variablesx anddx , we can always come up with an inhabitant ofreg (DofE x dx) DwfT for
someDwfT. The meta-theorem checker justifies this inductive call by induction over canonical forms—in
this case, the canonical forms of higher type. Because LF respectsα-conversion, the variables bound in this
case are automatically “fresh”.

The case for the other binding form follows a similar pattern:

- : reg (of-tfn ([u] [du : wf u] Dof u du)) (wf-forall Dwf)
<- ({u} {du : wf u}

reg (Dof u du) ((Dwf : {u} {du} wf (T u)) u du)).
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Here, we make the inductive call in a context matchingwf-block . In the previous case, we did not allow
the result derivation ofwf T to mention the new variables in the context,x anddx . Here, we express that
Dwf does have free variables by giving it a function type and applying it tou anddu in pattern-matching
the output of the inductive call. This makes sense for our object language: derivations of type formation
cannot refer to terms or typing derivations, but they can refer to types and typing derivations. Below, we
will discuss how Twelf verifies that we have done this correctly.

As one would expect based on the form of the rules, the other cases do not need induction in extended
contexts:

- : reg (of-app DofE2 DofE1) DwfT
<- reg DofE1 (wf-arrow DwfT _).

- : reg (of-tapp Dwf2 Dof1) (Dwf _ Dwf2)
<- reg Dof1 (wf-forall (Dwf : {u : cn} {du : wf u} wf (T u))).

In both cases, I’ve inverted the output derivation, pattern-matching against the form that it must have based
on the shape of the type in question. In the first case, I’ve left part of the output unnamed since it is
unnecessary. In the second, I’ve elided the type annotations that wouldnameT2, so I’ve also let Twelf
figure out what type I’m applyingDwf to by writing an in the output (though we could just as easily name
it T2 right there).

Now, we can enter the%worlds declaration that we discussed above:

%worlds (of+wf-block | wf-block) (reg _ _).

Note that this must come after the cases of the theorem; unlike mode, Twelf doesnot check worlds incremen-
tally. In checking this declaration, Twelf verifies that all the calls toreg are in contexts of the appropriate
form.

Finally, we can check totality

%total D (reg D _).

and get a coverage error!

Coverage error --- missing cases:
{X1:tp} {#of-block:{x:tm} {dx:of x X1}} {X2:wf X1} |- reg #o f-block_dx X2.

What went wrong? Input coverage checks that the type familyreg Dof Dwf is inhabited for all
canonical LF terms of typeof E T in the signature and worlds provided. In this case, the variabledx in a
context block of the formof-block is one such LF term, but we did not give a constant inhabitingreg
dx D for someD.

Translating back using adequacy, this says that we did not cover the variable case; on paper, we prove
theof-var case by appealing to well-formedness ofΓ, which implies that all types in it are well-formed.
Thus, this is where we need to make use of the type formation derivation thatof+wf-block requires to
exist. Unfortunately, it is not enough just to have such a derivation; we must also give Twelf a case ofreg
that tells it how to find it (i.e., inhabit the relation represented byreg for dx ). Moreover, because the only
place we can mention variables is in the context, we have to put the case for thetheorem in the context. In
particular, we extend the typing context blocks as follows:

%block of+reg-block : some {T : tp} {dT : wf T}
block

{x : tm} {dx : of x T}
{_ : reg dx dT}.
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This block ensures that whenever we add a term and its typing derivation,we also add a case forreg
showing why the type in question is well-formed.

If we try to recheck the theorem in these worlds

%worlds (of+reg-block | wf-block) (reg _ _).

we get a world violation on theof-fn case:

- : reg (of-fn ([x : tm] [dx : of x T2] DofE x dx) DwfT2) (wf-arrow DwfT DwfT2)
<- ({x : tm} {dx : of x T2}

reg (DofE x dx) (DwfT : wf T)).

This is understandable, as we changed the shape of the contexts in whichreg is valid, and this constant
does not match the new shape. To fix the problem, we need to revise the constant as follows:

- : reg (of-fn DofE DwfT2) (wf-arrow DwfT DwfT2)
<- ({x} {dx : of x T2}

{_ : reg dx DwfT2}
reg (DofE x dx) (DwfT : wf T)).

