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Kepler Conjecture (1611)

No way to pack equally-sized spheres in space
has higher density than




Hales’ proof (1998)

% Reduces Kepler Conjecture to proving that a
function has a lower bound on 5,000 different
configurations of spheres

* This requires solving 100,000
linear programming problems

* 1998 submission:
300 pages of math

+ 50,000 LOC (revised 2006: 15,000 LOC)




FProofs can be hard to check

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on veritying the proof




FProofs can be hard to check

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on veritying the proof

“This paper has brought about a change
In the journal's policy on computer proof.
It will no longer attempt to check

the correctness of computer code.”




Computer-checked math

Language

checker
\ Incorrect




Computer-checked software

Language

\ i ] Correct!

checker
\ Incorrect




Computer-assisted proofs

Proof assistant

* Interactive prOOf editor m
* Automated proofs S

e Libraries i

w / Correct!

checker
\ Incorrect




Kepler proof (85% done)

Informal Computer-checked
% 300 pages of math + % 350,000 lines of
15,000 lines of code math + code

% 15 hours to run %* >2 years to run
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Kepler proof (85% done)

Informal Computer-checked
% 300 pages of math + % 350,000 lines of

15,000 lines of code math + code ~5-10x longer
% 15 hours to run *>2 years to run ~2000x slower

We have some work to do!




Homotopy lype [heory

Language

checker

\ Incorrect




Homotopy lype [heory
“Homotopy

Type Theory

checker

\ Incorrect




lype heory

Basis of many successful proof assistants
(Agda, Coqg, NuPRL, Twelf)

* Functional programming language

1nsertsort : list<int> » list<int>
mergesort : list<int> - list<int>

* Unifies programming and proving:
types are rich enough to do math/verification
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Propositions as lypes

1.A theorem is represented by a type
2.Proof is represented by a program of that type

vX. mergesort(x) = insertsort(x)
A

type of proofs of program equality
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Propositions as lypes

1.A theorem is represented by a type
2.Proof is represented by a program of that type

proof : vx. mergesort(x) = insertsort(x)

proof X = case x of
[] => reflexivity

(X :: XS) => ...

proof by case analysis represented
by a function defined by cases
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Type are sets”

Traditional view:

type theory
<program> . <type>
<progl> = <prog’>

set theory

X € S

X =Y




Type are sets”

Traditional view:

type theory set theory
<program> : <type> X € S
<progl> = <prog’> X =Y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2
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Type are sets”

Traditional view:

type theory set theory
<program> : <type> X €S
<proof> :<progl> = <prog2> X =Y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

In (intensional) type theory, an equation has
a non-trivial <proof>

13




Homotopy lype [heory

type theory

category theory homotopy theory




lypes are «-groupolids

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]
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lypes are «-groupolids

type theory set theory
<program> : <type> X € S
<proof> :<progi> = <progz> X =Y

<Z2-proof> : <proofi> = <proofz>
<3-proof> : <2-proofi> = <2-proofz>

Proofs, 2-proofs, 3-proofs, ...
all influence how a program runs
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lypes are «-groupolids

type theory set theory
<program> : <type> X € S
<proof> :<progi> = <progz> X =Y

<Z2-proof> : <proofi> = <proofz>
<3-proof> : <2-proofi> =_<2-proofz>

\

co-groupoid:
each level has a
Proofs, 2-proofs, 3-proofs, ... group(oid)
all influence how a program runs structure, and

they interact...

16




Homotopy lype [heory

type theory
new possibilities
new programs for computer-
and types checked proofs
category theory homotopy theory




Outline

1.Computer-checked homotopy theory

2.Computer-checked software

18




Outline

1.Computer-checked homotopy theory

2.Computer-checked software
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Homotopy [ heory

A branch of topology,

the study of spaces and continuous deformations

[image from wikipedia]
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the study of spaces and continuous deformations
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HoMmotopy

Deformation of one path into another
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HoMmotopy

Deformation of one path into another

= 2-dimensional path between paths

[image from wikipedia]
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HoMmotopy

Deformation of one path into another

L

h_\\\ a
\\
\
\
p .

