
Programming and Proving with
Higher Inductive Types

Dan Licata

Wesleyan University
Department of Mathematics and Computer Science

Constructive Type Theory

2

Three senses of constructivity:

[Martin-Löf]

Constructive Type Theory

2

Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

[Martin-Löf]

Synthetic geometry

3

Euclid’s postulates
1. To draw a straight line from any point

to any point.
2. To produce a finite straight line continuously

in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

Synthetic geometry

3

Euclid’s postulates
Cartesian

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

Synthetic geometry

3

Euclid’s postulates
Cartesian

models1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

Synthetic geometry

3

Euclid’s postulates
Cartesian

models1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

Synthetic geometry

3

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

Synthetic geometry

3

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Two distinct lines meet at two antipodal points.

Synthetic mathematics

4

Type theory
1.τ ::= b | τ1 → τ2
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]

Synthetic mathematics

4

Type theory

Set-theoretic
functions

1.τ ::= b | τ1 → τ2
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]

Synthetic mathematics

4

Type theory

Set-theoretic
functions

Domain-theoretic
functions

1.τ ::= b | τ1 → τ2
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]

Synthetic mathematics

4

Type theory

Set-theoretic
functions

Domain-theoretic
functions

1.τ ::= b | τ1 → τ2
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]
4.Y(f) = f(Y(f))

Constructive Type Theory

5

Three senses of constructivity:

Constructive Type Theory

5

Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Constructive Type Theory

5

Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Computational interpretation supports software
verification and proof automation

Computational Interpretation

6

There is an algorithm that, given a closed
program e : bool, computes either
an equality e = true, or
an equality e = false.

Computational Interpretation

6

There is an algorithm that, given a closed
program e : bool, computes either
an equality e = true, or
an equality e = false.

Requires functions with arbitrary domain/
range to be computable, but stating
theorem for bool offers some flexibility

Computational Interpretation

6

There is an algorithm that, given a closed
program e : bool, computes either
an equality e = true, or
an equality e = false.

Requires functions with arbitrary domain/
range to be computable, but stating
theorem for bool offers some flexibility

Basis for software verification and
proof automation

Constructive Type Theory

7

Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Computational interpretation supports software
verification and proof automation

Constructive Type Theory

7

Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Props-as-types allows proof-relevant mathematics

Computational interpretation supports software
verification and proof automation

Proof relevance

8

x : A

Proof relevance

8

equality typex =A y

x : A

Proof relevance

8

equality typex =A yp :

x : A

Proof relevance

8

equality typex =A yp :

x : A

Any structure or property C can be
transported along an equality

Proof relevance

8

equality typex =A yp :

transportC(p) : C(x) ! C(y)

x : A

Any structure or property C can be
transported along an equality

Proof relevance

8

equality typex =A yp :

transportC(p) : C(x) ! C(y)

x : A

Any structure or property C can be
transported along an equality Leibniz’s

indiscernability
of identicals

Proof relevance

8

equality typex =A yp :

transportC(p) : C(x) ! C(y)

x : A

Any structure or property C can be
transported along an equality

by a function: can it do real work?

Leibniz’s
indiscernability
of identicals

Proof relevance

9

equality typex =A yp :

x : A

Proof relevance

9

equality typex =A yp :

p1 =x=y p2

x : A

Proof relevance

9

equality typex =A yp :

p1 =x=y p2q :

x : A

Proof relevance

9

equality typex =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2

Proof relevance

9

equality typex =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

Proof relevance

9

equality typex =A yp :

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...

higher equalities radically expand the kind of
math that can be done synthetically…

category theory homotopy theory

type theory

Homotopy Type Theory

10

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

Types as spaces

11

M N

α

Types as spaces

11

M N

α

type A is a space

Types as spaces

11

M N

α

programs
M:A

are points

type A is a space

Types as spaces

11

M N

α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

Types as spaces

11

M N

α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations

Types as spaces

11

M N

αid

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)

Types as spaces

11

M N

αid
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)-1

Types as spaces

11

M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

Homotopy

12

Deformation of one path into another

α

β

Homotopy

12

Deformation of one path into another

α

β

Homotopy

12

Deformation of one path into another

α

β

= 2-dimensional path between paths

Homotopy

12

Deformation of one path into another

α

β

= 2-dimensional path between paths

α =x=y βδ :

Homotopy

12

Deformation of one path into another

α

β

= 2-dimensional path between paths

Then homotopies between homotopies ….

