Programming and Proving with
Higher Inductive Types

Dan Licata

Wesleyan University
Department of Mathematics and Computer Science

Constructive Type Theory

[IMartin-Lof]

Three senses of constructivity:

Constructive Type Theory

[IMartin-Lof]

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

e~ 9

Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.

. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

e~ 9

Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.

. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

Cartesian

d

(2, 2)

Y2 — Y

(.'1'1 3 l/l)

Ir2 —]

e~ 9

Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.

. That, if a straight line falling on two straight lines

make the interior angles on the same side less
than to right angles,the two straight lines, if
produced indefinitely, meet on that side on which
are the angles less than the to right angles.

Cartesian

models

pr—

d

(2, 2)

Y2 — Y

(.'1'1 y Y1)

Ir2 —]

0

Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.

models

—

Cartesian

(z1,11) To — T

0

Synthetic geometry

Euclid’s postulates

~

Cartesian

. To draw a straight line from any point m Ode I S
to any point.

. To produce a finite straight line continuously h d Yo — U
in a straight line.

. To describe a circle with any center and distance.

. That all right angles are equal to one another. (@1, 1) e i

Spherical

0

Synthetic geometry

Euclid’s postulates

. To draw a straight line from any point

to any point.

. To produce a finite straight line continuously

in a straight line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.

. Two distinct lines meet at two antipodal points.

models

pr—

~

Cartesian

(z1,11) To — T

Spherical

Synthetic mathematics

Type theory

lx::=b | T1 = 1
2. ::=x | e1e2 | Ax.e
3.(Ax.e)e2 = e[e2/x]

Synthetic mathematics

Set-theoretic
functions

Type theory | —

l.x::=b | T1 — T2 <= //\/

2. ::=x | e1e2 | Ax.e
3.(Ax.e)e2 = e[e2/x]

Synthetic mathematics

Set-theoretic
functions

Type theory | —

l.x::=b | T1 — T2 <= //\/

2. ::=x | e1e2 | Ax.e
3.(Ax.e)e2 = e[e2/x]

\ Domain-theoretic

functions

Synthetic mathematics

Set-theoretic
functions

Type theory | —
lxs:=b | T1— N — /A/

2. ::=x | e1e2 | Ax.e

3.(Ax.e)e2 = e[e2/x]
\ Domain-theoretic
functions

1.Y(f) = £(Y (1))

Constructive Type Theory

Three senses of constructivity:

Constructive Type Theory

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

Constructive Type Theory

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

* Computational interpretation supports software
verification and proof automation

Computational Interpretation

There is an algorithm that, given a closed
program e : bool, computes either

an equality e true, or

an equality e false.

Computational Interpretation

There is an algorithm that, given a closed
program e : bool, computes either

an equality e true, or

an equality e false.

* Requires functions with arbitrary domain/
range to be computable, but stating
theorem for bool offers some flexibility

Computational Interpretation

There is an algorithm that, given a closed
program e : bool, computes either

an equality e = true, or

an equality e = false.

* Requires functions with arbitrary domain/
range to be computable, but stating
theorem for bool offers some flexibility

* Basis for software verification and
proof automation

Constructive Type Theory

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

* Computational interpretation supports software
verification and proof automation

Constructive Type Theory

Three senses of constructivity:

* Non-affirmation of certain classical principles
provides axiomatic freedom

* Computational interpretation supports software
verification and proof automation

* Props-as-types allows proof-relevant mathematics

Proof relevance

X : A

Proof relevance

X : A

X =AY

equality type

Proof relevance

X : A

P . X =AY

equality type

Proof relevance

X : A

P : X =AY equality type

Any structure or property C can be
transported along an equality

Proof relevance

X : A

P - X =AY

Any structure or property C can be
transported along an equality

transportc(p) : C(x) » C(y)

equality type

Proof relevance

X : A

P : X =AY equality type

Any structure or property C can be

transported along an equality < _ Leibniz’s
indiscernability
of identicals

transportc(p) : C(x) » C(y)

Proof relevance

X : A

P : X =AY equality type

Any structure or property C can be

transported along an equality < _ Leibniz’s
indiscernability
of identicals

transportc(p) : C(x) » C(y)

by a function: can it do real work?

