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in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if  a straight line falling on two straight lines
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than to right angles,the two straight lines, if  
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Synthetic geometry

3

Euclid’s postulates
Cartesian

models

Spherical

1. To draw a straight line from any point
to any point.

2. To produce a finite straight line continuously
in a straight line.

3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. Two distinct lines meet at two antipodal points.
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Synthetic mathematics
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Type theory

Set-theoretic
functions

Domain-theoretic
functions

1.τ ::= b | τ1 → τ2 
2.e ::= x | e1 e2 | λx.e
3.(λx.e)e2 = e[e2/x]
4.Y(f) = f(Y(f))
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There is an algorithm that, given a closed 
program e : bool, computes either
an equality e = true, or
an equality e = false.

Requires functions with arbitrary domain/
range to be computable, but stating 
theorem for bool offers some flexibility

Basis for software verification and
proof automation
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Three senses of constructivity:

Non-affirmation of certain classical principles
provides axiomatic freedom

Props-as-types allows proof-relevant mathematics

Computational interpretation supports software 
verification and proof automation
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Proof relevance
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equality typex =A yp : 

transportC(p) : C(x) ! C(y)

x : A

Any structure or property C can be 
transported along an equality 

by a function: can it do real work?

Leibniz’s 
indiscernability
of identicals
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equality typex =A yp : 

p1 =x=y p2q :

x : A

q1 =p1=p2 q2r :

...

higher equalities radically expand the kind of 
math that can be done synthetically…  
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[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1
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Deformation of one path into another

α

β

= 2-dimensional path between paths

Then homotopies between homotopies …. 

α =x=y βδ : 



Types as spaces
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M N

α

P

β

id
α

programs
M:A

are points

type A is a space

proofs of equality
α : M =A N

are paths 

path operations
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

-1

homotopies
ul : id o α =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α) 
      =M=P (γ o β) o α 



category theory homotopy theory

type theory

Homotopy Type Theory

14

[Hofmann,Streicher,Awodey,Warren,Voevodsky 
Lumsdaine,Gambino,Garner,van den Berg]



Types as ∞-groupoids
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type A is an ∞-groupoid morphisms
id    : M = M (refl)
α-1     : N = M  (sym)
β o α : M = P (trans)

morphisms between morphisms

infinite-dimensional 
algebraic structure, 
with morphisms, 
morphisms between 
morphisms, ...

each level has a 
groupoid structure,
and they interact

ul : id o α  =M=N α
il : α-1 o α =M=M id
asc : γ o (β o α) 
      =M=P (γ o β) o α 
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Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2



Path induction
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Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of paths
from a to somewhere         

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2



Type theory is a 
synthetic theory of 
spaces/∞-groupoids

17



category theory homotopy theory

type theory

Homotopy Type Theory

18

new programs
and types
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Univalence
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Equivalence of types is a generalization to 
spaces of bijection of sets

Univalence axiom:
equality of types (A =Type B) is (equivalent to) 
equivalence of types (Equiv A B)

∴ all structures/properties respect equivalence

Not by collapsing equivalence,
but by exploiting proof-relevant equality:
transport does real work

[Voevodsky]



Higher inductive types
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New way of forming types:

Inductive type specified by generators
not only for points (elements), but also for paths

[Bauer,Lumsdaine,Shulman,Warren]



Constructivity
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Non-affirmation of classical principles

Proof-relevant mathematics

Computational interpretation ?

✓

✓



category theory homotopy theory

type theory

Homotopy Type Theory
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new possibilities
for computer-
checked proofs

new programs
and types
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1.Certified homotopy theory

2.Certified software
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1.Certified homotopy theory

2.Certified software
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A branch of topology,
the study of spaces and continuous deformations

[image from wikipedia]
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π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
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 Licata, Lumsdaine, Shulman] 
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π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 
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Homotopy groups of a space X:
π1(X) is fundamental group (group of loops)
π2(X) is group of homotopies (2-dimensional loops) 
π3(X) is group of 3-dimensional loops
… 
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=|

fundamental group
is non-trivial (ℤ × ℤ)

fundamental group
is trivial

Telling spaces apart
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The Circle
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Circle S1 is a higher inductive type 
generated by 

base : S1
loop : base = base

loop

base

Free type: equipped with structure

idloop-1

point
path

inv : loop o loop-1 = idid
loop-1
loop o loop

...
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The Circle

30

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

Circle induction: To prove a predicate P for all points 
on the circle, suffices to prove P(base),
continuously in the loop

loop

base

loop’
base’
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How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
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loop o loop-1

0
1
-1
2
-2
0

loop

base



Fundamental group of circle

31

How many different loops are there on 
the circle, up to homotopy?

