
Univalence from a

Computer Science Point-of-View

Dan Licata

Wesleyan University

1

2

Martin-Löf type theory
[70s-80s]

3

Proofs are programs

4

cubicaltt
[Cohen,Coquand,  
 Huber,Mörtberg]

4

cubicaltt
[Cohen,Coquand,  
 Huber,Mörtberg]

4

“exists k : nat such that n = 2k+1”

cubicaltt
[Cohen,Coquand,  
 Huber,Mörtberg]

5

Theorem: every natural number is even or odd 
Proof: induction on n.

Base case: 0 is even 
 
Inductive case: Suppose n is even or n is odd. 
To show: n+1 is even or n+1 is odd. 
Case where n is even (n=2k):  
 n+1 = 2k+1 is odd. 
Case where n is odd (n=2k+1): 
 n+1 = 2k+2 = 2(k+1) is even.  

6

“for all n : nat, n is even or n is odd”

6

What program is this?

“for all n : nat, n is even or n is odd”

7

evenodd.ctt

8

“for all” is function “or” is coproduct

What program is this?

9

coproduct injection is parity

What program is this?

10

floor(n/2)

What program is this?

11

proof that n = 2*floor(n/2)[+1]

What program is this?

12

proof that n = 2*floor(n/2)[+1]

(every element of Path nat k k is reflexivity/identity)

13

Computation

function applied to argument reduces  
to body of definition

projection of a pair reduces to component

case distinction for coproduct reduces on injection

recursion on nat reduces on zero and suc(n)

elimination reduces on introduction

13

Computation

function applied to argument reduces  
to body of definition

projection of a pair reduces to component

case distinction for coproduct reduces on injection

recursion on nat reduces on zero and suc(n)

elimination reduces on introduction

“definitional” rather than “typal” equalities/paths

13

Computation

function applied to argument reduces  
to body of definition

projection of a pair reduces to component

case distinction for coproduct reduces on injection

recursion on nat reduces on zero and suc(n)

elimination reduces on introduction

“definitional” rather than “typal” equalities/paths
equality

13

Computation

function applied to argument reduces  
to body of definition

projection of a pair reduces to component

case distinction for coproduct reduces on injection

recursion on nat reduces on zero and suc(n)

elimination reduces on introduction

“definitional” rather than “typal” equalities/paths
equality 1-simplex

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

C

A

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

a bp

C

A

p : Path A a b

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

a bp

cC

A

p : Path A a b
c : C(a)

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

a bp

c tr p cC

A

p : Path A a b
c : C(a)

transport C p c : C(b)
then

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

a bp

c tr p cC

A

p : Path A a b
c : C(a)

transport C p c : C(b)
and reduces to c  
 when p is identity Path A a a

then

14

Computation

C : A → Type  
 
 
 
 
 
 

elimination reduces on introduction

original “intended model” of MLTT: every “path” is identity

a bp

c tr p cC

A

p : Path A a b
c : C(a)

transport C p c : C(b)
and reduces to c  
 when p is identity Path A a a

then

15

Canonicity theorem

For all (closed) t:nat in MLTT,  
there exists a numeral k with  
t definitionally equal to k

Constructive proof of:

16

Univalence Axiom

(A,B : U) → Equiv A B → Path U A B~

16

Univalence Axiom

(A,B : U) → Equiv A B → Path U A B~

axioms break canonicity

16

Univalence Axiom

(A,B : U) → Equiv A B → Path U A B

Central question for computation with univalence: 
what does it mean to transport along such a path?

~

axioms break canonicity

17

Voevodsky’s homotopy
canonicity conjecture

[talk in  
 Götenborg,  
 2011]

18

Voevodsky’s homotopy
canonicity conjecture

For all (closed) t:nat in MLTT+univalence,  
there exists a numeral k with  
a Path nat t k (potentially using univalence)

Constructive proof of:

18

Voevodsky’s homotopy
canonicity conjecture

For all (closed) t:nat in MLTT+univalence,  
there exists a numeral k with  
a Path nat t k (potentially using univalence)

Constructive proof of:

computation valid in all models

18

Voevodsky’s homotopy
canonicity conjecture

For all (closed) t:nat in MLTT+univalence,  
there exists a numeral k with  
a Path nat t k (potentially using univalence)

Constructive proof of:

ua already implies how ua “computes”

computation valid in all models

19

Progress

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and
operational semantics

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and
operational semantics
New type theories including MLTT+ua that  
satisfy (definitional) canonicity

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and
operational semantics
New type theories including MLTT+ua that  
satisfy (definitional) canonicity
Several new experimental proof assistants

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and
operational semantics
New type theories including MLTT+ua that  
satisfy (definitional) canonicity
Several new experimental proof assistants

maybe new type theories can be interpreted 
in same kinds of models?

