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Abstract
We define a dependent programming language in which program-
mers can define and compute with domain-specific logics, such as
an access-control logic that statically prevents unauthorized access
to controlled resources. Our language permits programmers to de-
fine logics using the LF logical framework, whose notion of bind-
ing and scope facilitates the representation of the consequence re-
lation of a logic, and to compute with logics by writing functional
programs over LF terms. These functional programs can be used to
compute values at run-time, and also to compute types at compile-
time. In previous work, we studied a simply-typed framework for
representing and computing with variable binding [LICS 2008]. In
this paper, we generalize our previous type theory to account for de-
pendently typed inference rules, which are necessary to adequately
represent domain-specific logics, and we present examples of using
our type theory for certified software and mechanized metatheory.

1. Introduction
In this paper, we describe a functional language for program-
ming with domain-specific logical systems—i.e., new program-
ming languages and logics relevant to a particular programming
task. Applications of domain-specific logics include both mecha-
nized metatheory, where studying a logical system is itself the goal,
and certified software, where a domain-specific logic is used to es-
tablish properties of run-time code. Examples of the latter include:

• Cryptol [22], a language for implementing cryptographic pro-
tocols, tracks the lengths of vectors statically, in the style of
DML [60].
• Security-typed programming languages such as Aura [30] and

PCML5 [4] employ authorization logics to statically prevent
unauthorized access to controlled resources.
• Ynot [41], an implementation of Hoare Type Theory [39], pro-

vides a separation logic for reasoning about imperative code.

These languages’ type systems are domain-specific logics for rea-
soning about a particular programming style or application domain.
Some logics may admit effective decision procedure (e.g., linear
arithmetic), while others require non-trivial proofs (e.g., separation
logic). The goal of the present work is to give a single host language
in which domain-specific logics like these may be embedded, so
that programmers may easily define domain-specific logics, reason
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about them, and use them to reason about code. With such a host
language, new logics may be implemented as libraries, not new lan-
guages.

To achieve this goal, a host language must provide the means
to represent and compute with logical systems. Both of these tasks
can be accomplished in a dependently typed functional program-
ming language: dependent types are sufficiently rich to adequately
represent the deductive apparatus of logical systems, and functional
programs allow computation by structural recursion on syntax and
derivations. Indeed, dependent types have already proved quite use-
ful for these tasks—e.g., for mechanizing metatheory in Coq [13],
or for embedding typed domain-specific languages in Agda [43].

However, it is our thesis that significant applications of domain-
specific logics require good support for representing and comput-
ing with binding and scope—i.e., bound variables, α-conversion,
and substitution at the level of syntax, and hypothetical judgements,
such as the consequence relation of a logic, at the level of proofs.
Whereas languages such as Agda and Coq provide no intrinsic sup-
port for binding and scope, the LF logical framework [27], itself
a dependently typed λ-calculus, supports facile representations of
binding using the LF function space. While LF functions are suit-
able for representing variable binding, they provide no account of
computation with logical systems, as is provided by the function
space of Agda and Coq or ML and Haskell. Consequently, it is
necessary to combine LF with some further mechanism for compu-
tation, such as the separate computational languages of Twelf [45],
Delphin [48], and Beluga [46]. In previous work [34], we investi-
gated an alternative approach, using the logical notions of polar-
ity [25] and focusing [2] to integrate representational and com-
putational functions as two types in a single, simply-typed, log-
ical framework. This integrated approach permits inference rules
that mix iterated inductive definitions [36] and hypothetical judge-
ments. However, adequately representing domain-specific logics
necessitates a dependently typed framework, and we do not wish
to pursue dependency on computation at this time. Thus, we adopt
a stratified approach here, taking LF as a separate representation
language, and leaving richer dependency to future work.