Proof relevance

X : A

P . X =AY

equality type

Proof relevance
X : A
P : X =AY equality type

P1 =x=y P2

Proof relevance
X : A
P : X =AY equality type

q . P1 =x=y P2

Proof relevance

X A
P : X =AY equality type
q : P1 =x=y P2

di1 =pi1=p2 Q2

Proof relevance

X A
P : X =AY equality type
q : P1 =x=y P2

' ¢ g1 =pi=p2 Q2

Proof relevance

X A
P : X =AY equality type
q : P1 =x=y P2

' . g1 =pi=p2 Q2

higher equalities radically expand the kind of
math that can be done synthetically...

9

Homotopy lype [heory

type theory

category theory homotopy theory

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

10

lypes as spaces

)

lypes as spaces

type A is a space

a

lypes as spaces

type A is a space

a

programs
M:A
are points

Types as spaces

type A is a space

a

programs

M:A | -
are pnoints proofs of equality
i x : M =2 N

are paths

Types as spaces

type A is a space path operations

a

programs

M:A | -
are pnoints proofs of equality
i x : M =2 N

are paths

Types as spaces

type A is a space path operations
| - 1d : M =M (refl)

a

- Nid

programs

M:A | -
are pnoints proofs of equality
i x : M =2 N

are paths

Types as spaces

type A is a space path operations
o a— 1d : M =M (refl)
' oL : N =M (sym)

programs

M:A | -
are pnoints proofs of equality
i x : M =2 N

are paths

Types as spaces

type A is a space path operations
| ‘ 1d : M =M (refl)
1 : N =M (sym)

Boao:M=P (trans)

programs

M:A | .
are noints proofs of equality
- X : M=z N

are paths

HoMmotopy

Deformation of one path into another

a

HoMmotopy

Deformation of one path into another

i

»
»
’

HoMmotopy

Deformation of one path into another

L

= 2-dimensional path between paths

12

HoMmotopy

Deformation of one path into another

L

= 2-dimensional path between paths

DO =xzy B

12

HoMmotopy

Deformation of one path into another

.T'_-—”"—
\

—a

A\
\
\

»
»
”
»
.
»
»
»

| |

= 2-dimensional path between paths

Then homotopies between homotopies

12

lypes as spaces

type A is a space path operations

G 1d : M =M (refl)
ot : N =M (sym)
Boao :M=P (trans)

Id

homotopies

ul : 1d 0 & =mN &
pr(;/glj.raAms | 1l : oo &« =uw 1d
are points proofs of equality asc : vy o (B o &)

x : M= N

=M= O O
are paths = (Y 2

13

Homotopy lype [heory

type theory

category theory homotopy theory

[Hofmann,Streicher,Awodey,Warren,Voevodsky
Lumsdaine,Gambino,Garner,van den Berg]

lypes as «~-groupoids

type A is an c«-groupoid

* Infinite-dimensional
algebraic structure,
with morphisms,
morphisms between
morphisms, ...

* each level has a
groupoid structure,
and they interact

morphisms
1d : M =M (refl)
o1 : N =M (sym)

Boaoa : M=P (trans)

morphisms between morphisms
ul : 1d 0 ¢ =mN &
1l : ol o o =wm 1d
asc : vy o (B o &)

=v=p (Y 0 B) O «

15

FPath induction

Type of paths is inductively

from a to somewhere generated by
2

y
p1 p3 2

a

16

FPath Induction

Type of paths is inductively
from a to somewhere generated by

y2
d
p2 |
p1 - p3 a

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of

C(y,p) forall y and p:a=y,
suffices to give an element of

C(a,1d)

16

lype theory Is a
synthetic theory of
Spaces/co-groupoids

Homotopy lype [heory

type theory

new programs
and types

category theory homotopy theory

Univalence

[Voevodsky]