Note that we now useDwfT2 in defining the context. This corresponds closely to the on-paper case for the
theorem, where we would need this derivation to argue thatΓ, x :T2 is well-formed.

And that does it! Though I’ve developed this theorem through several false starts for pedagogical pur-
poses, the final result is quite simple:

reg : of E T -> wf T -> type.
%mode reg +X1 -X2.

- : reg (of-fn DofE DwfT2) (wf-arrow DwfT DwfT2)
<- ({x} {dx : of x T2}

{_ : reg dx DwfT2}
reg (DofE x dx) (DwfT : wf T)).

- : reg (of-app DofE2 DofE1) DwfT
<- reg DofE1 (wf-arrow DwfT _).

- : reg (of-tfn Dof) (wf-forall Dwf)
<- ({u} {du : wf u}

reg (Dof u du) ((Dwf : {u} {du} wf (T u)) u du)).
- : reg (of-tapp Dwf2 Dof1) (Dwf _ Dwf2)

<- reg Dof1 (wf-forall (Dwf : {u} {du : wf u} wf (T u))).

%block wf-block : block {u : tp} {du: wf u}.
%block of+reg-block : some {T : tp} {dT : wf T}

block
{x : tm} {dx : of x T}
{_ : reg dx dT}.

%worlds (of+reg-block | wf-block) (reg _ _).
%total D (reg D _).

Some notes on this theorem:
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• Adequacy: Since our theorem is not stated for the world in which the encoding of SystemF is
adequate, there is a danger that we haven’t proven the theorem that westarted talking about using
on-paper notation. To check that we’ve proven the right theorem, we must check that the world we
provedreg total in is equal, forof andwf , to the worlds in which these type families are adequate.

The blockwf-block is exactly what we derived from the statement of adequacy. The only difference
betweenof+wf-block , which we justified by adequacy, andof+reg-block is the additional
reg cases; we must check that these do not alter the canonical forms. Fortunately, they do not, as
reg is not subordinate to any of the type families in question.

• Termination: The only non-obvious part is why the inductive calls in the extended contexts are
justified. As we said above, the meta-theorem checker justifies these by induction over canonical
forms. For the canonical forms of function type, this allows you to extend thecontext with fresh
variables and then call a theorem inductively on a higher-order subtermof the input applied to these
variables. You can see the rules for canonical forms in Appendix A.

Up until now, we’ve been thinking that inductive calls are justified if the induction argument is a strict
subterm of the input. Induction on the canonical forms of higher type diverges from this mental model
slightly: callingDofE x dx a subexpression of the input is suspicious, as we’re applying a subterm
of the input to other terms! Intuitively, however, these other expressionsare variables, andα-renaming
does not change the size of a term. If we had substituted non-variables, we would get a termination
error.

• Input Coverage: Straightforward, given that the case in the context covers the typing derivation
bound in the context.

• Output Freeness and Coverage:Freeness is straightforward. However, to check output coverage,
we must check that the outputs from calls in extended contexts do not incorrectly ignore some bound
variables. It is only permissible to assume that bound variables do not occur in an output when Twelf
can verify that terms of the variable’s type can never appear in terms of theoutput’s type. For example,
in theof-fn case, terms of typetm or of x T can never appear in terms of typewf T . In contrast,
in theof-tfn case, terms of typetp andwf u can appear in terms of typewf (T u) , so we must
make the result dependent on these variables. If did not do so, for example as in

- : reg (of-tfn Dof) _
<- ({u} {du : wf u}

reg (Dof u du) (Dwf : wf (T u))).

it would be an output coverage error (assuming we can even write a type-correct case, which seems
difficult in this instance).