In this paper, we adapt our previous techniques for computing
with binding and scope to a dependently typed framework, yielding
a language suitable for programming with domain-specific logics:

1. We define and study a type theory in which programmers may
define domain-specific languages and logics using LF, compute
with LF terms via pattern-matching functional programs, and
define types by recursion on LF terms. Type-level computation
is not provided by any previous computational language for LF.

2. We demonstrate the expressiveness of this framework by giving
examples of certified software and mechanized metatheory:
we embed a security-typed language in the style of Aura and
PCML5, and we show the role of type-level computation in
formalizing a logical relations argument.
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Our type theory is organized around the logical notions of po-
larity [25] and focused proofs [2], exploiting the Curry-Howard
correspondence between focused proofs and pattern-matching
functional programs. As in our previous joint work, we follow
Zeilberger’s higher-order formulation of focusing [34, 62, 63]:

• The syntax of programs reflects the interplay of focus (choos-
ing patterns) and inversion (pattern matching), with individual
types defined by their pattern typing rules.
• The syntax of types is polarized, distinguishing positive data

(introduced by focus, eliminated by inversion) from negative
computation (introduced by inversion, eliminated by focus).
• Pattern matching is represented abstractly by meta-functions—

functions in the ambient mathematical system in which our type
theory itself is defined—from patterns to expressions (hence
higher-order focusing), and the syntax and typing rules of our
type theory are defined by iterated inductive definitions [36].

While this style of presentation may be unfamiliar to some read-
ers, it has several advantages: First, polarized types provides a nat-
ural framework for integrating representations of logics (as posi-
tive types) and computation with them (as negative types). Second,
the use of meta-functions to represent pattern-matching allows our
type theory to be computationally open-ended (cf. Howe [29]) with
respect to the meaning of pattern-matching: any method of trans-
forming every pattern for A into an expression of type B counts
as a pattern-match from A to B . Abstracting the syntax for pat-
tern matching out of the core type theory affords the freedom to
use several different notations for pattern matching in a single pro-
gram, and to import functions from other languages and systems.
For example, as we show below, we may import all existing Twelf
functions as inhabitants of certain types in our language. Third, fo-
cused proofs emphasize pattern matching as the means of comput-
ing with positive data; this naturally extends to the definition of
types by pattern-matching on positive data.

In addition to polarity and focusing, our type theory makes
essential use of contextual types, inspired by Contextual Modal
Type Theory [40] and FOλ∆∇ [38], to manage the scoping of
LF variables. We take a pronominal approach to variables: every
variable occurrence is a reference to a binding site, either in a
term or in a context. This is different than approaches based on
nominal logic [54], where names exist independently of a scope;
consequently, we avoid stateful name generation and can easily
scale to dependency on syntax with binding. However, there are
technical differences between our treatment of contextual types and
those in previous work, as we discuss further below.

Organization We describe our type theory in Section 2, examples
in Section 3, and related work in Section 4.

2. A Type Theory for Domain-Specific Logics
Our type theory consists of:

• A representational language, the LF logical framework.
• A computational language based on polarized intuitionistic

logic. The computational language is specified by:

Defining its types (Figure 1) and patterns (Figure 2).

A focusing framework (Figure 3) and its operational seman-
tics (Figure 4)

We discuss LF in Section 2.1, types and patterns in Section 2.2, and
the focusing framework in Section 2.3.

2.1 LF
We briefly review the LF methodology for representing languages
and logics [27]: LF generalizes the ML datatype mechanism with
(1) dependent types and (2) support for binding and scope. The
judgements of a domain-specific logic (DSL) are represented as LF
types, where dependency is used to ensure adequacy. Derivations in
a DSL are represented as canonical (β-normal, η-long) LF terms.
LF function types are used to represent binding and scope, includ-
ing the bound variables of DSL syntax and the contexts of DSL
hypothetical judgements. Structural induction over canonical LF
terms corresponds to induction over DSL syntax and derivations:
inductive proofs about a DSL can be recast as proofs by induction
on the the LF representation.