<2-proof> : o = B

= 2-dimensional path between paths

[image from wikipedia]
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HoMmotopy

Deformation of one path into another

Pp—————
. “\“ a

<Z2-proof> @ a = f
B

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between

homotopies, ....
[image from wikipedia]
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Synthetic vs Analytic

Synthetic geometry (Euclid) Analytic geometry

POSTULATES.
L : (z2,y2)
Ler it be granted that a straight line may be drawn from any one
point to any other point.
) II.
That a terminated straight line may be produced to any length in a d Y2 — Y1
straight line.
IIL
And that a circle may be described from any centre, at any distance )|
from that centre. (x1,71) To — I

[image from wikipedia]
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Synthetic vs Analytic

Synthetic geometry (Euclid) Analytic geometry

POSTULATES.
L ) (:L' 2, U.Z)
Ler it be granted that a straight line may be drawn from any one
point to any other point.
5 1L
That a terminated straight line may be produced to any length in a d Yo — Y1
straight line.
IIL
And that a circle may be described from any centre, at any distance )\
from that centre. (;1,-1 Y1) To — )

Classical homotopy theory is analytic:
* a space is a set of points equipped with a topology

* a path is a set of points, given continuously

[image from wikipedia]
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Synthetic homotopy theory

homotopy theory type theory
space <type>
points <program> : <type>
paths <proof> : <progi> = <progz>

homotopies <2-proof> : <proofi> = <proofz>




Synthetic homotopy theory

homotopy theory type theory
space <type>
points <program> : <type>
paths <proof> : <progi> = <progz>
homotopies <2-proof> : <proofi> = <proofz>

A path is not a set of points; it is a primitive notion




Spaces as types

)
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a space is a type A
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programs
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Spaces as types

a space is a type A

a

points are

programs |
M- A paths are

proofs of equality
x : M= N
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Spaces as types

a space is a type A path operations
| - 1d : M =M (refl)

a

Aid

points are

programs l
M- A paths are

proofs of equality
X : M =2 N




Spaces as types

a space is a type A path operations
_aa a— 1d : M =M (refl)
| o1 : N =M (sym)

points are

programs i
M- A paths are

proofs of equality
X : M =2 N




Spaces as types

a space is a type A path operations
| ‘ 1d : M =M (refl)
1 : N =M (sym)

Boa :M=P (trans)

points are

programs l
M- A paths are

proofs of equality
X : M =2 N




Spaces as types

a space is a type A path operations

T 1d : M =M (refl)
ot : N =M (sym)
Boa :M=P (trans)

Id

homotopies
1dop=p
points are plo p = id
programs l(h
M: A PATiSs are r o (q o p)

proofs of equality
= (" O O
X : M =2 N ( a) P

24




Homotopy In HO T |

mi(S") =Z Freudenthal Van Kampen
Tk<n(S") = 0 Mn(S") =Z Covering spaces
Hopf fibration K(G,n) Whitehead
me(S?%) =Z Cohomology for n-types
Ms(S?) = 7 axioms

James Blakers-Massey

Construction

3\ —
(S°) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

25




Homotopy In HO T |

(L uS)=2 )

T[kn(” =0

Hopf fibration
me(S?%) =Z
ns(S?) =Z

James
Construction

ma(S3) = Z»

Freudenthal Van Kampen

Mh(S") = Z Covering spaces

K(G.n) Whitehead
Cohomology for n-types
axioms

Blakers-Massey

[Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]
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Homotopy Groups

Homotopy groups of a space X:

* 111(X) Is fundamental group (group of loops)

* 112(X) Is group of homotopies (2-dimensional loops)
* 113(X) is group of 3-dimensional loops