Univalence

* Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

19

Univalence

* Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

* Univalence axiom:
equality of types (A =t1ype B) is (equivalent to)
equivalence of types (Equiv A B)

19

Univalence

* Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

* Univalence axiom:
equality of types (A =t1ype B) is (equivalent to)
equivalence of types (Equiv A B)

* .. all structures/properties respect equivalence

19

Univalence

* Equivalence of types is a generalization to
spaces of bijection of sets

[Voevodsky]

* Univalence axiom:
equality of types (A =t1ype B) is (equivalent to)
equivalence of types (Equiv A B)

* .. all structures/properties respect equivalence

* Not by collapsing equivalence,
but by exploiting proof-relevant equality:
transport does real work

19

Higher Inductive types

[Bauer,Lumsdaine,Shulman,Warren]

New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

20

Constructivity

* Non-affirmation of classical principles

* Computational interpretation

* Proof-relevant mathematics

21

Homotopy lype [heory

type theory
new possibilities
new programs for computer-
and types checked proofs
category theory homotopy theory

Outline

1.Certified homotopy theory

2.Certified software

23

Outline

1.Certified homotopy theory

2.Certified software

24

Homotopy [heory

A branch of topology,

the study of spaces and continuous deformations

[image from wikipedia]

Homotopy In HO T |

mi(S") =Z Freudenthal Van Kampen
Tk<n(S") = 0 Mn(S") =Z Covering spaces
Hopf fibration K(G,n) Whitehead
me(S?%) =Z Cohomology for n-types
Ms(S?) = 7 axioms

James Blakers-Massey

Construction

3\ —
(S°) = Z [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

26

Homotopy In HO T |

(L uS)=2)

T[kn(” =0

Hopf fibration
me(S?%) =Z
ns(S?) =Z

James
Construction

ma(S3) = Z»

Freudenthal Van Kampen

Mh(S") = Z Covering spaces

K(G.n) Whitehead
Cohomology for n-types
axioms

Blakers-Massey

[Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

26

Homotopy Groups

Homotopy groups of a space X:

* 111(X) Is fundamental group (group of loops)

* 112(X) Is group of homotopies (2-dimensional loops)
* 113(X) is group of 3-dimensional loops

27

lelling spaces apart

lelling spaces apart

fundamental group fundamental group
IS non-trivial (Z x Z) is trivial

The Circle

Circle St is a higher inductive type

generated by Q 100D

base

The Circle

Circle St is a higher inductive type

generated by
base : St

loop : base = base

<::;;::> loop

base

29

The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
loop : base = base

29

The Circle

Circle St is a higher inductive type

generated by Q 100D
point base : St

base
path loop : base = base

29

The Circle

Circle S1 is a higher inductive type
generated by

Ioop_1 loop

point base : Si
path loop : base = base

base

Free type: equipped with structure
1d inv : loop o loop?t = 1id
loop-?
loop o loop

29

The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

30

The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

Circle induction: To prove a predicate P for all points

on the circle, suffices to prove P(base),
continuously in the loop

30

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d

Fundamental group of circle

How many different loops are there on Q loop
| ?
the circle, up to homotopy* =
1d
loop

Fundamental group of circle

How many different loops are there on Q loop
| ?
the circle, up to homotopy* =
1d
loop
Loopt

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d

loop

Loopt

loop o loop

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d

loop

Loopt

loop o loop

loop~t o loop

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d

loop

Loopt

loop o loop

loop~t o loop

loop o loopt

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d

loop

Loopt

loop o loop

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy? -

1d 0

loop

Loopt

loop o loop

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loopt

loop o loop
loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1

loop o loop
loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loopt id

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?

base

1d 0
Loop 1 |

integers are “codes”
L OOID'1 -1 for paths on the
loop o loop 2 circle
loop™t o loop -2
loop o loop™t = id 0

Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle is isomorphic to Z

32

Fundamental group of circle

Definition. Q(S') is the type of loops at base
i.e. the type (base =s1 base)