We use a presentation of LF with with syntax for canonical
forms only [58]:

LF kind K ::= type |Π u:A.K
LF type A ::= a M1 . . .Mn |Π u:A1 .A2

LF term M ::= u M1 . . .Mn |λ u.M
LF signature Σ ::= · |Σ, a : K |Σ, u : A
LF context Ψ ::= · |Ψ, u : A
LF world W ::= {Ψ1, . . .}

All LF judgements are tacitly parametrized by a fixed signature Σ.
In the following, we will make use of the judgements:

• Ψ `LF A type The type A is a well-formed in Ψ

• Ψ `LF M : A The term M is a canonical form of type A in Ψ

• Ψ ` Ψ′ ∈ W The context Ψ′ is in the world (set of contexts)
W . This judgement also ensures that `LF Ψ,Ψ′ ctx, i.e., that the
context Ψ,Ψ′ is well-formed.

We refer the reader to the literature for the definitions of these
judgements: Watkins et al. [58] discuss type formation and typing;
one possible definition of worldsW is the regular worlds notation
of Twelf [45].

2.2 Types and Patterns
Natural deduction is organized around introduction and elimina-
tion: For example, the disjoint sum type A⊕ B is introduced
by constructors inl and inr and eliminated by pattern-matching;
the computational function type A→ B is introduced by pattern-
matching on the argument A and eliminated by application. Po-
larized logic [2, 24, 31, 33, 62] partitions types into two classes,
called positive (notated A+) and negative (notated A-). Positive
types, such as ⊕, are introduced by choice and eliminated by
pattern-matching, whereas negative types, such as →, are intro-
duced by pattern-matching and eliminated by choice. More specif-
ically, positive types are constructor-oriented: they are introduced
by choosing a constructor, and eliminated by pattern matching
against constructors, like datatypes in ML. Negative types are
destructor-oriented: they are eliminated by choosing an an ob-
servation, and introduced by pattern-matching against all possible
observations (A→ B is observed by supplying a value of type A,
and therefore defined by matching against such values). Choice
corresponds to Andreoli’s notion of focus, and pattern-matching
corresponds to inversion. These distinctions can be summarized as
follows:

introduce A eliminate A
A is positive by focus by inversion
A is negative by inversion by focus

In higher-order focusing [34, 62, 63], types are specified by pat-
terns, which are used in both focus and inversion: focus phases
choose a pattern, whereas inversion phases pattern-match. In
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Pos. type A+ ::= ↓A- | 1 | A+ ⊗ B+ | 0 | A+ ⊕ B+

| ∃A(τ +) | Ψ⇒ A+ | @A+ | ∃W (ψ+)
where τ + ::= {M 7→ A+ | . . .}

ψ+ ::= { Ψ 7→ A+ | . . .}
Neg. type A- ::= ↑A+ | A+ → B - | > | A-NB -

| ∀A(τ -) | ΨfA- | �A- | ∀W (ψ-)
where τ - ::= {M 7→ A- | . . .}

ψ- ::= { Ψ 7→ A- | . . .}
CPT C+ ::= 〈Ψ〉A+

CNT C- ::= 〈Ψ〉A-

〈Ψ〉A+ type

〈Ψ〉A- type

〈Ψ〉 ↓A- type 〈Ψ〉 1 type

〈Ψ〉A+ type 〈Ψ〉B+ type

〈Ψ〉A+ ⊗ B+ type

〈Ψ〉 0 type

〈Ψ〉A+ type 〈Ψ〉B+ type

〈Ψ〉A+ ⊕ B+ type

Ψ `LF A type (Ψ `LF M : A −→ 〈Ψ〉 τ +(M ) type)

〈Ψ〉 ∃A(τ +) type

〈·〉A+ type

〈Ψ〉@A+ type

`LF Ψ,Ψ′ ctx
〈Ψ,Ψ′〉A+ type

〈Ψ〉Ψ⇒ A+ type

(Ψ ` Ψ′ ∈ W −→ 〈Ψ〉ψ+(Ψ′) type)

