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Martin-Löf type theory
[70s-80s]
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Proofs are programs
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cubicaltt 
[Cohen,Coquand,  
 Huber,Mörtberg]
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“exists k : nat such that n = 2k+1”

cubicaltt 
[Cohen,Coquand,  
 Huber,Mörtberg]
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Theorem: every natural number is even or odd 
Proof: induction on n. 


Base case: 0 is even 
 
Inductive case: Suppose n is even or n is odd. 
To show: n+1 is even or n+1 is odd. 
Case where n is even (n=2k):  
   n+1 = 2k+1 is odd. 
Case where n is odd (n=2k+1): 
   n+1 = 2k+2 = 2(k+1) is even.   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“for all n : nat, n is even or n is odd”
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What program is this?

“for all n : nat, n is even or n is odd”
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evenodd.ctt
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“for all” is function “or” is coproduct

What program is this?
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coproduct injection is parity

What program is this?
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floor(n/2)

What program is this?
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proof that n = 2*floor(n/2)[+1]

What program is this?
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proof that n = 2*floor(n/2)[+1]

(every element of Path nat k k is reflexivity/identity) 
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Computation

function applied to argument reduces  
to body of definition


projection of a pair reduces to component


case distinction for coproduct reduces on injection


recursion on nat reduces on zero and suc(n)

elimination reduces on introduction
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Computation

function applied to argument reduces  
to body of definition


projection of a pair reduces to component


case distinction for coproduct reduces on injection


recursion on nat reduces on zero and suc(n)

elimination reduces on introduction

“definitional” rather than “typal” equalities/paths
equality 1-simplex
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Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

original “intended model” of MLTT: every “path” is identity

a bp

c tr p cC

A

p : Path A a b 
c : C(a)

transport C p c : C(b) 
and reduces to c  
   when p is identity Path A a a

then
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Canonicity theorem

For all (closed) t:nat in MLTT,  
there exists a numeral k with  
t definitionally equal to k

Constructive proof of:
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Univalence Axiom

(A,B : U) → Equiv A B → Path U A B~



16

Univalence Axiom

(A,B : U) → Equiv A B → Path U A B~

axioms break canonicity



16

Univalence Axiom

(A,B : U) → Equiv A B → Path U A B

Central question for computation with univalence: 
what does it mean to transport along such a path?

~

axioms break canonicity
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Voevodsky’s homotopy 
canonicity conjecture

[talk in  
 Götenborg,  
 2011]
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Voevodsky’s homotopy 
canonicity conjecture

For all (closed) t:nat in MLTT+univalence,  
there exists a numeral k with  
a Path nat t k  (potentially using univalence)

Constructive proof of:

ua already implies how ua “computes”

computation valid in all models
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Progress
Models of MLTT+ua in a constructive metatheory 
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and 
operational semantics
New type theories including MLTT+ua that  
satisfy (definitional) canonicity
Several new experimental proof assistants

definitional equalities are easier to use

maybe new type theories can be interpreted 
in same kinds of models?
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Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15] 
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16; 
Angiuli,Favonia,Harper,Wilson,’16-’17]
higher inductive types: syntax, fibrancy/operational semantics 
[Isaev’14,Coquand,Huber,Mörtberg,’14-’17;Cavallo,Harper,’17]
type theory with non-fibrant types and exact equality as in 
Voevodsky’s HTS [AFH’17] 
internal language presentations (fibrancy as type) 
[Coquand;Orton-Pitts’16;Spitters+’16] + universes [Sattler;LOPS’18]
more mathematical analyses [Awodey’13-,Gambino,Sattler’15-’17]
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Kan filling
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Main Ideas
Setsℂop for ℂ free semicartesian category on 0,1 : * → 𝕀; 
free cartesian category; …with connections/reversals
fibration: algebraic/specified solutions to filling problems
algorithms for filling in ∏, ∑, Path, universe, univalence
definition of fibration chosen carefully — stable under 
change of base (uniformity), (trivial) cofibrations — in 
harmony with choice of cube category
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Relation to sSet?

known methods use P A := A(- ⊗ 𝕀) or Ay𝕀 

and its right adjoint to define universes and 
filling in them

unclear if any “type theoretic model 
structures” are Quillen-equiv to sSet/Top; 
some are not [Sattler]
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Recommender System

https://www.uwo.ca/math/
faculty/kapulkin/seminars/
hottest.html

Last spring: Coquand 
                    Angiuli


October 11: Favonia

https://www.cs.uoregon.edu/
research/summerschool/
summer18/topics.php

Harper

https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.cs.uoregon.edu/research/summerschool/summer18/topics.php
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definitions of ℤ 

fundamental groups of 𝕊1 and 𝕋
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definitions of ℤ 

fundamental groups of 𝕊1 and 𝕋

calculation of π4(𝕊3)

Computation with 
univalence in… 
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Running the 
equivalence principle
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ℤ in type theory (1)
nat + nat

0

negative non-negative

1 2-1-2

inr 0 inr 1 inr 2inl 0inl 1
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ℤ in type theory (2)
nat +(0,0) nat

0

non-positive non-negative

1 2-1-2

inr 0 inr 1 inr 2inl 1inl 2
inl 0
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ℤ in type theory (3)
(nat × nat) / (a+b’ =nat a’+b)

0 1-1

(0,0) (1,0)(0,1)
(1,1)(1,2) (2,1)
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ℤ in type theory (4)
free (set-level) group on one generator