26




lelling spaces apart




lelling spaces apart

fundamental group fundamental group
IS non-trivial (Z x Z) is trivial




The Circle

Circle St is a higher inductive type

generated by Q 100D

base




The Circle

Circle St is a higher inductive type

generated by
base : St

loop : base = base

<::;;::> loop

base

28




The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
loop : base = base
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The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
path  loop : base = base

28




The Circle

Circle S1 is a higher inductive type
generated by

Ioop_1 loop

point base : Si
path  loop : base = base

base

Free type: equipped with structure
1d inv : loop o loop?t = 1id
loop-?
loop o loop

28




The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

29




The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

29




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base
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Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d 0

loop

Loopt

loop o loop

loop~t o loop

loop o loopt id




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loopt

loop o loop
loop~t o loop

loop o loopt id




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1

loop o loop
loop~t o loop

loop o loopt id




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2

loop~t o loop

loop o loopt id




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loopt id




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0




Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

id 0
Loop 1 |

integers are “codes”
Loop- ! -1 for paths on the
loop o loop 2 circle
loop™t o loop -2

loop o loop™t = id 0

30




Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)
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Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle is isomorphic to Z

31




Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle\is isomorphic to Z

0-truncation (set of connected components)
of Q(S")

31




Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof (Shulman, L.): two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)




Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof (Shulman, L.): two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)

loop? = 1id

loop*" = loop o loop o .. loop (n times)
loop™ = loop™ o loop™t o .. Lloop™t (ntimes)




Universal Cover

T wind : Q(SY) - 7

defined by lifting a loop
to the cover, and giving
the other endpoint of O

i

.
y

base

33




Universal Cover

2 wind Q(S?) > /

T L, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial

33




Universal Cover

2 wind Q<S¥> > /

T L, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial
lifting Loop adds 1

33




Universal Cover

2 wind Q<S¥> > /

T 4, ==
Q‘y R defined by lifting a loop
Qj to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial
lifting Loop adds 1
lifting Loop~! subtracts 1

33




Universal Cover

2 wind Q(Sl> > /

T 4, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base Example:
lifting is functorial wind(loop o loop™)
=0+ 1-1

lifting Loop adds 1 0

lifting Loop~! subtracts 1

33




Universal Cover

i

[
Y




Universal Cover

—
— )

U T
R

<, >

base

Cover : St s Type
Cover(base) := Z

Coveri(loop) :=
ua(successor) : Z

/




Universal Cover oo
/ recursion

zégf:ffij Cover : S! s Type
—— R Cover(base) := Z
' w Coveri(loop) :=

— > s ua(successor) : Z = Z

base




Universal Cover oo
/ recursion

S:—/D Cover : St s Type
Ll, :\ R Cover(base) := Z
w Coveri(loop) :=
— . > g ua(successor) : Z = Z

base \

interpret loop as
“add 1” bijection




Universal Cover oo
/ recursion

S:—/D Cover : S' s Type
1 T
— R Cover(base) := Z
w Coveri(loop) :=
< > 51 ua(successor) : Z
base / \
Voevodsky’s interpret loop as

univalence axiom “add 1” bijection

/

34




Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,)

lift p to cover,
starting at 0




Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,)

wind(loopt o loop)

lift p to cover,
starting at 0




Winding number == .
b@

wind : Q(SY) » Z

wind(p) = transportcover(p,0) lift p to cover,
starting at 0

wind(loopt o loop)
= transportcover(loopt o loop, 0)




Winding number  —— .
b@

wind : Q(SY) - 7

wind(p) = transportcover(p,)

lift p to cover,
starting at 0

wind(loopt o loop)

transportcover(loopt o loop, @)
transportcover(loopt, transportcover(loop,d))

35




Winding number  —— .
b@

wind : Q(SD) - 7

W'I.ﬂd(p) - tr'anSpOr'tCover'Cp,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)
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Winding number  —— .
b@

wind : Q(SD) - 7

W'I.ﬂd(p) - tr'anSpOr'tCover'Cp,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