Theorem. Q(S') is equivalent to Z,
by a map that sends o to +

Corollary: Fundamental group
of the circle\is isomorphic to Z

0-truncation (set of connected components)
of Q(S")

32

Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof (Shulman, L.): two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)

Fundamental group of circle

Theorem. Q(S") is equivalent to Z
Proof (Shulman, L.): two mutually inverse functions

wind : Q(SYH) 5 Z

loop~ : 7z » Q(SYH)

loop? = 1id

loop*" = loop o loop o .. loop (n times)
loop™ = loop™ o loop™t o .. Lloop™t (ntimes)

Universal Cover

T wind : Q(SY) - 7

defined by lifting a loop
to the cover, and giving
the other endpoint of O

i

.
y

base

34

Universal Cover

2 wind Q(S?) > /

T L, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial

34

Universal Cover

2 wind Q<S¥> > /

T L, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial
lifting Loop adds 1

34

Universal Cover

2 wind Q<S¥> > /

T 4, ==
Q‘y R defined by lifting a loop
Qj to the cover, and giving

the other endpoint of O

S T

base

lifting Is functorial
lifting Loop adds 1
lifting Loop~! subtracts 1

34

Universal Cover

2 wind Q(Sl> > /

T 4, ==
Q‘y R defined by lifting a loop
Q”_&y\ to the cover, and giving

the other endpoint of O

S T

base Example:
lifting is functorial wind(loop o loop™)
=0+ 1-1

lifting Loop adds 1 0

lifting Loop~! subtracts 1

34

Universal Cover

i

[
Y

Universal Cover

—
—)

U T
R

<, >

base

Cover : St s Type
Cover(base) := Z

Coveri(loop) :=
ua(successor) : Z

/

Universal Cover oo
/ recursion

zégf:ffij Cover : S! s Type
—— R Cover(base) := Z
' w Coveri(loop) :=

— > s ua(successor) : Z = Z

base

Universal Cover oo
/ recursion

S:—/D Cover : St s Type
Ll, :\ R Cover(base) := Z
w Coveri(loop) :=
— . > g ua(successor) : Z = Z

base \

interpret loop as
“add 1” bijection

Universal Cover oo
/ recursion

—— R Cover(base) := Z
N
" w Coveri(loop) :=
— > 4 ua(successor) : Z = Z
base / \
univalence interpret loop as

“add 1” bijection

Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,)

lift p to cover,
starting at 0

Winding number

wind : Q(SY) - 7
wind(p) = transportcover(p,)

wind(loopt o loop)

lift p to cover,
starting at 0

Winding number == .
b@

wind : Q(SY) » Z

wind(p) = transportcover(p,0) lift p to cover,
starting at 0

wind(loopt o loop)
= transportcover(loopt o loop, 0)

36

Winding number —— .
b@

wind : Q(SY) - 7

wind(p) = transportcover(p,)

lift p to cover,
starting at 0

wind(loopt o loop)

transportcover(loopt o loop, @)
transportcover(loopt, transportcover(loop,d))

36

Winding number —— .
b@

wind : Q(SD) - 7

W'I.ﬂd(p) - tr'anSpOr'tCover'Cp,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

36

Winding number —— .
b@

wind : Q(SD) - 7

W'I.ﬂd(p) - tr'anSpOr'tCover'Cp,Q) Iiftpt_ocover,
starting at 0

wind(loopt o loop)
transportcover(loopt o loop, @)

transportcover(loopt, transportcover(loop,d))
transportcover(loopt, 1)

0

36

Fundamental group of the circle
The HoTT book Computer-checked

cbatroct prevert Agdo from normoliring
Cover © 5* - Type encode-loopr : (n & Inmt) - (ercode Qloop n)) &
Cover x » S'erec Int (uo succiquiv) x encode-1ooph Lero = i
encode-loopt (Fos Ore) = ap trersport-Cover-100p
tronsport-Cover-1o0p : Peth (tronsport Cover loop) succ encode-loopr (Pos (S n)) =
tronsport-Cover-100p = oncode Closgr (Pos S W)
trensport Cover loop ol 4d)
«(tromaport-op-assoc Cover loop) tromsport Cover (locp - loopr (Pos 2)) Zer