As we mentioned above, Twelf tracks when terms of one type can appear in terms of another in some-
thing called the subordination relation; you can see the subordination relationby typingPrint.subord
in the Twelf server buffer (where it displays its output to you). Note that the current printout shows
only immediate dependencies; the true relation is the transitive closure of whatyou see. You are only
allowed to form a dependent function space{x:A} B when terms of typeA may appear in terms of
typeB; however, rather than making you specify this relation up front and checking it, Twelf infers
the relation based on the dependent function types that you include in the signature. This is part of
why world checking is not done incrementally.

Note that an underscore is parametrized by all relevant variables, so if we had replacedDwf by , it
would not lead to a coverage error (assuming we could complete the case without referring to it, which
in this case we cannot). This is how_ is different from an unparameterized capital-letter variable.
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For the proof of this theorem, we only needed contexts that introduce one block at a time; however,
it is perfectly fine to introduce any sequence of blocks that match the regular worlds. For example, if
our language had existential types, the case ofreg for their unpack elimination form would use both a
wf-block and anof-block .

6 Related Documentation

If you’d like to read more on LF and Twelf, here are just a few of the many available resources:

• The Twelf Wiki [3] is where I intend to post examples of all the advanced Twelf techniques that I
haven’t covered in this tutorial. Keep an eye on it.

• The Twelf User’s Guide (available from the Twelf Web page [1]) discusses the features of Twelf and
includes some small examples of proving and checking meta-theorems.

• Crary and Harper have written a high-level overview of how to believe a Twelf proof [8].

• Harper, Honsell, and Plotkin’s first paper on LF introduces the representation methodology [9].

• Pfenning’s logical-frameworks notes discuss representation in detail, though they only touch on meta-
theory [15].

• Pfenning’s notes on Computation and Deduction cover, among other things,defining adequate LF
representations and proving meta-theorems relationally [12]. However, the latest version of these
notes predates much of the meta-theorem checker, and thus does not discuss the particularities of
working with it.

• Theexamples directory of the Twelf distribution contains many examples of deductive systems and
their meta-theory. These examples should, for the most part, be understandable given what you know
now.

• Over the years, Frank Pfenning and his students have written many papers on formalizing meta-theory
in LF. However, many of these papers predate the meta-theorem checker, and thus they present proofs
in the style we have seen but do not discuss checking them. The code accompanying many of these
papers is included in the Twelf distribution, and much of it seems to have been updated to use the
meta-theorem checker.

Here are some examples:

– Michaylov and Pfenning give some of the meta-theory of MinML [11].

– Pfenning gives a proof of the Church-Rosser theorem for the simply-typedλ-calculus [13].

– Pfenning gives a proof of cut elimination for intuitionistic logic [14].

– Scḧurmann et al. work out some of the meta-theory ofFω [21].

• Crary and Sarkar [6] give a brief tutorial on representing natural numbers and provingsum-commutes ,
which I have fleshed out in this guide. The remainder of the paper presents some of the LF represen-
tation and meta-theory of typed assembly language, with application to proof-carrying code.

• Simmons’s undergraduate thesis presents the meta-theory of a language withreferences [22], though
it does not discuss adequate representations.

• If you are interested in the meta-theory of LF itself, you should consult Harper and Pfenning [10].
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• If you are interested in the meta-theory of Twelf’s meta-theorem checker,there are many papers
available. For example:

– Scḧurmann’s thesis and related papers discuss coverage checking [20].

– Pientka and Pfenning discuss termination checking [17].

– Anderson and Pfenning discuss a new feature, uniqueness checking[4]. This would save you
from having to prove that certain judgements’ outputs are uniquely determined by their inputs
when you could get Twelf to do so for you.

• The Elf bibliography, linked from the Twelf Web page [1], cites many additional related papers.

7 What’s Next?

If you’ve made it this far, you’re well on your way to becoming a Twelf wizard. You’ve seen how higher-
order syntax and judgements make it easy to encode deductive systems with binding. You’ve seen how to
prove that the formalized system you reason about is equivalent to the description you wrote on paper. And
you’ve seen how to write machine-checkable proofs of meta-theorems.

