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Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than
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Hales’ proof (1998)
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Reduces Kepler Conjecture to proving that a 
function has a lower bound on 5,000 different 
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
     300 pages of math 
  + 50,000 LOC (revised 2006: 15,000 LOC)
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12 referees had checked lots of lemmas,
but gave up on verifying the proof



Proofs can be hard to check
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In 2003, after 4 years’ work, 
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”
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Proof
checker

Correct!

Incorrect

Logic & 
Programming
Language

Computer-checked math

Hales’ 
proof
of Kepler
conjecture
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Proof
checker

Correct!

Incorrect

Logic & 
Programming
Language

Your code, 
and proofs 
about it

Computer-checked software



Computer-assisted proofs
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Proof assistant
• Interactive proof editor
• Automated proofs
• Libraries
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Kepler proof (85% done)

9

300 pages of math +
15,000 lines of code

15 hours to run 

350,000 lines of
math + code

>2 years to run 

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!
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Proof
checker

Homotopy 
Type Theory

Correct!

Incorrect

Your
proof



Type Theory

11

Basis of many successful proof assistants 
(Agda, Coq, NuPRL, Twelf)

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort  : list<int> ! list<int>



Propositions as Types
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1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality
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Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of 
            [] => reflexivity
            (x :: xs) => ... 

proof by case analysis represented 
by a function defined by cases
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<prog1> = <prog2> x = y

Traditional view:   

  set theory
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Type are sets?

13

type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:   

In (intensional) type theory, an equation has
a non-trivial <proof> 

  set theory

<proof> : 



category theory homotopy theory

type theory

Homotopy Type Theory
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Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]
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Types are ∞-groupoids
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type theory                                
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

  set theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
Proofs, 2-proofs, 3-proofs, … 
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> : 

∞-groupoid: 
each level has a 

group(oid) 
structure, and 
they interact...



category theory homotopy theory

type theory

Homotopy Type Theory

17

new possibilities
for computer-
checked proofs

new programs
and types



Outline
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1.Computer-checked homotopy theory

2.Computer-checked software
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1.Computer-checked homotopy theory

2.Computer-checked software
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the study of spaces and continuous deformations

[image from wikipedia]
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α = β<2-proof> : 



Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of 
their paths, homotopies, homotopies between 
homotopies, …. 

α = β<2-proof> : 



Synthetic vs Analytic
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]



Synthetic vs Analytic
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Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology
a path is a set of points, given continuously



Synthetic homotopy theory
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type theory                                

<program> : <type>
<prog1> = <prog2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
points
paths

homotopies

...

space <type>



Synthetic homotopy theory

23

type theory                                

<program> : <type>
<prog1> = <prog2>

  homotopy theory

<proof> : 
<proof1> = <proof2><2-proof> : 

...
points
paths

homotopies

...

space <type>

A path is not a set of points; it is a primitive notion
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M N

αid
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)-1
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α

P

β

id
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1



Spaces as types

24

M N

α

P

β

id
α

points are 
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
id o p = p
p-1 o p = id
r o (q o p) 
   = (r o q) o p 



Homotopy in HoTT
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 
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Homotopy Groups

26

Homotopy groups of a space X:
π1(X) is fundamental group (group of loops)
π2(X) is group of homotopies (2-dimensional loops) 
π3(X) is group of 3-dimensional loops
… 
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=|

Telling spaces apart
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=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart
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Circle S1 is a higher inductive type 
generated by loop

base
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The Circle

28

Circle S1 is a higher inductive type 
generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...
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Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

loop

base

loop’
base’



The Circle

29

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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Fundamental group of circle

30

How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the 
circle

loop

base
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Fundamental group of circle
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Corollary: Fundamental group
                 of the circle is isomorphic to ℤ
                

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base =S1 base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)
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loop- : ℤ ! Ω(S1)



Fundamental group of circle

32

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind  : Ω(S1) ! ℤ

loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

loop- : ℤ ! Ω(S1)
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Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

Example:
    wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial
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Universal Cover

34

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
  ua(successor) : ℤ = ℤ

interpret loop as 
“add 1” bijection

Voevodsky’s
univalence axiom

defined by circle 
recursion
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wind : Ω(S1) ! ℤ
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Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0
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The HoTT book Computer-checked
Fundamental group of the circle
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1.Computer-checked homotopy theory