Defiaition 725, [N I $'1 1 ' trensport O x « x) Cop Cover loop) = ap= (tremport-- Cover locp (locpr (Poa n))) »

~ap (trorspert O x - X)) tronsport Cover locp
loop/rec Int (ue swcckquiv))) (& (!W‘ﬁﬂ?‘;’fmﬂlw (Pos &) Zere)
* o tw..,(‘_l;- 30 (0 Seodienw succ (tronsport Gover (looph (Pos w)) Zere)
e succ C(encode Cloaph (Pos M)
= ap succ (encode-locpr (Pes n)))

tromsport-Cover-1locp : Poth (tromaport Cover (I loop)) pred suce (Pos &) o

tronsport-Cover-1100p = encode-) Moy Ore) = ape treraport-Covers|1
transport Cover (1 loop) “w,‘z E‘,_‘ I ,),)) :" -
=(trossport-op-assoc Cover (I locp)) tronsport Cover (1 1009 « looph Oty n)) Zero
tremport Q. x - x) (ap Cover (I leop)) « ap~ (tronsport-- Gover (1 100p) Cloop* Otey m))) !
«C ap (tronsport (A x « x)) (ap-1 Cover loop) tronsport Gover (1 100p) (tremsport Cover (loop* Oteg n)) Zerv)
trensport (A x ~« x) (! (op Cover lecp)) ! gp= troraport-Cover-|loop)
“(ep Oy~ tronsport O x - x) (! ¥)) pred (tromsport Cover (loopr (Meg m)) Zere)
Dlocp/rec Int (uo succlguiv)) = ap pred (encode-locpr (g n)))
q v trensport (4 x « x) (I (uo secckquiv)) pred (Neg n) »
- ’ Thes B -y « ap (trensport (A X - X)) (l-ua swockquiv))
¥ trensgort (A x - x) (ua (leguiv succtquiv)) encode-decode 1 {x 1 $*) « (c 1 Cover X)
« typep 1} « Poth (encode (decode{x} <)) ¢
pred » wcode-decode (x} « 5 -induction
T2 Deoding after enonding O\ Cx: %)~ (< : Cover x)
. p encods * « SA) . = - Poth (encode(x) (decode{x} <)) <)
A - ' s s B e " Gy x encode-looph (= O x' - F3t Cuse-leval (use-level (use-level MSet-Ist .) . I))) x
de* decode-encode 1 {x @ 5*) (o ! Path base x)
encode’ « m:‘c:::) ™ . « Poth (decode (encode o)) «
decode-encode (5} & =
20334 Basade i poth-induction
4114 Tacedisg il Goniin i Int « Poth bese bose G (x' : $1) (o' ; Poth base x')
Lemmma 727 for C P g ~ Poth (decode (encode o')) o*)
' e) = lecp ide
. . “ Cane w, by . 5 n)) = loop - Loopr (Pos n)
ath between paths i 7 ! given by appeaiing 1 o loop (Neg One) = | loop O[5)-Equiv-Int : Equiv (Poth base base) Im

Znaw lecpr (Neg (5 n)) = | loop « lecpr (heg n) a5) -Equiv-Int =
100p* - prese~ves -pred tsprove (heqguiv encode decode decode-encode encode-100p*)
:(n 2 It) - Poth Clocp® (pred n)) (1 loop - losph n)
LocpA-preserves-pred (7) = § (1-tav-1 locg) O[5)-is-Int : (Poth base base) = Int
) - - D[54)-is-Int « ua OJS*)-Squiv-let
y
¥0 Ci-imv-1 Toawd) n[5*]-is-Int ! x One S* bose = Int
w52)-is-Int = UnTrunc.poth _ _ HSet-Int - op (Trunc (1 8)) OJS*)-is-Imt

» -'(o-:vl‘ » Poth bone x') loop locg* « (L » « logg® n)