However, there are a lot of Twelf techniques that I haven’t yet covered. Some of these techniques rely
on aspects of Twelf that I haven’t discussed in this tutorial; others are just clever uses of the machinery I’ve
presented—but uses that I didn’t think of until I’d seen them once. I mention some here so you know what
you have to look forward to; hopefully, there will be some documented examples of these techniques up on
the Twelf Wiki soon.

• World Subsumption: In this tutorial, any time a theorem calls a lemma, both the theorem and the
lemma are declared to have the same worlds. This doesn’t have to be the case. In general, you can call
a lemma declared in one world from a theorem declared in another if Twelf knows that its argument
for the totality of the lemma is still valid in the world of the theorem. This is related to subordination
and world equivalence. There are techniques for dealing with situations where world subsumption is
insufficient, too.

• Catch-all Cases: In the regularity example, we saw how to put cases for a theorem in the context.
This is slightly annoying, as you then have to deal with the theorem every time you make a call in an
extended context. Sometimes, you can avoid putting cases in the context by writing a catch-all case
that covers the variable case without explicitly mentioning it.

• Mutual and Lexicographic Induction: You will sometimes need to prove two mutually referential
theorems at once. Alternatively, you will need to prove a theorem by lexicographic induction on more
than one of its arguments. Sometimes you will need to do both at once. Twelf supports all this through
fancier%total declarations.

• Explicit Termination Metrics: Sometimes, your proof will not be structurally recursive on any of its
subjects; instead, it will work by some size metric on one of the inputs. You cancode up the metric
as a judgement relating the derivation to its size and then induct on thenat .

• %reduces Declarations: These allow you to track when the output of a theorem is smaller than the
input. Consequently, you can make inductive calls on the output of a lemma thatreturns a smaller
derivation. In some situations, this can save you from having to use a metric.
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• Reasoning from False:The coverage checker rules out many contradictory cases for you, but some-
times you will need to reason from contradictory assumptions yourself. Youcan do this by declaring
an uninhabited typefalse , proving that certain assumptions are contradictory, and then writing
lemmas that conclude anything from a term of typefalse .

• Identity Types: When you are, say, proving that a judgement representing a function returns a unique
output, you will need to define equality. The most useful thing is often an identity type, whose only
inhabitant is reflexivity. For example, for equality oftp s:

id : tp -> tp -> type.
refl : id T T.

With this definition, it is easy to show that congruence rules are admissible, soequality of subexpres-
sions implies equality of the whole, and it is easy to show that other type families respect equality.

• Reverse the Polarity:When you’re working with translations from one language to another, youwill
often stumble upon a limitation of the coverage checker. Roughly, while you can put theorem cases
in the context as we did withreg , these cases cannot themselves have premises (this is sometimes
called “third-order coverage checking”). There is a simple workaround that often works; it involves
simultaneously proving an analogous theorem with a different mode, changing a∀ to an∃.

• Assumptions of Different Type: Sometimes, rather than using the kinds of higher-order encodings
we have seen here, it is useful to give assumptions a different type thanthe main judgement. This
comes up, for example, when doing the semantics of a programming language with a store—the usual
judgement is that a term is well-typed in a particular context and store typing, but variable assumptions
are made for all store typings.
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A Interface to LF

In this section, I present as much of LF as is necessary for the adequacy proofs below.
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A.1 Syntax

I’m now going to use a more mathematical notation for LF, rather than sticking soclose to the concrete
syntax. Here is the correspondence with the notation we have been using so far:

Kinds K ::= type type the kind of types
{x:A} K Π x:A. K dependent-function kind

Type Families A ::= a a family constant
{x:A2} A Π x:A2. A dependent-function type
A M A M application of a type family to a term

Terms M ::= c c term constant
x x variable
[x:A] M λ x:A. M λ-abstraction
M1 M2 M1 M2 application

A.2 Definition of Canonical Forms

The canonical forms of LF are defined by seven judgements:

• Σ
←

sig, read “Σ is a canonical signature”

• `Σ Γ
←

ctx, read “Γ is a canonical context”

• Γ `Σ K
←

kind, read “K is a canonical kind”

• Γ `Σ A
←

: K, read “A is canonical atK”