0

35




Fundamental group of the circle
The HoTT book Computer-checked

cbatroct prevert Agdo from normoliring
Cover © 5* - Type encode-loopr : (n & Inmt) - (ercode Qloop n)) &
Cover x » S'erec Int (uo succiquiv) x encode-1ooph Lero = i
encode-loopt (Fos Ore) = ap trersport-Cover-100p
tronsport-Cover-1o0p : Peth (tronsport Cover loop) succ encode-loopr (Pos (S n)) =
tronsport-Cover-100p = oncode Closgr (Pos S W)
trensport Cover loop ol 4d)
«( tromaport-op-assoc Cover loop ) tromsport Cover (locp - loopr (Pos 2)) Zer

Defiaition 725, [N I $'1 1 ' trensport O x « x) Cop Cover loop) = ap= (tremport-- Cover locp (locpr (Poa n))) »

~ap (trorspert O x - X)) tronsport Cover locp
loop/rec Int (ue swcckquiv)) ) (& (!W‘ﬁﬂ?‘;’fmﬂlw (Pos &) Zere)
* o tw..,(‘_l;- 30 (0 Seodienw succ (tronsport Gover (looph (Pos w)) Zere)
e succ C(encode Cloaph (Pos M)
= ap succ (encode-locpr (Pes n)) )

tromsport-Cover-1locp : Poth (tromaport Cover (I loop)) pred suce (Pos &) o

tronsport-Cover-1100p = encode-) Moy Ore) = ape treraport-Covers|1
transport Cover (1 loop) “w,‘z E‘,_‘ I ,),)) :" -
=( trossport-op-assoc Cover (I locp) ) tronsport Cover (1 1009 « looph Oty n)) Zero
tremport Q. x - x) (ap Cover (I leop)) « ap~ (tronsport-- Gover (1 100p) Cloop* Otey m))) !
«C ap (tronsport (A x « x)) (ap-1 Cover loop) tronsport Gover (1 100p) (tremsport Cover (loop* Oteg n)) Zerv)
trensport (A x ~« x) (! (op Cover lecp)) ! gp= troraport-Cover-|loop )
“(ep Oy~ tronsport O x - x) (! ¥)) pred (tromsport Cover (loopr (Meg m)) Zere)
Dlocp/rec Int (uo succlguiv)) = ap pred (encode-locpr (g n)) )
q v trensport (4 x « x) (I (uo secckquiv)) pred (Neg n) »
- ’ Thes B -y « ap (trensport (A X - X)) (l-ua swockquiv) )
¥ trensgort (A x - x) (ua (leguiv succtquiv)) encode-decode 1 {x 1 $*) « (c 1 Cover X)
« typep 1} « Poth (encode (decode{x} <)) ¢
pred » wcode-decode (x} « 5 -induction
T2 Deoding after enonding O\ Cx: %)~ (< : Cover x)
. p encods * « SA) . = - Poth (encode(x) (decode{x} <)) <)
A - ' s s B e " Gy x encode-looph (= O x' - F3t Cuse-leval (use-level (use-level MSet-Ist . ) . I))) x
de* decode-encode 1 {x @ 5*) (o ! Path base x)
encode’ « m:‘c:::) ™ . « Poth (decode (encode o)) «
decode-encode (5} & =
20334 Basade i poth-induction
4114 Tacedisg il Goniin i Int « Poth bese bose G (x' : $1) (o' ; Poth base x')
Lemmma 727 for C P g ~ Poth (decode (encode o')) o*)
' e) = lecp ide
. . “ Cane w, by . 5 n)) = loop - Loopr (Pos n)
ath between paths i 7 ! given by appeaiing 1 o loop (Neg One) = | loop O[5 )-Equiv-Int : Equiv (Poth base base) Im