〈Ψ〉 ∃W (ψ+) type

〈Ψ〉A- type

〈Ψ〉A+ type

〈Ψ〉 ↑A+ type

〈Ψ〉A+ type 〈Ψ〉B - type

〈Ψ〉A+ → B - type

〈Ψ〉> type

〈Ψ〉A- type 〈Ψ〉B - type

〈Ψ〉A-NB - type

Ψ `LF A type (Ψ `LF M : A −→ 〈Ψ〉 τ -(M ) type)

〈Ψ〉 ∀A(τ -) type

〈·〉A- type

〈Ψ〉 �A- type

`LF Ψ,Ψ′ ctx
〈Ψ,Ψ′〉A- type

〈Ψ〉Ψ′ fA- type

(Ψ ` Ψ′ ∈ W −→ 〈Ψ〉ψ-(Ψ′) type)

〈Ψ〉 ∀W (ψ-) type

We write 〈Ψ〉A+ ok iff `LF Ψ ctx and 〈Ψ〉A+ type, and similarly for
〈Ψ〉A- ok. We write ∆ ok iff 〈Ψ〉A- ok for all x : 〈Ψ〉A- in ∆.

Figure 1. Type formation

this section, we define the types and patterns of our language—
constructor patterns for positive types, and destructor patterns for
negative types. Note that patterns must be defined prior to the fo-
cusing framework presented in Section 2.3, which uses an iterated
inductive definition quantifying over them to specify inversion.

2.2.1 Types
We present the rules for type formation in Figure 1. The judgements
〈Ψ〉A+ type and 〈Ψ〉A- type define the well-formed types, which
are considered relative to an LF context Ψ. The basic positive
types of polarized type theory are products (A+ ⊗ B + and 1), sums
(A+ ⊕ B + and 0), and shift (↓A-), the inclusion of negative types
into positive types. The formation rules for these types carry the
LF context Ψ through unchanged.

The remaining positive types are for programming with LF
terms. The most basic of these is existential quantification of an
LF term, written ∃A(τ +), where A is an LF type, and τ + is a meta-
function from LF terms M of type A to positive types. We notate
meta-functions τ + by their graphs—i.e., by a possibly infinite set

Con. pattern p ::= x | () | (p1 , p2 ) | inl p | inr p
| (M , p) |λΨ.p | box p | (Ψ, p)

Dest. pattern n ::= ε | p ; n | fst; n | snd; n
| M ; n | unpack Ψ.n | undia; n | Ψ; n

Context. con. pat. c ::= Ψ.p
Context. dest. pat. d ::= Ψ.n

Context ∆ ::= · | ∆, x : C -

∆ ; Ψ  p :: A+

x : 〈Ψ〉A- ; Ψ  x :: ↓A-

· ; Ψ  () :: 1

∆1 ; Ψ  p1 :: A+ ∆2 ; Ψ  p2 :: B+

∆1,∆2 ; Ψ  (p1 , p2 ) :: A+ ⊗ B+

(no rule for 0)

∆ ; Ψ  p :: A+

∆ ; Ψ  inl p :: A+ ⊕ B+

∆ ; Ψ  p :: B+

∆ ; Ψ  inr p :: A+ ⊕ B+

Ψ `LF M : A ∆ ; Ψ  p :: τ +(M)

∆ ; Ψ  (M , p) :: ∃A(τ +)

∆ ; ·  p :: A+

∆ ; Ψ  box p :: @A+

∆ ; Ψ,Ψ′  p :: A+

∆ ; Ψ  λΨ′.p :: Ψ′ ⇒ A+

Ψ ` Ψ′ ∈ W ∆ ; Ψ  p :: ψ+(Ψ′)

∆ ; Ψ  (Ψ′, p) :: ∃W (ψ+)