• Γ `Σ A
→

: K, read “A is atomic atK”

• Γ `Σ M
←

: A, read “M is canonical atA”

• Γ `Σ M
→

: A, read “M is atomic atA”

We make use of three auxiliary judgements,

• Γ `Σ K ⇒ K′ kind, read “K canonizes toK′”

• Γ `Σ A ⇒ A′ : K, read “A canonizes toA′ at kindK”

• Γ `Σ M ⇒ M′ : A, read “M canonizes toM′ at typeA”

We do not define the auxiliary judgements explicitly; many treatments are available[10, 19]. We will only
interact with them through the properties cited below.

The primary judgements are defined by the following rules:

Σ
←

sig

·
←

sig

CANON-SIG-EMPTY
Σ

←

sig · `Σ A
←

: type

Σ, c : A
←

sig

CANON-SIG-TERM
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Σ
←

sig · `Σ K
←

kind

Σ, a : K
←

sig

CANON-SIG-FAM

`Σ Γ
←

ctx

`Σ ·
←

ctx
CANON-CTX-EMPTY

`Σ Γ
←

ctx Γ `Σ A
←

: type

`Σ Γ, x : A
←

ctx
CANON-CTX-TERM

Γ `Σ K
←

kind

Γ `Σ type
←

kind

CANON-KIND -TYPE
Γ, x : A `Σ K

←

kind

Γ `Σ Π x:A. K
←

kind

CANON-KIND -PI

Γ `Σ A
←

: K

Γ `Σ A2
←

: type Γ, x : A2 `Σ A
←

: type

Γ `Σ Π x:A2. A
←

: type
CANON-FAM-PI

Γ `Σ A
→

: type

Γ `Σ A
←

: type
CANON-FAM-ATOM

Γ `Σ A
→

: K

Γ `Σ,a :: K,Σ′ a
→

: K
ATOM-FAM-CONST

Γ `Σ A
→

: Π x:A2. K1 Γ `Σ M
←

: A2 Γ `Σ [M/x]K1 ⇒ K kind

Γ `Σ A M
→

: K
ATOM-FAM-APP

Γ `Σ M
←

: A

Γ `Σ A2
←

: type Γ, x : A2 `Σ M
←

: A

Γ `Σ λ x:A2. M
←

: Π x:A2. A
CANON-TERM-LAM

Γ `Σ M
→

: A (A is a) or (A is A′ M′)

Γ `Σ M
←

: A
CANON-TERM-ATOM

Γ `Σ M
→

: A

Γ, x : A, Γ′ `Σ x
→

: A
ATOM-TERM-VAR

Γ `Σ,c : A,Σ′ c
→

: A
ATOM-TERM-CONST

Γ `Σ M1
→

: Π x:A2. A1 Γ `Σ M2
←

: A2 Γ `Σ [M/x]A1 ⇒ A : type

Γ `Σ M1 M2
→

: A
ATOM-TERM-APP
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A.3 Definition of Well-formedness for Non-Canonical Forms

Typing for non-canonical forms is defined by the following judgements:

• Σ sig, read “Σ is a well-formed signature”

• `Σ Γ ctx, read “Γ is a well-formed context”

• Γ `Σ K kind, read “K is a well-formed kind”

• Γ `Σ A : K, read “A has kindK”

• Γ `Σ M : A, read “M has typeA”

Because we will only interact with these judgements through the properties below, I’m eliding their
definitions.

A.4 Subordination and World Order

DEFINITION A.1: HEAD OF A TYPE FAMILY .

|a| = a

|A M| = |A|

|Π x:A2. A| = |A|

Observe that this defines a function from type families to family-level constants.
Informally, a type familyA is subordinate to a type familyB if canonical forms of typeA can either

appear in canonical forms of typeB or appear in canonical indices of the type familyB.

DEFINITION A.2: SUBORDINATION.

• Fix a signatureΣ. Then a subordination relation between constants, writtena1 ¹ a2, is a binary
relation between family-level constants inΣ that satisfies the following properties:

– For alla, a ¹ a.