Znaw lecpr (Neg (5 n)) = | loop « lecpr (heg n) a5 ) -Equiv-Int =
100p* - prese~ves -pred tsprove (heqguiv encode decode decode-encode encode-100p*)
:(n 2 It) - Poth Clocp® (pred n)) (1 loop - losph n)
LocpA-preserves-pred (7 ) = § (1-tav-1 locg) O[5 )-is-Int : (Poth base base) = Int
) - - D[54 )-is-Int « ua OJS*)-Squiv-let
y
¥0 Ci-imv-1 Toawd) n[5*]-is-Int ! x One S* bose = Int
w52 )-is-Int = UnTrunc.poth _ _ HSet-Int - op (Trunc (1 8)) OJS*)-is-Imt

» -'(o-:vl‘ » Poth bone x') loop locg* « (L » « logg® n)

« Cower 2" o« Poth bose x") oo lospr
= Cover (Poth base) Loop loge~ >

{3 Oy « trevaport-Patheright looe Clospr Chraraport Cover (1 Soop) Y2000
Gp-lop. 9

" 1oop*
% tromaport Cover (1 loop)
724 " {0y -0 x" « loop - loeph ") (ep= trampert-Cover-Tloop))

- Yoop - 9)

O =« locp - (hacp* (pred n)))

e Oy« sove-left-1 _ Yoop (locp* ¥) (locp -preserves-pred ¥)) )
flary 724 " r 4 O » o logpr n)

9
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Outline

1.Computer-checked homotopy theory

2.Computer-checked software
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FPatches

Patch

diff . . — .
c c
>d

% VVersion control
* Collaborative editing
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C C C - C

- undo/rollback

... BN

X

C C e




Patches are paths

S -
50 P =
C ! C (_!

n undo/rollback

C

—_—

L

C




MVerging







Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2

7 NE
ANV

e




Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2

7 NE
ANV

e

p’=p
aq’=q







Vierging

=
merge : (p q : Patch) .
> 2q’,p’ :Patch. ./ \-

Maybe(qgq’ o p = °;‘=
p’ 0 q) .4

e

e




Vierging

mP e
merge : (p q : Patch) .
> 2q’,p’ :Patch. ./_\'
Maybe(g’ o p = °;‘_/ )
-

p’ 0 ()

e

Equational theory of patches
= paths between paths




Basic Patches

ffifolefaftfifoln




Basic Patches

* “Repository” is a char vector of length n

ffifolefaftfifoln

% Basic patchis a &« b @ 1 where 1<n
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repository contents :

paths are patches
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repository contents ' !
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paths are patches L ocln
: do2[n]
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(Generators for HIT

Repos : Type

doc[n] : Repos
compressed : Repos

(a=b@1) : doc[n] = doc[n] 1f a,b:Char, 1<n
gzlip . doc[n] = compressed

commute:
(a<=b at 1)o(ced at j) if iz

=(ced at j)o(a<b at 1)




Patches Include...

1d (1dentity)
Ip (undo)
gop (composition)
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Patch Equality Includes...

Group laws:
1dop=p=p o 1d
po(gor) = (pog)or
lpop=1d=polp

Equiv. relation Congruence
p=p lp =1p° if p =p’
p=q 1f g=p poq=p ogq if

p=r if p=g and g=r p=p and q =Qq’




Type: Patch

Elements:

id  : Patch 3
o : Patch - Patch - Patch |
L : Patch - Patch

“e.at. - Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

id o p=p=p o id

- po(qor) = (pog)or

" lpop=1d=polp
p=p

p=q if g=p

p=r 1f p=q and g=r
lp = !p’ if p =p’

AT

poqgq=p> oq ifp=p’andq-=q’

>

Type: Repos
Points: doc[n]
Paths:

a—b@1

Paths between paths:

commute :
(aeb at 1)o(ced at )=

(ced at j)o(a<b at 1)
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% map the element generators of Repos
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Repobesc recursion

To define a function Repos » A
it suffices to

% map the element generators of Repos
to elements of A

% map the equality generators of Repos
to equalities between the corresponding elements of A

* map the equality-between-equality generators to
equalities between the corresponding equalities in A
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Repobesc recursion

To define a function f : Repos -» A
it suffices to give

f(doc[n]) := .. : A
f1(a<b@1) := .. : f(doc[n]) = f(doc[n])
fo(compose abcd1i jizj) = .