α =x=y βδ :

Types as spaces

13

M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths

path operations
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

-1

homotopies
ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α)
 =M=P (γ o β) o α

category theory homotopy theory

type theory

Homotopy Type Theory

14

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

Types as ∞-groupoids

15

type A is an ∞-groupoid morphisms
id : M = M (refl)
α-1 : N = M (sym)
β o α : M = P (trans)

morphisms between morphisms

infinite-dimensional
algebraic structure,
with morphisms,
morphisms between
morphisms, ...

each level has a
groupoid structure,
and they interact

ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α)
 =M=P (γ o β) o α

Path induction

16

Type of paths
from a to somewhere

a

id

a

is inductively
generated by

y3y1

y2

p1 p3
p2

Path induction

16

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of
 C(y,p) for all y and p:a=y,
suffices to give an element of
 C(a,id)

Type of paths
from a to somewhere

a

id

a

is inductively
generated by

y3y1

y2

p1 p3
p2

Type theory is a
synthetic theory of
spaces/∞-groupoids

17

category theory homotopy theory

type theory

Homotopy Type Theory

18

new programs
and types

Univalence

19

[Voevodsky]

Univalence

19

Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

Univalence

19

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

[Voevodsky]

Univalence

19

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

[Voevodsky]

Univalence

19

Equivalence of types is a generalization to
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to)
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

Not by collapsing equivalence,
but by exploiting proof-relevant equality:
transport does real work

[Voevodsky]

Higher inductive types

20

New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

[Bauer,Lumsdaine,Shulman,Warren]

Constructivity

21

Non-affirmation of classical principles

Proof-relevant mathematics

Computational interpretation ?

✓

✓

category theory homotopy theory

type theory

Homotopy Type Theory

22

new possibilities
for computer-
checked proofs

new programs
and types

Outline

23

1.Certified homotopy theory

2.Certified software

Outline

24

1.Certified homotopy theory

2.Certified software

Homotopy Theory

25

A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]

Homotopy in HoTT

26

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou,
 Licata, Lumsdaine, Shulman]

Homotopy in HoTT

26

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou,
 Licata, Lumsdaine, Shulman]

Homotopy Groups

27

Homotopy groups of a space X:
π1(X) is fundamental group (group of loops)
π2(X) is group of homotopies (2-dimensional loops)
π3(X) is group of 3-dimensional loops
…

28

=|

Telling spaces apart

28

=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart

The Circle

29

Circle S1 is a higher inductive type
generated by loop

base

The Circle

29

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

The Circle

29

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point

The Circle

29

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base
point
path

The Circle

29

Circle S1 is a higher inductive type
generated by

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...

The Circle

30

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

loop

base

loop’
base’

The Circle

30

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

Circle induction: To prove a predicate P for all points
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id
loop

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

loop

base

Fundamental group of circle

31

How many different loops are there on
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the
circle

loop

base

Fundamental group of circle

32

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Fundamental group of circle

32

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

Fundamental group of circle

32

Corollary: Fundamental group
 of the circle is isomorphic to ℤ

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

Fundamental group of circle

32

Corollary: Fundamental group
 of the circle is isomorphic to ℤ

Definition. Ω(S1) is the type of loops at base
 i.e. the type (base =S1 base)

Theorem. Ω(S1) is equivalent to ℤ,
 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)

Fundamental group of circle

33

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind : Ω(S1) ! ℤ

loop- : ℤ ! Ω(S1)

Fundamental group of circle

33

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind : Ω(S1) ! ℤ

loop0 = id
loop+n = loop o loop o … loop (n times)
loop-n = loop-1 o loop-1 o … loop-1 (n times)

loop- : ℤ ! Ω(S1)

Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting is functorial

Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting is functorial

Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

lifting is functorial

Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

Example:
 wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial

Universal Cover

35

Universal Cover

35

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

Universal Cover

35

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

defined by circle
recursion

Universal Cover

35

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

interpret loop as
“add 1” bijection

defined by circle
recursion

Universal Cover

35

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

interpret loop as
“add 1” bijection

univalence

defined by circle
recursion

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0) lift p to cover,

starting at 0

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)

Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

 wind(loop-1 o loop)

lift p to cover,
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0

37

The HoTT book Computer-checked
Fundamental group of the circle

πn(Sn) in HoTT

38

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

πn(Sn) in HoTT

38

kth homotopy group

n-
di

m
en

si
on

al
 s

ph
er

e

[image from wikipedia]