19

Progress
Models of MLTT+ua in a constructive metatheory
(procedure for running programs implicit in proof!)
Models of MLTT+ua based on programs and
operational semantics
New type theories including MLTT+ua that  
satisfy (definitional) canonicity
Several new experimental proof assistants

definitional equalities are easier to use

maybe new type theories can be interpreted 
in same kinds of models?

20

Constructive Cubical Models

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16;
Angiuli,Favonia,Harper,Wilson,’16-’17]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16;
Angiuli,Favonia,Harper,Wilson,’16-’17]
higher inductive types: syntax, fibrancy/operational semantics 
[Isaev’14,Coquand,Huber,Mörtberg,’14-’17;Cavallo,Harper,’17]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16;
Angiuli,Favonia,Harper,Wilson,’16-’17]
higher inductive types: syntax, fibrancy/operational semantics 
[Isaev’14,Coquand,Huber,Mörtberg,’14-’17;Cavallo,Harper,’17]
type theory with non-fibrant types and exact equality as in
Voevodsky’s HTS [AFH’17]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16;
Angiuli,Favonia,Harper,Wilson,’16-’17]
higher inductive types: syntax, fibrancy/operational semantics 
[Isaev’14,Coquand,Huber,Mörtberg,’14-’17;Cavallo,Harper,’17]
type theory with non-fibrant types and exact equality as in
Voevodsky’s HTS [AFH’17]
internal language presentations (fibrancy as type) 
[Coquand;Orton-Pitts’16;Spitters+’16] + universes [Sattler;LOPS’18]

20

Constructive Cubical Models
monoidal cube category, uniformity [Bezem,Coquand,Huber’13]
de Morgan cube category, composition→filling, cofibration syntax  
[Cohen,Coquand,Huber,Mörtberg,’14-’15]
cartesian cube category, homogenization, diagonal cofibs  
[Angiuli,Favonia,Harper,Wilson;+Brunerie,Coquand,L.,’14-’17]
canonicity/operational models [Huber,’16;
Angiuli,Favonia,Harper,Wilson,’16-’17]
higher inductive types: syntax, fibrancy/operational semantics 
[Isaev’14,Coquand,Huber,Mörtberg,’14-’17;Cavallo,Harper,’17]
type theory with non-fibrant types and exact equality as in
Voevodsky’s HTS [AFH’17]
internal language presentations (fibrancy as type) 
[Coquand;Orton-Pitts’16;Spitters+’16] + universes [Sattler;LOPS’18]
more mathematical analyses [Awodey’13-,Gambino,Sattler’15-’17]

21

Kan filling

p r

q

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

21

Kan filling

p r

q

p-1;q;r

22

Main Ideas

22

Main Ideas
Setsℂop for ℂ free semicartesian category on 0,1 : * → 𝕀; 
free cartesian category; …with connections/reversals

22

Main Ideas
Setsℂop for ℂ free semicartesian category on 0,1 : * → 𝕀; 
free cartesian category; …with connections/reversals
fibration: algebraic/specified solutions to filling problems

22

Main Ideas
Setsℂop for ℂ free semicartesian category on 0,1 : * → 𝕀; 
free cartesian category; …with connections/reversals
fibration: algebraic/specified solutions to filling problems
algorithms for filling in ∏, ∑, Path, universe, univalence

22

Main Ideas
Setsℂop for ℂ free semicartesian category on 0,1 : * → 𝕀; 
free cartesian category; …with connections/reversals
fibration: algebraic/specified solutions to filling problems
algorithms for filling in ∏, ∑, Path, universe, univalence
definition of fibration chosen carefully — stable under
change of base (uniformity), (trivial) cofibrations — in
harmony with choice of cube category