0 1-1

zero suc(zero)pred(zero)

pred(succ(zero))

succ(pred(zero))
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ℤ in type theory (5)
loops in S1

0 1 2-1

id looploop-1 loop;loop

loop-1;loop
loop;loop-1
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addition (1)
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addition (1)

-1-a + -1-b   = -2-(a+b)

inl(a) + inl(b) = inl(1+a+b)



33

addition (1)

-1-a + b = (b - (1+a))

sub : nat × nat # Z
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addition (1)

-1-a + b = (b - (1+a))

sub : nat × nat # Z
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addition (3)
add ((a,b),(a’,b’)) = (a+a’,b+b’)

plus proof that respects quotient

assoc:  
  ((a1,b1)+(a2,b2))+(a3,b3)  
= ((a1+a2)+a3,(b1+b2)+b3)  
= (a1+(a2+a3),b1+(b2+b3))  
= (a1,b1)+((a2,b2)+(a3,b3))
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Equivalence of (1) and (3)

plus proof mutually inverse



36

Using univalence

Therefore: 
any construction on types 
that can be defined for Zd  
can be transferred to Z, and vice versa
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Group structure
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Without univalence
Given e : A ≃ B
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Without univalence

GroupStr : U # U

Given e : A ≃ B

e.g. b1 ⊙B b2 = e(e-1(b1) ⊙A e-1(b2))
define GroupStr A ≃ GroupStr B 

No definable construction on types 
differentiates equivalent types



39

Using univalence
Z≃Zd : Path U Z Zd univalence
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Using univalence

GroupStr : U # U

Z≃Zd : Path U Z Zd

define GroupStr Zd

univalence
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Using univalence

GroupStr : U # U

Z≃Zd : Path U Z Zd

mechanically derive GroupStr Z  
by transporting along the equivalence

define GroupStr Zd

univalence
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intdiff.ctt
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Higher inductive types 
and 

synthetic homotopy theory
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Circle
Circle S1 is a higher inductive type 
generated by 

base
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Circle
Circle S1 is a higher inductive type 
generated by 

base : 𝕊1  
loop : Path 𝕊1 base base   base

Free type (∞-groupoid/uniform Kan cubical set):

idloop-1

inv : loop;loop-1 = idid
loop-1
loop;loop

...
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Universal Cover

wind : Ω(S1) # ℤ

defined by lifting a loop 
to the cover, and giving 
the other endpoint of 0 

lifting loop adds 1 
lifting loop-1 subtracts 1 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Universal Cover

lifting loop adds 1 
lifting loop-1 subtracts 1 

Helix : S1 # U
Helix(base) := ℤ
Helix(loop) :=  
  ua(x ⟼ x+1 : ℤ ≃ ℤ)



45

circletalk.ctt
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Torus

p ps

a

a a

a
q

q

a   : Torus
p,q : Path a a
s   : Square q q p p
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free type: suffices to specify images of generators

 𝕋 ≃ 𝕊1 × 𝕊1 
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Ω(𝕋) # Ω(𝕊1 x 𝕊1) # Ω(𝕊1) x Ω(𝕊1)
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p p

q

q

p p

q

q

p

q

q

p p

q

p p

q
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t

s

ss
q

q

p

q

p

p
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t

s

ss
q

q

p

q

p

p
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torustalk.ctt
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north

south

Suspension merid(a)
a
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AJoin push
B
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Synth homotopy theory

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal 

π4(S3) = ℤ2

James 
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead 
for n-types

(Co)homology

[Brunerie, Cavallo, Favonia, Finster,  
 Licata, Lumsdaine, Sojakova, Shulman] 

T2 = S1 × S1 

Mayer-Vietoris
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Synth homotopy theory

Cellular Cohomology [Favonia, Buchholtz]

Higher Groups [Buchholtz, van Doorn, Rijke]

Free Higher Groups [Kraus, Altenkirch]

Serre Spectral Sequence [Avigad, Awodey, 
Buchholtz, van Doorn, Newstead, Rijke, Shulman]

Cayley-Dickson, Quaternionic Hopf [Buchholtz, Rijke]

Real projective spaces [Buchholtz, Rijke]
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Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

generator 
of π3(𝕊3)

view 𝕊3  

as join main map π3(𝕊2) is ℤ 
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Proof Assistants
cubicaltt [Cohen,Coquand,Huber,Mörtberg]

cubical Agda [Vezzosi]

redtt [Angiuli,Cavallo,Favonia,Harper,Mörtberg,Sterling]

yacctt [Angiuli,Mörtberg]

redprl [Angiuli,Cavallo,Favonia,Harper,Sterling]

different cube categories, filling operations

optimized definitions of filling operations

term representations, evaluation strategies, def. equality

non-fibrant types and exact equalities
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CS Applications
guarded recursion 
[Birkedal,Bizjak,Clouston,Spitters,Vezzosi]

relational parametricity [Bernardy,Coquand,Moulin; 
 Nuyts,Vezzosi,Devriese]

effects in computational cubical type theory? 
[Angiuli,Cavallo,Favonia,Harper,Sterling,Wilson] 

transporting along functions in directed type 
theories? [Riehl,Shulman;Riehl,Sattler;L.,Weaver]
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Questions
homotopy theories of cubical sets models? 
[Sattler;Kapulkin,Voevodsky’18] 

interpret cubical type theory in other models?

homotopy canonicity for MLTT+ua?

Path U A B definitionally equal to Equiv A B? 
[Altenkrich,Kaposi]

regularity? A𝕀 + transport id def. equal to id [Awodey]
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Thanks!