πn(Sn) = ℤ for n≥1

39

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

πn(Sn) = ℤ for n≥1

39

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: |Sn|n = |Ω(Sn+1)|n

πn(Sn) = ℤ for n≥1

39

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: |Sn|n = |Ω(Sn+1)|n

n-truncation:
best approximation of a type such

that all (n+1)-paths are equal

πn(Sn) = ℤ for n≥1

39

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: |Sn|n = |Ω(Sn+1)|n

n-truncation:
best approximation of a type such

that all (n+1)-paths are equal

higher inductive type
generated by
basen : Sn

loopn : Ωn(Sn)

|Sn|n = |Ω(Sn+1)| n
n-truncation of Sn is the type of “codes” for loops on Sn+1

|Sn|n = |Ω(Sn+1)| n

Decode: promote n-dimensional loop on Sn
to n+1-dimensional loop on Sn+1

n-truncation of Sn is the type of “codes” for loops on Sn+1

|Sn|n = |Ω(Sn+1)| n

Decode: promote n-dimensional loop on Sn
to n+1-dimensional loop on Sn+1

n-truncation of Sn is the type of “codes” for loops on Sn+1

Encode: define fibration Code(x:Sn+1) with
Code(basen+1) := |Sn|n
Code(loopn+1) := equivalence |Sn|n → |Sn|n
 “rotating by loopn”

∼

π2(S2): Hopf fibration

42

Gap between informal and formal proofs is small
Proofs are constructive*: can run them
Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*
New type-theoretic proofs/methods

*work in progress

Synthetic homotopy theory

Outline

43

1.Certified homotopy theory

2.Certified software

Patches

44

a
b
c

diff
2c2
< b

> d

a
d
c

=

Patch

Version control
Collaborative editing

45

a
b
c

id a
b
c

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

45

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths

Merging

46

a
b
c

p

a
d
c

q

a
b
e

Merging

46

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

Merging

46

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

Merging

46

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

Merging

46

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

=

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

Merging

47

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

Merging

47

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

Equational theory of patches
= paths between paths

Basic Patches

48

f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

Basic Patches

48

“Repository” is a char vector of length n

f i b r a t i o n

Basic patch is a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

doc[n]

points describe
repository contents

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

points describe
repository contents

paths are patches

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i
paths between paths are
equations between patches

Patches as a HIT

49

Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are
equations between patches

Generators for HIT

50

Generator for
equality of equality

Generators for HIT

50

Repos : Type

Generator for
equality of equality

Generators for HIT

50

Repos : Type

doc[n] : Repos

Generator for
equality of equality

compressed : Repos

Generators for HIT

50

Repos : Type

doc[n] : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed

Generators for HIT

50

Repos : Type

doc[n] : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

commute:
 (a↔b at i)o(c↔d at j) if i ≠ j
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed

51

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: Repos
Points: doc[n]
Paths:

a↔b@i

Paths between paths:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

Type: Patch

52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

Repos recursion

52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A

Repos recursion

52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A

Repos recursion

52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A
map the equality-between-equality generators to
equalities between the corresponding equalities in A

Repos recursion

52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A
map the equality-between-equality generators to
equalities between the corresponding equalities in A

Repos recursion

All functions on Repos respect patches
All functions on patches respect patch equality

Interpreter

53

Goal is to define:

Generator for
equality of equality

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

Interpreter

53

Goal is to define:

Generator for
equality of equality

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

Interpreter

53

Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over paths

interp : doc[n] = doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

54

Generator for
equality of equality

Need to pick A and define

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

I(doc[n]) := … : A
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp(a↔b at i) = swapat a b i

55

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := … : Type
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

56

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

57

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := … : Vec Char n = Vec Char n

I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

58

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := …

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

58

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := …

univalence

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

59

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat>

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

60

Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat>

interp(p) = ua-1(I1(p))

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

61

Generator for
equality of equality

interp(p) = ua-1(I1(p))

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

Satisfies the desired equations (as propositional equalities):

interp : doc[n]=doc[n]
 ! Bijection (Vec Char n) (Vec Char n)

62

Generator for
equality of equality

Summary

62

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

62

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

62

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

62

Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

63

Generator for
equality of equality

Operational semantics
Can’t run these programs yet

Some special cases known, some recent progress:
Licata&Harper, POPL’12
Coquand&Barras, ’13
Shulman, ’13
Bezem&Coquand&Huber, ’13

Would support proof automation and
programming applications

Outline

64

1.Certified homotopy theory

2.Certified software

category theory homotopy theory

type theory

Homotopy Type Theory

65

new certified
programs and

proofs

new programs
and types