23

Relation to sSet?

known methods use P A := A(- ⊗ 𝕀) or Ay𝕀

and its right adjoint to define universes and
filling in them

unclear if any “type theoretic model
structures” are Quillen-equiv to sSet/Top;
some are not [Sattler]

24

Recommender System

https://www.uwo.ca/math/
faculty/kapulkin/seminars/
hottest.html

Last spring: Coquand 
 Angiuli

October 11: Favonia

https://www.cs.uoregon.edu/
research/summerschool/
summer18/topics.php

Harper

https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.cs.uoregon.edu/research/summerschool/summer18/topics.php

25

Computation with 
univalence in…

25

definitions of ℤ

Computation with 
univalence in…

25

definitions of ℤ

fundamental groups of 𝕊1 and 𝕋

Computation with 
univalence in…

25

definitions of ℤ

fundamental groups of 𝕊1 and 𝕋

calculation of π4(𝕊3)

Computation with 
univalence in…

26

Running the 
equivalence principle

27

ℤ in type theory (1)
nat + nat

0

negative non-negative

1 2-1-2

inr 0 inr 1 inr 2inl 0inl 1

28

ℤ in type theory (2)
nat +(0,0) nat

0

non-positive non-negative

1 2-1-2

inr 0 inr 1 inr 2inl 1inl 2
inl 0

29

ℤ in type theory (3)
(nat × nat) / (a+b’ =nat a’+b)

0 1-1

(0,0) (1,0)(0,1)
(1,1)(1,2) (2,1)

30

ℤ in type theory (4)
free (set-level) group on one generator

0 1-1

zero suc(zero)pred(zero)

pred(succ(zero))

succ(pred(zero))

31

ℤ in type theory (5)
loops in S1

0 1 2-1

id looploop-1 loop;loop

loop-1;loop
loop;loop-1

32

addition (1)

32

addition (1)

-1-a + -1-b = -2-(a+b)

inl(a) + inl(b) = inl(1+a+b)

33

addition (1)

-1-a + b = (b - (1+a))

sub : nat × nat # Z

33

addition (1)

-1-a + b = (b - (1+a))

sub : nat × nat # Z

34

addition (3)
add ((a,b),(a’,b’)) = (a+a’,b+b’)

plus proof that respects quotient

assoc:  
 ((a1,b1)+(a2,b2))+(a3,b3)  
= ((a1+a2)+a3,(b1+b2)+b3)  
= (a1+(a2+a3),b1+(b2+b3))  
= (a1,b1)+((a2,b2)+(a3,b3))

35

Equivalence of (1) and (3)

plus proof mutually inverse

36

Using univalence

Therefore: 
any construction on types 
that can be defined for Zd  
can be transferred to Z, and vice versa

37

Group structure

38

Without univalence
Given e : A ≃ B

38

Without univalence

GroupStr : U # U

Given e : A ≃ B

38

Without univalence

GroupStr : U # U

Given e : A ≃ B

define GroupStr A ≃ GroupStr B

38

Without univalence

GroupStr : U # U

Given e : A ≃ B

e.g. b1 ⊙B b2 = e(e-1(b1) ⊙A e-1(b2))
define GroupStr A ≃ GroupStr B

38

Without univalence

GroupStr : U # U

Given e : A ≃ B

e.g. b1 ⊙B b2 = e(e-1(b1) ⊙A e-1(b2))
define GroupStr A ≃ GroupStr B

No definable construction on types
differentiates equivalent types

39

Using univalence
Z≃Zd : Path U Z Zd univalence

39

Using univalence

GroupStr : U # U

Z≃Zd : Path U Z Zd univalence

39

Using univalence

GroupStr : U # U

Z≃Zd : Path U Z Zd

define GroupStr Zd

univalence

39

Using univalence

GroupStr : U # U

Z≃Zd : Path U Z Zd

mechanically derive GroupStr Z  
by transporting along the equivalence

define GroupStr Zd

univalence

40

intdiff.ctt

41

Higher inductive types 
and 

synthetic homotopy theory

42

Circle
Circle S1 is a higher inductive type
generated by

base

42

Circle
Circle S1 is a higher inductive type
generated by

base : 𝕊1  
loop : Path 𝕊1 base base   base

42

Circle
Circle S1 is a higher inductive type
generated by

base : 𝕊1  
loop : Path 𝕊1 base base   base

Free type (∞-groupoid/uniform Kan cubical set):

idloop-1

inv : loop;loop-1 = idid
loop-1
loop;loop

...

