
Mathematical and Computational
Applications of

Homotopy Type Theory

Dan Licata

Wesleyan University
Department of Mathematics and Computer Science

2

Kepler Conjecture (1611)
No way to pack equally-sized spheres in space
has higher density than

3

Hales’ proof (1998)

4

Reduces Kepler Conjecture to proving that a
function has a lower bound on 5,000 different
configurations of spheres

This requires solving 100,000
linear programming problems

1998 submission:
 300 pages of math
 + 50,000 LOC (revised 2006: 15,000 LOC)

Proofs can be hard to check

5

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

Proofs can be hard to check

5

In 2003, after 4 years’ work,
12 referees had checked lots of lemmas,
but gave up on verifying the proof

“This paper has brought about a change
in the journal's policy on computer proof.
It will no longer attempt to check
the correctness of computer code.”

6

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Computer-checked math

Hales’
proof
of Kepler
conjecture

7

Proof
checker

Correct!

Incorrect

Logic &
Programming
Language

Your code,
and proofs
about it

Computer-checked software

Computer-assisted proofs

8

Proof assistant
• Interactive proof editor
• Automated proofs
• Libraries

Kepler proof (85% done)

9

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

Kepler proof (85% done)

9

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

Kepler proof (85% done)

9

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

Kepler proof (85% done)

9

300 pages of math +
15,000 lines of code

15 hours to run

350,000 lines of
math + code

>2 years to run

Informal Computer-checked

~5-10x longer

~2000x slower

We have some work to do!

Homotopy Type Theory

10

Proof
checker

Correct!

Incorrect

Your
proof

Logic &
Programming
Language

Homotopy Type Theory

10

Proof
checker

Homotopy
Type Theory

Correct!

Incorrect

Your
proof

Type Theory

11

Basis of many successful proof assistants
(Agda, Coq, NuPRL, Twelf)

Functional programming language

Unifies programming and proving:
types are rich enough to do math/verification

insertsort : list<int> ! list<int>
mergesort : list<int> ! list<int>

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)

type of proofs of program equality

proof :

Propositions as Types

12

1.A theorem is represented by a type
2.Proof is represented by a program of that type

 ∀x. mergesort(x) = insertsort(x)proof :
proof x = case x of
 [] => reflexivity
 (x :: xs) => ...

proof by case analysis represented
by a function defined by cases

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

Traditional view:

 set theory

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

 set theory

Type are sets?

13

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

In set theory, an equation is a proposition:
it holds or it doesn’t; we don’t ask why 1+1=2

Traditional view:

In (intensional) type theory, an equation has
a non-trivial <proof>

 set theory

<proof> :

category theory homotopy theory

type theory

Homotopy Type Theory

14

15

Types are ∞-groupoids

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :
<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...

<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...
Proofs, 2-proofs, 3-proofs, …
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> :

Types are ∞-groupoids

16

type theory
<program> : <type> x ∈ S

<prog1> = <prog2> x = y

 set theory

<proof> :
<proof1> = <proof2><2-proof> :

...
Proofs, 2-proofs, 3-proofs, …
all influence how a program runs

<2-proof1> = <2-proof2><3-proof> :

∞-groupoid:
each level has a

group(oid)
structure, and
they interact...

category theory homotopy theory

type theory

Homotopy Type Theory

17

new possibilities
for computer-
checked proofs

new programs
and types

Outline

18

1.Computer-checked homotopy theory

2.Computer-checked software

Outline

19

1.Computer-checked homotopy theory

2.Computer-checked software

Homotopy Theory

20

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Homotopy Theory

20

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Homotopy

21

Deformation of one path into another

α

β

Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

α = β<2-proof> :

Homotopy

21

Deformation of one path into another

[image from wikipedia]

α

β

= 2-dimensional path between paths

Homotopy theory is the study of spaces by way of
their paths, homotopies, homotopies between
homotopies, ….