– If a1 ¹ a2 anda2 ¹ a3 thena1 ¹ a3.

– If x : Π x1:A1. . . . Π xn:An. A is in Σ, then|A1| ¹ |A|.

– If a : Π x1:A1. . . . Π xn:An. type is in Σ, then|A1| ¹ a.

• We then extend subordination to arbitrary type families by taking their head:A1 ¹ A2 iff |A1| ¹ |A2|.

The following definition describes what it means to restrict a context to thoseentries subordinate to a
type family:

DEFINITION A.3: RESTRICTION OF ACONTEXT.

·|A = ·

(Γ, x : A2)|A = Γ|A, x : A2 if A2 ¹ A

= Γ|Aotherwise

A world W is a set of contexts.

DEFINITION A.4: WORLD ORDER.

• W1 ≤A W2 iff for all Γ1 ∈ W1, there exists aΓ2 ∈ W2 such thatΓ1|A = Γ2|A.

• W1 ≡A W2 iff W1 ≤A W2 andW2 ≤A W1.
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A.5 Properties

I now cite some properties of these judgements.

A.5.1 Assumptions

ASSUMPTIONA.5: SUBSTITUTION. If Σ sig, `Σ Γ ctx, andΓ `Σ M2 : A2, then

1. If Γ, x : A2, Γ
′ `Σ K kind thenΓ, [M2/x]Γ

′ `Σ [M2/x]K kind.

2. If Γ, x : A2, Γ
′ `Σ A : K thenΓ, [M2/x]Γ

′ `Σ [M2/x]A : [M2/x]K.

3. If Γ, x : A2, Γ
′ `Σ M : A thenΓ, [M2/x]Γ

′ `Σ [M2/x]M : [M2/x]A.

ASSUMPTIONA.6: CANONIZATION RESULTS ARECANONICAL . AssumeΣ
←

sig and`Σ Γ
←

ctx.

1. If Γ `Σ K kind andΓ `Σ K ⇒ K′ kind thenΓ `Σ K′
←

kind.

2. If Γ `Σ K
←

kind, Γ `Σ A : K, andΓ `Σ A ⇒ A′ : K thenΓ `Σ A
←

: K.

3. If Γ `Σ A
←

: type, Γ `Σ M : A, andΓ `Σ M ⇒ M′ : A thenΓ `Σ M
←

: A.

ASSUMPTIONA.7: SOUNDNESS OFCANONICAL FORMS. If Σ sig and`Σ Γ ctx then

1. If Γ `Σ K
←

kind thenΓ `Σ K kind

2. If Γ `Σ A
←

: K or Γ `Σ A
→

: K thenΓ `Σ A : K.

3. If Γ `Σ M
←

: A or Γ `Σ M
→

: A thenΓ `Σ M : A.

ASSUMPTIONA.8: CANONICAL FORMS EXIST.

1. If Γ `Σ K kind then there exists aK′ such thatΓ `Σ K ⇒ K′ kind.

2. If Γ `Σ K
←

kind andΓ `Σ A : K then there exists aA′ such thatΓ `Σ A ⇒ A′ : K.

3. If Γ `Σ A
←

: type andΓ `Σ M : A then there exists aM′ such thatΓ `Σ M ⇒ M′ : A.

ASSUMPTIONA.9: FACTS ABOUT CANONIZATION .

• If Γ `Σ a
→

: Π x1:A1. . . . Π xn:An. type, and Γ `Σ Mi : [Mi−1/xi−1]. . . [M1/x1]Ai then Γ `Σ

a M1 . . . Mn ⇒ a M′1 . . . M′n : type whereΓ `Σ Mi ⇒ M′i : [Mi−1/xi−1]. . . [M1/x1]Ai.

• If Γ `Σ A : type and Γ `Σ A ⇒ a M′1 . . . M′n : type then A is a M1 . . . Mn and Γ `Σ Mi ⇒
M′i : [Mi−1/xi−1]. . . [M1/x1]Ai for all i.