« Cower 2" o« Poth bose x") oo lospr
= Cover (Poth base) Loop loge~ >

{3 Oy « trevaport-Patheright looe Clospr Chraraport Cover (1 Soop) Y2000
Gp-lop. 9

" 1oop*
% tromaport Cover (1 loop)
724 " {0y -0 x" « loop - loeph ") (ep= trampert-Cover-Tloop))

- Yoop - 9)

O =« locp - (hacp* (pred n)))

e Oy« sove-left-1 _ Yoop (locp* ¥) (locp -preserves-pred ¥)))
flary 724 " r 4 O » o logpr n)

9

37

Mn(S") INn HOTT

ki homotopy group

| sphere

ensiona

Im

n-d

N RCREC R BCR RN Y

@

™

ns5 g nz g
0 0 0 0
0 0 0 0

Z; Zyip 2 2

Z; Zyi2 2 Zp

Z, | 2o |zxzip| %2
Z Z; 2 2y
0 Z Zo Zs
0 0 Z Z>
0 0 0 Z

LR

M2

™3 T4

™5

ZyoxZp

ng | Ty
0 0 0 0 0 0
0 0 0 0 0 0
Z3 Zi5 Z> 2 ZioxZo Zg4xZo?
Z3 Zis Z> z? Z1oxZ> Zg4xZ5?
2% 2023 Z1s | Zp | 22 Zypotinn2s Zsox22®
Z, 2 Zy 23 Zp 22’
Z24 0 z Z; | Zgo ZoaxZp
Z; 2y 0 0 Z; Z120
Z Z; Zoy4 0 0 Z>

ZxZ1p0

[image from wikipedia]

38

Mn(S") INn HOTT

ki homotopy group

™ m n3 g N5 g nz Tig g ™o M1

M2

™3 T4

™5

ZyoxZp

O
) 0 0 0 0 0 0 0 0 0 0 0 0
e
0O 0 0 0 0 0 0 0 0 0 0 0 0
(7p] 2 2
— Z; Z; Zi2 2 Z; Z3 Zis Z £2 ZioxZp Zg4xZ2
© — ‘ - >
- z Z; Zi2 Z; Z; Z3 Zis Zy 22 ZioxZo Zg4xZ2
@) < 2 2 3 5
(T) oy 2 . 2, (2321, %2 2° ZoaxZs Zis | Zo | P2 |Zypoxzqoxzp P84%42
C | ',\ % » 223
()] 0 S z g Z; Zosa | 22 Z; Z; 23 2
': Re. X Sy -
e 0 0 : Z | | 2, 2y | O Z | 2 Zgo ZosxZs
é 0 0 0 | Wy Z ™ Z 2 0 0| 2 Z420
0 0 0 0 ‘ 24 | O 0 Z,

ZxZ1p0

[image from wikipedia]

38

Mh(S") = Z for n>1

Proof: Induction on n

% Base case: m1(S1) = Z

* Inductive step: Tl'n+1(Sn+1) =

mh(S™)

Mh(S") = Z for n>1

Proof: Induction on n

% Base case: m1(S1) = 7
% Inductive step: mn:1(S™) = ma(SM)

Key lemma: IS"I, = 1Q(S™D) |,

Mh(S") = Z for n>1

Proof: Induction on n

% Base case: m1(S1) = 7
% Inductive step: mn:1(S™) = ma(SM)

Key lemma: |S"I, = 1Q(S™D) |,

/

n-truncation:
best approximation of a type such
that all (n+1)-paths are equal

39

Mh(S") = Z for n>1

Proof: Induction on n

% Base case: m1(S1) = 7
% Inductive step: mn:1(S™) = ma(SM)

Key lemma: |S" I, = 1Q(S™D) |,

/

n-truncation:
best approximation of a type such
that all (n+1)-paths are equal

higher inductive type
generated by
base, : S"

loopn : Q"(SM)