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

integers are “codes”
for paths on the 
circle

loop

base
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Fundamental group of circle

32

Corollary: Fundamental group
                 of the circle is isomorphic to ℤ
                

Definition. Ω(S1) is the type of loops at base
                   i.e. the type (base =S1 base)
       
Theorem. Ω(S1) is equivalent to ℤ, 
                 by a map that sends o to +

0-truncation (set of connected components)
of Ω(S1)
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Fundamental group of circle

33

Theorem. Ω(S1) is equivalent to ℤ
Proof (Shulman, L.): two mutually inverse functions

wind  : Ω(S1) ! ℤ

loop0  = id
loop+n = loop o loop o … loop     (n times)
loop-n = loop-1 o loop-1 o … loop-1  (n times)

loop- : ℤ ! Ω(S1)
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Universal Cover

34

wind : Ω(S1) ! ℤ
defined by lifting a loop
to the cover, and giving 
the other endpoint of 0

lifting loop adds 1
lifting loop-1 subtracts 1

Example:
    wind(loop o loop-1)
= 0 + 1 - 1
= 0

lifting is functorial
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Universal Cover

35

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
  ua(successor) : ℤ = ℤ

interpret loop as 
“add 1” bijection

univalence

defined by circle 
recursion
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Winding number

36

wind : Ω(S1) ! ℤ
wind(p) = transportCover(p,0)

    wind(loop-1 o loop)

lift p to cover, 
starting at 0

= transportCover(loop-1 o loop, 0)
= transportCover(loop-1, transportCover(loop,0))
= transportCover(loop-1, 1)
= 0
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The HoTT book Computer-checked
Fundamental group of the circle
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kth homotopy group
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[image from wikipedia]
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[image from wikipedia]
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πn(Sn) = ℤ for n≥1

39

Base case: π1(S1) = ℤ

Inductive step: πn+1(Sn+1) = πn(Sn)

Proof: Induction on n

Key lemma: |Sn|n = |Ω(Sn+1)|n  

n-truncation:
best approximation of a type such 

that all (n+1)-paths are equal 

higher inductive type
generated by 
basen : Sn

loopn : Ωn(Sn)  
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|Sn|n = |Ω(Sn+1)| n 

Decode: promote n-dimensional loop on Sn
to n+1-dimensional loop on Sn+1 

n-truncation of Sn is the type of “codes” for loops on Sn+1

Encode: define fibration Code(x:Sn+1)  with
Code(basen+1) := |Sn|n
Code(loopn+1) := equivalence |Sn|n → |Sn|n
               “rotating by loopn”

∼



π2(S2): Hopf fibration
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Gap between informal and formal proofs is small
Proofs are constructive*: can run them
Results apply in a variety of settings,
from simplicial sets (hence topological spaces)
to Quillen model categories and ∞-topoi*
New type-theoretic proofs/methods

*work in progress

Synthetic homotopy theory
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1.Certified homotopy theory

2.Certified software
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a
b
c

diff
2c2
< b
---
> d

a
d
c

=

Patch

Version control
Collaborative editing
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a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

Patches are paths
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a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

=

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q
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merge : (p q : Patch) 
      ! Σq’,p’:Patch.
        Maybe(q’ o p = 
              p’ o q) 



Merging

47

merge : (p q : Patch) 
      ! Σq’,p’:Patch.
        Maybe(q’ o p = 
              p’ o q) 

Equational theory of patches 
= paths between paths
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f i b r a t i o n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2



Basic Patches
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“Repository” is a char vector of length n

f i b r a t i o n

Basic patch is   a ↔ b @ i where i<n

f i b f i a

a ↔ b @ 2

a ↔ b @ 2
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Generator for
equality of equality

Repos:Type

a↔b@i

doc[n]

compressed

points describe 
repository contents

paths are patches

gzip

doc[n]

doc[n]

doc[n]

doc[n]
a↔b@i

c↔d@j

c↔d@j

a↔b@i

i≠j

paths between paths are 
equations between patches
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Generators for HIT

50

Repos : Type

doc[n]     : Repos

(a↔b@i) : doc[n] = doc[n] if a,b:Char, i<n

commute:
 (a↔b at i)o(c↔d at j)    if i ≠ j
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

compressed : Repos

gzip : doc[n] = compressed
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id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: Repos
Points: doc[n]
Paths:

a↔b@i 

Paths between paths:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

Type: Patch
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52

Repos ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of Repos
to elements of A
map the equality generators of Repos
to equalities between the corresponding elements of A
map the equality-between-equality generators to 
equalities between the corresponding equalities in A

Repos recursion

All functions on Repos respect patches
All functions on patches respect patch equality
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Interpreter

53

Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over paths

interp : doc[n] = doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 
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Generator for
equality of equality

Need to pick A and define

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)

I(doc[n]) := … : A
I1(a↔b@i) := … : I(doc[n]) = I(doc[n])

I2(compose) := … 

interp(a↔b at i) = swapat a b i
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Generator for
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Key idea: pick A = Type and define
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := … 

univalence

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat> 

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define
I(doc[n]) := Vec Char n : Type
I1(a↔b@i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat> 

interp(p) = ua-1(I1(p))

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
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Generator for
equality of equality

interp(p) = ua-1(I1(p))

interp(a↔b@i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 

Satisfies the desired equations (as propositional equalities):

interp : doc[n]=doc[n] 
       ! Bijection (Vec Char n) (Vec Char n)
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Summary
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Generator for
equality of equality

Summary
I : Repos ! Type interprets Repos as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality: 
you specify what happens on the generators; 
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality 
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations
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Generator for
equality of equality

Operational semantics
Can’t run these programs yet

Some special cases known, some recent progress:
Licata&Harper, POPL’12
Coquand&Barras, ’13
Shulman, ’13
Bezem&Coquand&Huber, ’13

Would support proof automation and
programming applications



Outline
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1.Certified homotopy theory

2.Certified software



category theory homotopy theory

type theory

Homotopy Type Theory
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new certified 
programs and 

proofs

new programs
and types