A.5.2 Lemmas

LEMMA A.10: CANONICAL CLASSIFIERS. AssumeΣ
←

sig and`Σ Γ
←

ctx.

1. If Γ `Σ M
←

: A or Γ `Σ M
→

: A thenΓ `Σ A
←

: type.

2. If Γ `Σ A
←

: K or Γ `Σ A
→

: K thenΓ `Σ K
←

kind.

LEMMA A.11: EQUIVALENT WORLDS HAVE THE SAME CANONICAL FORMS. AssumeW1 ≡A W2. If
Γ1 ∈ W1 andΓ1 `Σ M

←

: A then there exists aΓ2 ∈ W2 such thatΓ2 `Σ M
←

: A; conversely, ifΓ2 ∈ W2

andΓ2 `Σ M
←

: A then there exists aΓ1 ∈ W1 such thatΓ1 `Σ M
←

: A.

LEMMA A.12: INVERSION.

• If Γ `Σ Π x:A2. A
←

: type thenΓ `Σ A2
←

: type andΓ, x : A2 `Σ A
←

: type.
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B Adequacy

B.1 Natural Numbers

B.1.1 Syntax

The relevant definitions are

N ::= zero | succ N

nat : type.
z : nat.
s : nat -> nat.

pzeroq = z

psucc Nq = s pNq .

Now, the theorem in question is

PROPOSITIONB.1: ADEQUACY OF NATURAL NUMBER SYNTAX . Let Σ be the above signature. Then

Σ
←

sig, and there is a bijection between the (informal) natural numbers as definedby the grammar and LF
termsN such that· `Σ N

←

: nat.

Proof. First, we show that the signature is canonical; then, we show thatpNq is a function to canonical LF
terms at the appropriate type; finally, we show that for all LF terms such that· `Σ N

←

: nat, there exists a
uniqueN such thatpNq = N.

Σ
←

sig LetD1 stand for

·
←

sig

CANON-SIG-EMPTY
· `· type

←

kind

CANON-KIND -TYPE

·, nat : type
←

sig

CANON-SIG-FAM

LetD2 stand for

D1

· `·,nat : type nat
→

: type
ATOM-FAM-CONST

· `·,nat : type nat
←

: type
CANON-FAM-ATOM

·, nat : type, z : nat
←

sig

CANON-SIG-TERM

Then the derivation is

D2

· `Σ1,nat : type,Σ2
nat

→

: type
ATOM-FAM-CONST

· `Σ1,nat : type,Σ2
nat

←

: type
CANON-FAM-ATOM

: nat `Σ1,nat : type,Σ2
nat

→

: type
ATOM-FAM-CONST

: nat `Σ1,nat : type,Σ2
nat

←

: type
CANON-FAM-ATOM

· `Σ1,nat : type,Σ2
Π :nat. nat

←

: type
CANON-FAM-PI

·, nat : type, z : nat, s : Π :nat. nat
←

sig

CANON-SIG-TERM

whereΣ1 = · andΣ2 = nat : type, z : nat. In the future, we will leave the pattern-matching involved in
dividing the signature to the reader.
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For all N, there exists a uniqueN such that pNq = N and · `Σ N
←

: nat. The proof is by structural
induction onN.

• Case forzero. TakeN to bez; then pzeroq = z by definition, establishing existence exists. To show
uniqueness, assume some otherY such thatpzeroq = Y. By inversion, the only case ofp·q that applies
is the one forzero, and in this casey = z. Then the following derivation proves thatz is canonical at
the appropriate type:

· `Σ1,z : nat,Σ2
z

→

: nat
ATOM-TM-CONST

· `Σ z
←

: nat
CANON-TM-ATOM

• Case forsucc N′. To show: for allN′, if there exists a uniqueN′ such thatpN′
q = N′ andD derives

· `Σ N′
←

: nat, then there exists a uniqueN such thatpsucc N′
q = N and· `Σ psucc Nq

←

: nat.