39

S = 1QS™)] r

n-truncation of S"is the type of “codes” for loops on S"+1

S = 1QS™)] r

n-truncation of S"is the type of “codes” for loops on S"+1

% Decode: promote n-dimensional loop on S"
to n+1-dimensional loop on S"*1

p :
7 X
,
» ,
\

S = 1QS™)] r

n-truncation of S"is the type of “codes” for loops on S"+1

% Decode: promote n-dimensional loop on S"
to n+1-dimensional loop on S"*1

oy

% Encode: define fibration Code(x: S"1) with
Code(basen+1) := |S"I,
Code(loopn+1) :=equivalence |S"|, = S|,
“rotating by Loopn”

2(S?): Hopf fibration

(©Benoit R. Kloeckner CC-BY-NC

Synthetic homotopy theory

* Gap between informal and formal proofs is small
% Proofs are constructive™ can run them

% Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and «-topoi*

* New type-theoretic proofs/methods

*work Iin progress

42

Outline

1.Certified homotopy theory

2.Certified software

43

FPatches

Patch

diff . . — .
c c
>d

% VVersion control
* Collaborative editing

44

" e
C C C - C

- undo/rollback

... BN

X

C C e

Patches are paths

S -
50 P =
C ! C (_!

n undo/rollback

C

—_—

L

C

MVerging

Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2

7 NE
ANV

e

Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2

7 NE
ANV

e

p’=p
aq’=q

Vierging

=
merge : (p q : Patch) .
> 2q’,p’ :Patch. ./ \-

Maybe(qgq’ o p = °;‘=
p’ 0 q) .4

e

e

Vierging

mP e
merge : (p q : Patch) .
> 2q’,p’ :Patch. ./_\'
Maybe(g’ o p = °;‘_/)
-

p’ 0 ()

e

Equational theory of patches
= paths between paths

Basic Patches

ffifolefaftfifoln

Basic Patches

* “Repository” is a char vector of length n

ffifolefaftfifoln

% Basic patchis a &« b @ 1 where 1<n

Patches as a HI |

Repos: Type

Patches as a HI |

points describe
repository contents

Repos: Type

Patches as a HI |

points describe
repository contents

paths are patches

Repos: Type

Patches as a HI |

Repos: Type

comproessed Oa<—>b@i

doc[n]

points describe
repository contents

paths are patches

Patches as a HI |

gz1ip

doc[n]

points describe
repository contents

paths are patches

Repos: Type

Patches as a HI |

gz1ip

Ny
~
NS Sa
~
doic ['hl-
~N
il
1 v
1y A
1 ©

Repos: Type

~
~
~
~
~
~
~
~
~
~
LS -
~
~
~
~
~
~
~
~

points describe LEEEREEREEREE R ERRRECEELEPE ;
repository contents :

paths are patches

49

Patches as a HI |

Repos: Type

compressed Gob@i

gz1ip

5
~

doi 1] -

~
~
~
~
~
~
~
~
..
~

points describe ';""'"""":6'a62:'['ﬁj"":::
repository contents ' !
. tdoc[n]o odoc[n]
paths are patches L ocln
: do2[n]

49

Patches as a HI |

Repos: Type

~
~

points describe
repository contents

paths are patches

49

Patches as a HI |

Repos: Type

~
~

points describe
repository contents

paths are patches

paths between paths are
equations between patches

49

Patches as a HI |

Repos: Type

~
~

points describe
repository contents

paths are patches

paths between paths are
equations between patches

49

(Generators for HIT

(Generators for HIT

Repos : Type

(Generators for HIT

Repos : Type

doc[n] . Repos
compressed : Repos

(Generators for HIT

Repos : Type

doc[n] . Repos
compressed : Repos

(a=b@1) : doc[n] = doc[n] 1f a,b:Char, 1i<n
gzlip . doc[n] = compressed

(Generators for HIT

Repos : Type

doc[n] : Repos
compressed : Repos

(a=b@1) : doc[n] = doc[n] 1f a,b:Char, 1<n
gzlip . doc[n] = compressed

commute:
(a<=b at 1)o(ced at j) if iz

=(ced at j)o(a<b at 1)