2.Computer-checked software



Patches
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a
b
c

diff
2c2
< b
---
> d

a
d
c

=

Patch

Version control
Collaborative editing
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a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths
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Merging
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a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

=

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q
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Merging

41

merge : (p q : Patch) 
      ! Σq’,p’:Patch.
        Maybe(q’ o p = 
              p’ o q) 

Equational theory of patches 
= paths between paths
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f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2



Basic Patches
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“Repository” is a char vector of length n

f i b r a t i o n

Basic patch is   a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2



Patches as a HIT

43

Generator for
equality of equality

Repos:Type



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

doc[n]

points describe 
repository contents



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

points describe 
repository contents

paths are patches



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
paths between paths are 
equations between patches



Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are 
equations between patches
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Repos : Type

doc[n]     : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

commute:
 (a↔b at i)o(c↔d at j)    if i ≠ j
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed
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id     (identity)
!p     (undo)
q o p  (composition)
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id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

Group laws:
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Equiv. relation
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46

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

p=p
p=q if q=p
p=r if p=q and q=r

!p = !p’ if p = p’
p o q = p’ o q’ if 
   p = p’ and q = q’

Group laws:

Equiv. relation Congruence
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id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: Repos
Points: doc[n]
Paths:

a↔b@i 

Paths between paths:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

Type: Patch
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Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A
map the equality-between-equality generators to 
equalities between the corresponding equalities in A

RepoDesc recursion
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])
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f : Repos ! ATo define a function 
it suffices to give

Generator for
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f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])
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RepoDesc recursion
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b@i)o(c↔d@j))
  = f1((c↔d@j)o(a↔b@j))

You only specify f on generators,
not id,o,!,group laws,congruence,…
(1 patch and 4 basic axioms, instead of 4 and 14!)
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b@i)o(c↔d@j))
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f : Repos ! ATo define a function 
it suffices to give
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Type-generic equality rules say that functions act 
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

Type-generic equality rules say that functions act 
homomorphically on id,o,!,… 

=f1(a↔b@i)o
 f1(c↔d@j)f(doc[n]) := … : A

f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b@i)o(c↔d@j))
  = f1((c↔d@j)o(a↔b@j))
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b@i)o(c↔d@j))
  = f1((c↔d@j)o(a↔b@j))



RepoDesc recursion
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f : Repos ! ATo define a function 
it suffices to give

Generator for
equality of equality

All functions on Repos respect patches
All functions on patches respect patch equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b@i)o(c↔d@j))
  = f1((c↔d@j)o(a↔b@j))
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Goal is to define:

Generator for
equality of equality

interp : doc[n] = doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 



Interpreter

52

Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over paths

interp : doc[n] = doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 
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Generator for
equality of equality

Need to pick A and define

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)

I(doc[n]) := … : A
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := … 

interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := … : Type
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := … 

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i
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Generator for
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Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := … 

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := … 

Voevodky’s univalence axiom ⊃
bijective types are equal

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat> 

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat> 

interp(p) = ua-1(I1(p))

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
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Generator for
equality of equality

interp : vec = vec 
       ! Bijection (Vec Char n) (Vec Char n)
interp(p) = ua-1(I1(p))

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 

Satisfies the desired equations (as propositional equalities):
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Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality: 
you specify what happens on the generators; 
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality 
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations



Outline
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1.Computer-checked homotopy theory

2.Computer-checked software

3.But there’s a catch!
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Generator for
equality of equality

The Catch
Operational semantics of univalence and HITs
is an open problem in general:
can’t run these programs yet

Some progress and some special cases are known:
Licata&Harper, POPL’12
Coquand&Barras, ’13
Shulman, ’13
Bezem&Coquand&Huber, ’13

Would support proof automation and
programming applications
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Conclusion



Papers and code
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1.Fundamental group of the circle [LICS’13]
πn(Sn) = ℤ [CPP’13]
Formal homotopy: github.com/dlicata335/

2.Computational interpretation
of 2D type theory [POPL’12] 

3.Domain-specific program verification logics
[thesis+MFPS’11]

4.The HoTT Book: doing math informally in 
Homotopy Type Theory

5.Blog: homotopytypetheory.org



category theory homotopy theory

type theory

Homotopy Type Theory
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new computer-
checked proofs

new programs
and types