. f1((a=b@1)o(c~d@7))

= f1((c=d@j)o(a<b@7))

You only specify f on generators,
not 1d,0,!,group laws,congruence,...
(1 patch and 4 basic axioms, instead of 4 and 14!
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Repobesc recursion

To define a function f : Repos -» A
it suffices to give

f(doc[n]) := .. : A
f1(aeb@1) = ..

=f1(a<b@1)o
f1(Cc~d@7)
(doc[n]) = f(doc[n])

f2(com abcdijizj) = .
. f1((a=b@1)o(c~d@7))

= f1((ced@j)o(a-b@j))

Type-generic equality rules say that functions act
homomorphically on 1d,0,!,...




Repobesc recursion

To define a function f : Repos -» A
it suffices to give

f(doc[n]) := .. : A
f1(a<b@1) := .. : f(doc[n]) = f(doc[n])
fo(compose abcd1i jizj) = .

. f1((a=b@1)o(c~d@7))

= f1((c=d@j)o(a<b@7))




Repobesc recursion

To define a function f : Repos -» A
it suffices to give

f(doc[n]) := .. : A
f1(a<b@1) := .. : f(doc[n]) = f(doc[n])
fo(compose abcd1i jizj) = .

. f1((a=b@1)o(c~d@7))

= f1((c=d@j)o(a<b@7))

All functions on Repos respect patches
All functions on patches respect patch equality
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INterpreter

Goal is to define:
interp : doc[n] = doc[n]

» Bi1jection (Vec Char n) (Vec Char n)
interp(1d) = (AXx.Xx, ..)
ihterp(q o p) = (1nterp q) oo (1nterp p)
interp(lp) = !y (interp p)
ihterp(a<b@1) = swapat a b 1

But only tool available is RepoDesc recursion:
no direct recursion over paths
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interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Need to pick A and define
I(doc[n]) := .. : A
I1(a<b@1) := .. : I(doc[n]) = I(doc[n])

I.(compose) := ..
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interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a<b@1) := .. : I(doc[n]) = I(doc[n])

I.(compose) := ..
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interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
:\ Vec Char n = Vec Char n
I.(compose) := ..

Voevodky’s univalence axiom >
bijective types are equal
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interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I,(compose) := <proof about swapat>
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interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ua1(I1(p))

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I,(compose) := <proof about swapat>
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ual(I1(p))

Satisfies the desired equations (as propositional equalities):
interp(1id) = (Ax.Xx, ..)

interp(g o p) = (1nterp g) ob, (interp p)
interp(!p) = v (interp p)

interp(a<b@1) = swapat a b 1
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Summary

* 1 . Repos » Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;

homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

* Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations
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Outline

1.Computer-checked homotopy theory
2.Computer-checked software

3.But there’s a catch!

62




The Catch

* Operational semantics of univalence and HITs
IS an open problem in general:
can’t run these programs yet

* Some progress and some special cases are known:
Licata&Harper, POPL'12
Coquand&Barras, '13
Shulman, ’13
Bezem&Coqguand&Huber, ’13

* Would support proof automation and
programming applications
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Conclusion




Papers and code

1.Fundamental group of the circle [LICS’13]
n(S") = Z [CPP’13]
Formal homotopy: github.com/dlicata335/

2.Computational interpretation
of 2D type theory [POPL’12]

3.Domain-specific program verification logics
[thesis+MFPS’11]

4.The HoTT Book: doing math informally in
Homotopy Type Theory

5.Blog: homotopytypetheory.org
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type theory

new programs new computer-
and types checked proofs
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