α = β<2-proof> :

Synthetic vs Analytic

22

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Synthetic vs Analytic

22

Synthetic geometry (Euclid) Analytic geometry
(Descartes)

[image from wikipedia]

Classical homotopy theory is analytic:
a space is a set of points equipped with a topology
a path is a set of points, given continuously

Synthetic homotopy theory

23

type theory

<program> : <type>
<prog1> = <prog2>

 homotopy theory

<proof> :
<proof1> = <proof2><2-proof> :

...
points
paths

homotopies

...

space <type>

Synthetic homotopy theory

23

type theory

<program> : <type>
<prog1> = <prog2>

 homotopy theory

<proof> :
<proof1> = <proof2><2-proof> :

...
points
paths

homotopies

...

space <type>

A path is not a set of points; it is a primitive notion

Spaces as types

24

M N

α

Spaces as types

24

M N

α

a space is a type A

Spaces as types

24

M N

α

points are
programs
M:A

a space is a type A

Spaces as types

24

M N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

Spaces as types

24

M N

α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations

Spaces as types

24

M N

αid

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)

Spaces as types

24

M N

αid
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)-1

Spaces as types

24

M N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Spaces as types

24

M N

α

P

β

id
α

points are
programs
M:A

a space is a type A

paths are
proofs of equality
α : M =A N

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

homotopies
id o p = p
p-1 o p = id
r o (q o p)
 = (r o q) o p

Homotopy in HoTT

25

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou,
 Licata, Lumsdaine, Shulman]

Homotopy in HoTT

25

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou,
 Licata, Lumsdaine, Shulman]

Homotopy Groups

26

Homotopy groups of a space X:
π1(X) is fundamental group (group of loops)
π2(X) is group of homotopies (2-dimensional loops)
π3(X) is group of 3-dimensional loops
…

27

=|

Telling spaces apart

27

=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart

The Circle

28

Circle S1 is a higher inductive type
generated by loop

base

The Circle

28

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

The Circle

28

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point

The Circle

28

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point
path

The Circle

28

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...

The Circle

29

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

loop

base

loop’
base’

The Circle

29

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

Circle induction: To prove a predicate P for all points
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id
loop

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base

Fundamental group of circle

30

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the
circle

loop

base

Fundamental group of circle

31

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Fundamental group of circle

31

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

Fundamental group of circle

31

Corollary: Fundamental group
 of the circle is isomorphic to ℤ

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

Fundamental group of circle

31

Corollary: Fundamental group
 of the circle is isomorphic to ℤ

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)

Fundamental group of circle

32

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind : Ω(S1) ! ℤ

loop- : ℤ ! Ω(S1)

Fundamental group of circle

32

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind : Ω(S1) ! ℤ

loop0 = id
loop+n = loop o loop o … loop (n times)
loop-n = loop-1 o loop-1 o … loop-1 (n times)

loop- : ℤ ! Ω(S1)

Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting is functorial

Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting is functorial

Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

lifting is functorial

Universal Cover

33

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

Example:
 wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial

Universal Cover

34

Universal Cover

34

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

Universal Cover

34

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

defined by circle
recursion

Universal Cover

34

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

interpret loop as
“add 1” bijection

defined by circle
recursion

Universal Cover

34

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

interpret loop as
“add 1” bijection

Voevodsky’s
univalence axiom

defined by circle
recursion

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0) lift p to cover,

starting at 0

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)

Winding number

35

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0

36

The HoTT book Computer-checked
Fundamental group of the circle

Outline

37

1.Computer-checked homotopy theory

2.Computer-checked software

Patches

38

a
b
c

diff
2c2
< b

> d

a
d
c

=

Patch

Version control
Collaborative editing

39

a
b
c

id a
b
c

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

39

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths

Merging

40

a
b
c

p

a
d
c

q

a
b
e

Merging

40

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

Merging

40

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

Merging

40

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

Merging

40

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

=

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

Merging

41

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

Merging

41

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

Equational theory of patches
= paths between paths

Basic Patches

42

f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

Basic Patches

42

“Repository” is a char vector of length n

f i b r a t i o n

Basic patch is a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

doc[n]

points describe
repository contents

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
paths between paths are
equations between patches

Patches as a HIT

43

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are
equations between patches

Generators for HIT

44

Generator for
equality of equality

Generators for HIT

44

Repos : Type

Generator for
equality of equality

Generators for HIT

44

Repos : Type

doc[n] : Repos

Generator for
equality of equality

compressed : Repos

Generators for HIT

44

Repos : Type

doc[n] : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed

Generators for HIT

44

Repos : Type

doc[n] : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

commute:
 (a↔b at i)o(c↔d at j) if i ≠ j
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed

Patches Include…

45

id (identity)
!p (undo)
q o p (composition)

Patch Equality Includes...