Make the assumptions. Then takeN = s N′; by definition, psucc N′
q = s pN′

q = s N′, so such anN
exists. Now take some otherN′′ such thatpsucc Nq = N′′; then, there is only one case of the encoding
that applies tosucc N′, soN′′ = succ pN′

q . By assumptionpN′
q = N′ uniquely, so we get the same

encoding in both cases. This shows uniqueness.

Now we must show· `Σ psucc N′
q

←

: nat, or, equivalently,· `Σ s N′
←

: nat. Here is a
derivation:

· `Σ s
→

: Π ::nat. nat
ATOM-TERM-CONST D

· `Σ N′
←

: nat

...
· `Σ [N′/ ]nat ⇒ nat : type

· `Σ s N′
→

: nat
ATOM-TERM-APP

· `Σ s N′
←

: nat
CANON-TERM-ATOM

.

The canonization premise follows from ASSUMPTIONA.9.

For all N such that · `Σ N
←

: nat, there exists a uniqueN such that pNq = N. We first invert
· `Σ N

←

: nat to discover the possible canonical forms. This derivation must have beenderived using
CANON-TERM-ATOM, asnat is a constant, so we must have derived· `Σ N

→

: nat. How could we have
derived this?

• Because the context is empty, we cannot have usedATOM-TERM-VAR.

• We might have usedATOM-TERM-CONST, but in this case, based on the signature,N must bez.

• We might have usedATOM-TERM-APP, in which case we derived· `Σ N1
→

: Π x:A2. A1, · `Σ N2
←

:
A2, and· `Σ [N2/x]A1 ⇒ nat : type. Then, by ASSUMPTIONA.9, A1 must benat (note that we
use LEMMA A.10, LEMMA A.12, ASSUMPTIONA.7, and ASSUMPTIONA.5 to satisfy the premise).
Thus, we must consider how we could have derived· `Σ N1

→

: Π x:A2. nat:

– Again, we cannot have usedATOM-TERM-VAR.

– We might have usedATOM-TERM-CONST, but based on the signatureN1 is s andA2 is nat.

– We cannot have usedATOM-TERM-APP, as this would require a premise of· `Σ N′1
→

: Π y:B1. Π x:A
′

2. nat.
However, there are noN′1 such that· `Σ N′1

→

: Π y1:B1. . . . Π yk:Bk. Π x:A
′

2. nat for k ≥ 0. To
prove this, we assume one exists and derive a contradiction. One rule musthave been used
to derive· `Σ N′1

→

: Π y1:B1. . . . Π yk:Bk. Π x:A
′

2. nat. It cannot have beenATOM-TERM-VAR

because the context is empty; it cannot have beenATOM-TERM-CONST because there are no
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constants of this form in the signature. The only rule that can have applied isATOM-TERM-APP.
However, this rule has as its premise a derivation· `Σ N′′1

→

: Π y0:B0. Π y1:B
′

1. . . . Π yk:B
′

k. Π x:A
′′

2. nat,
so we get a contradiction by induction. Intuitively, there are no variables or constants at which
we can root the applications.

Thus, eitherN is z, or N is s N2, in which case we derived as a strict subderivation that· `Σ N2
←

: nat.
We now prove the theorem for each of these cases.

• N is z. pzeroq = z, so there exists anN such thatpNq = z. To show uniqueness, assume some other
N′ such thatpN′

q = z. By inversion on the definition of the encoding,N′ is zero.

• N is s N2, in which case we derived as a strict subderivation that· `Σ N2
←

: nat. By induction on
the subderivation, there exists a unique numberN2 such thatpN2q = N2.

Now takeN to besucc N2, which is syntactically correct becauseN2 is. pNq = psucc N2q = s pN2q

= s N2 by definition of the encoding, so a preimage exists. To show uniqueness, assume anotherN′

such thatpN′
q = s N2. By inversion on the definition of the encoding,N′ is succ N′

2
, where pN′

2
q

= N2. But N2 is unique number such thatpN2q is N2, soN′

2
= N2. Thus,N′ is succ N2, establishing

uniqueness.

B.1.2 sum Judgement

B.2 System F

B.2.1 Syntax

B.2.2 Static Semantics

B.2.3 Dynamic Semantics
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