Type: Patch

Elements:

id : Patch 3
o : Patch - Patch - Patch |
L : Patch - Patch

“e.at. - Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

id o p=p=p o id

- po(qor) = (pog)or

" lpop=1d=polp
p=p

p=q if g=p

p=r 1f p=q and g=r
lp = !p’ if p =p’

AT

poqgq=p> oq ifp=p’andq-=q’

>

Type: Repos
Points: doc[n]
Paths:

a—b@1

Paths between paths:

commute :
(aeb at 1)o(ced at)=

(ced at j)o(a<b at 1)

51

RepOos recursion

To define a function Repos » A
it suffices to

RepOos recursion

To define a function Repos » A
it suffices to

% map the element generators of Repos
to elements of A

52

RepOos recursion

To define a function Repos » A
it suffices to

% map the element generators of Repos
to elements of A

% map the equality generators of Repos
to equalities between the corresponding elements of A

52

Repos recursion

To define a function Repos » A
it suffices to

% map the element generators of Repos
to elements of A

% map the equality generators of Repos
to equalities between the corresponding elements of A

* map the equality-between-equality generators to
equalities between the corresponding equalities in A

52

Repos recursion

To define a function Repos » A
it suffices to

% map the element generators of Repos
to elements of A

% map the equality generators of Repos
to equalities between the corresponding elements of A

* map the equality-between-equality generators to
equalities between the corresponding equalities in A

All functions on Repos respect patches
All functions on patches respect patch equality

52

INnterpreter

Goal is to define:
interp : doc[n] = doc[n]
» Bi1jection (Vec Char n) (Vec Char n)

INterpreter

Goal is to define:
interp : doc[n] = doc[n]

» Bi1jection (Vec Char n) (Vec Char n)
interp(1d) = (AXx.Xx, ..)
ihterp(q o p) = (1nterp q) oo (1nterp p)
interp(lp) = !y (interp p)
ihterp(a<b@1) = swapat a b 1

INterpreter

Goal is to define:
interp : doc[n] = doc[n]

» Bi1jection (Vec Char n) (Vec Char n)
interp(1d) = (AXx.Xx, ..)
ihterp(q o p) = (1nterp q) oo (1nterp p)
interp(lp) = !y (interp p)
ihterp(a<b@1) = swapat a b 1

But only tool available is RepoDesc recursion:
no direct recursion over paths

53

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Need to pick A and define
I(doc[n]) := .. : A
I1(a<b@1) := .. : I(doc[n]) = I(doc[n])

I.(compose) := ..

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define

I(doc[n]) := .. : Type
I1(a<b@1) := .. : I(doc[n]) = I(doc[n])

I.(compose) := ..

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a<b@1) := .. : I(doc[n]) = I(doc[n])

I.(compose) := ..

56

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a=b@1) := .. : Vec Char n = Vec Char n

I.(compose) := ..

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I.(compose) := ..

58

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n

I.(compose) := ..

univalence

58

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I,(compose) := <proof about swapat>

59

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ua1(I1(p))

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(ae=b@1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I,(compose) := <proof about swapat>

60

interp : doc[n]=doc[n]
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ual(I1(p))

Satisfies the desired equations (as propositional equalities):
interp(1id) = (Ax.Xx, ..)

interp(g o p) = (1nterp g) ob, (interp p)
interp(!p) = v (interp p)

interp(a<b@1) = swapat a b 1

61

Summary

Summary

* 1 . Repos » Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

62

Summary

* 1 . Repos » Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;

homomorphically extended to 1d,0,!,...

62

Summary

* 1 . Repos » Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;

homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

62

Summary

* 1 . Repos » Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;

homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

* Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

62

Operational semantics

* Can’t run these programs yet

* Some special cases known, some recent progress:
Licata&Harper, POPL'12
Coquand&Barras, 13
Shulman, ’13
Bezem&Coquand&Huber, 13

* Would support proof automation and
programming applications

63

Outline

1.Certified homotopy theory

2.Certified software

64

Homotopy lype [heory

type theory

new certified
programs and
proofs

new programs
and types

category theory homotopy theory