46

Patch Equality Includes...

46

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

Group laws:

Patch Equality Includes...

46

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

p=p
p=q if q=p
p=r if p=q and q=r

Group laws:

Equiv. relation

Patch Equality Includes...

46

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

p=p
p=q if q=p
p=r if p=q and q=r

!p = !p’ if p = p’
p o q = p’ o q’ if
 p = p’ and q = q’

Group laws:

Equiv. relation Congruence

47

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: Repos
Points: doc[n]
Paths:

a↔b@i

Paths between paths:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

Type: Patch

48

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

RepoDesc recursion

48

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A

RepoDesc recursion

48

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A

RepoDesc recursion

48

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A
map the equality-between-equality generators to
equalities between the corresponding equalities in A

RepoDesc recursion

RepoDesc recursion

49

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

RepoDesc recursion

49

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A

RepoDesc recursion

49

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

RepoDesc recursion

49

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

RepoDesc recursion

49

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

You only specify f on generators,
not id,o,!,group laws,congruence,…
(1 patch and 4 basic axioms, instead of 4 and 14!)

RepoDesc recursion

50

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

RepoDesc recursion

50

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

Type-generic equality rules say that functions act
homomorphically on id,o,!,…

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

RepoDesc recursion

50

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

Type-generic equality rules say that functions act
homomorphically on id,o,!,…

=f1(a↔b@i)o
 f1(c↔d@j)f(doc[n]) := … : A

f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

RepoDesc recursion

51

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

RepoDesc recursion

51

f : Repos ! ATo define a function
it suffices to give

Generator for
equality of equality

All functions on Repos respect patches
All functions on patches respect patch equality

f(doc[n]) := … : A
f1(a↔b@i) := … : f(doc[n]) = f(doc[n])

f2(compose a b c d i j i≠j) := …
 : f1((a↔b@i)o(c↔d@j))
 = f1((c↔d@j)o(a↔b@j))

Interpreter

52

Goal is to define:

Generator for
equality of equality

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

Interpreter

52

Goal is to define:

Generator for
equality of equality

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

Interpreter

52

Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over paths

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

53

Generator for
equality of equality

Need to pick A and define

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

I(doc[n]) := … : A
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp(a↔b at i) = swapat a b i

54

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := … : Type
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

55

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

56

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := … : Vec Char n = Vec Char n

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

57

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

57

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := …

Voevodky’s univalence axiom ⊃
bijective types are equal

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

58

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat>

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

59

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat>

interp(p) = ua-1(I1(p))

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

60

Generator for
equality of equality

interp : vec = vec
 ! Bijection (Vec Char n) (Vec Char n)
interp(p) = ua-1(I1(p))

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

Satisfies the desired equations (as propositional equalities):

61

Generator for
equality of equality

Summary

61

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

61

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

61

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

61

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

Outline

62

1.Computer-checked homotopy theory

2.Computer-checked software

3.But there’s a catch!

63

Generator for
equality of equality

The Catch
Operational semantics of univalence and HITs
is an open problem in general:
can’t run these programs yet

Some progress and some special cases are known:
Licata&Harper, POPL’12
Coquand&Barras, ’13
Shulman, ’13
Bezem&Coquand&Huber, ’13

Would support proof automation and
programming applications

64

Conclusion

Papers and code

65

1.Fundamental group of the circle [LICS’13]
πn(Sn) = ℤ [CPP’13]
Formal homotopy: github.com/dlicata335/

2.Computational interpretation
of 2D type theory [POPL’12]

3.Domain-specific program verification logics
[thesis+MFPS’11]

4.The HoTT Book: doing math informally in
Homotopy Type Theory

5.Blog: homotopytypetheory.org

category theory homotopy theory

type theory

Homotopy Type Theory

66

new computer-
checked proofs

new programs
and types