43

Universal Cover

wind : Ω(S1) # ℤ

defined by lifting a loop 
to the cover, and giving
the other endpoint of 0 

lifting loop adds 1 
lifting loop-1 subtracts 1 

44

Universal Cover

lifting loop adds 1 
lifting loop-1 subtracts 1 

Helix : S1 # U
Helix(base) := ℤ
Helix(loop) :=  
 ua(x ⟼ x+1 : ℤ ≃ ℤ)

45

circletalk.ctt

46

Torus

p ps

a

a a

a
q

q

a : Torus
p,q : Path a a
s : Square q q p p

47

free type: suffices to specify images of generators

 𝕋 ≃ 𝕊1 × 𝕊1

48

Ω(𝕋) # Ω(𝕊1 x 𝕊1) # Ω(𝕊1) x Ω(𝕊1)

49

p p

q

q

p p

q

q

p

q

q

p p

q

p p

q

50

t

s

ss
q

q

p

q

p

p

50

t

s

ss
q

q

p

q

p

p

51

torustalk.ctt

52

north

south

Suspension merid(a)
a

53

AJoin push
B

54

Synth homotopy theory

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal 

π4(S3) = ℤ2

James
Construction

K(G,n)
Blakers-Massey

Van Kampen

Covering spaces

Whitehead 
for n-types

(Co)homology

[Brunerie, Cavallo, Favonia, Finster,  
 Licata, Lumsdaine, Sojakova, Shulman]

T2 = S1 × S1

Mayer-Vietoris

55

Synth homotopy theory

Cellular Cohomology [Favonia, Buchholtz]

Higher Groups [Buchholtz, van Doorn, Rijke]

Free Higher Groups [Kraus, Altenkirch]

Serre Spectral Sequence [Avigad, Awodey,
Buchholtz, van Doorn, Newstead, Rijke, Shulman]

Cayley-Dickson, Quaternionic Hopf [Buchholtz, Rijke]

Real projective spaces [Buchholtz, Rijke]

56

Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

56

Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

generator
of π3(𝕊3)

56

Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

generator
of π3(𝕊3)

view 𝕊3  

as join

56

Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

generator
of π3(𝕊3)

view 𝕊3  

as join main map

56

Brunerie’s number

There exists a k such that π4(𝕊3) ≅ ℤ/kℤ
Constructive proof in type theory of:

generator
of π3(𝕊3)

view 𝕊3  

as join main map π3(𝕊2) is ℤ

57

Proof Assistants
cubicaltt [Cohen,Coquand,Huber,Mörtberg]

cubical Agda [Vezzosi]

redtt [Angiuli,Cavallo,Favonia,Harper,Mörtberg,Sterling]

yacctt [Angiuli,Mörtberg]

redprl [Angiuli,Cavallo,Favonia,Harper,Sterling]

different cube categories, filling operations

optimized definitions of filling operations

term representations, evaluation strategies, def. equality

non-fibrant types and exact equalities

58

CS Applications
guarded recursion
[Birkedal,Bizjak,Clouston,Spitters,Vezzosi]

relational parametricity [Bernardy,Coquand,Moulin; 
 Nuyts,Vezzosi,Devriese]

effects in computational cubical type theory?
[Angiuli,Cavallo,Favonia,Harper,Sterling,Wilson]

transporting along functions in directed type
theories? [Riehl,Shulman;Riehl,Sattler;L.,Weaver]

59

Questions
homotopy theories of cubical sets models? 
[Sattler;Kapulkin,Voevodsky’18]

interpret cubical type theory in other models?

homotopy canonicity for MLTT+ua?

Path U A B definitionally equal to Equiv A B? 
[Altenkrich,Kaposi]

regularity? A𝕀 + transport id def. equal to id [Awodey]

60

Thanks!