∆ ; Ψ  n :: A- > C+

· ; Ψ  ε :: ↑A+ > 〈Ψ〉A+

∆1 ; Ψ  p :: A+ ∆2 ; Ψ  n :: B- > C+

∆1,∆2 ; Ψ  p ; n :: A+ → B - > C+

(no rule for >)

∆ ; Ψ  n :: A- > C+

∆ ; Ψ  fst; n :: A-NB - > C+

∆ ; Ψ  n :: B- > C+

∆ ; Ψ  snd; n :: A-NB - > C+

Ψ `LF M : A ∆ ; Ψ  n :: τ -(M) > C+

∆ ; Ψ  M ; n :: ∀A(τ -) > C+

∆ ; Ψ,Ψ′  n :: A- > C+

∆ ; Ψ  unpack Ψ′.n :: Ψ′ fA- > C+

∆ ; ·  n :: A- > C+

∆ ; Ψ  undia; n :: �A- > C+

Ψ ` Ψ′ ∈ W ∆ ; Ψ  n :: ψ-(Ψ′) > C+

∆ ; Ψ  Ψ′; n :: ∀W (ψ-) > C+

∆  c :: 〈Ψ〉A+ and ∆  d :: 〈Ψ〉A- > C+

∆ ; Ψ  p :: A+

∆  Ψ.p :: 〈Ψ〉A+

∆ ; Ψ  n :: A- > C+

∆  Ψ.n :: 〈Ψ〉A- > C+

Figure 2. Constructor and destructor patterns

of non-overlapping pattern branches of the form M 7→ A+. The
formation rule for 〈Ψ〉 ∃A(τ +) requires that A be an LF type in Ψ,
and that τ + deliver a positive type in Ψ for every LF term in Ψ: we
notate iterated inductive definitions by inference rule premises of
the form (J1 −→ J2). By convention, we tacitly universally
quantify over meta-variables that appear first in the premise of
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an iterated inductive definition, so the second premise of the rule
means “for all m , if Ψ `LF M : A then 〈Ψ〉 τ +(M ) type”.

The body of the existential type ∃A(τ +) may be computed
from the existentially-quantified LF term in interesting ways. For
example, if we define an LF type nat of natural numbers with
constructors zero and succ, then we can define a positive type of
lists as follows (we may also define it in more traditional ways):

list (A+) = ∃nat(τlist)
where
τlist zero = 1
τlist (succ zero) = A+

τlist (succ (succ zero)) = A+ ⊗A+

τlist (succ (succ (succ zero))) = A+ ⊗ (A+ ⊗A+)
...

That is, for every nat n , τlist(n) is the tuple type (A+)n . An
implementation of our type theory would provide a traditional
finitary notation for presenting meta-functions τ +, e.g., allowing
τlist to be defined by recursion.

There are three additional positive types for programming with
LF. The types Ψ⇒ A+ and @A+ allow for computational language
values that manipulate the LF context; their formation rules ma-
nipulate the LF context in the same way as their patterns do (see
below). Finally, the type ∃W(ψ) allows existential quantification
over the LF contexts in a world W . As with ∃A(τ +), the body of
the existential is specified by an abstract pattern-match, this time on
LF contexts. This allows types to be defined by computation with
LF contexts.

The type formation rules for negative types are analogous. We
sometimes abbreviate 〈Ψ〉A+ by writing C+ and similarly for C-.

Operationally, the type formation rules are syntax-directed and
well-moded (none of the meta-variables appearing in the judge-
ments need to be guessed), with both Ψ and A as inputs. The rules
for 〈Ψ〉A assume and maintain the invariant that `LF Ψ ctx.

2.2.2 Patterns
We present the rules for pattern formation in Figure 2.

Constructor Patterns Positive types are specified by the judge-
ment ∆ ; Ψ  p :: A+, which types constructor patterns. This
judgement means that p is a constructor pattern for A+, using
the LF variables in Ψ, and binding negative contextual variables
x : 〈Ψ0〉A-

0 in ∆ for all subterms of negative types. The LF vari-
ables in Ψ are free in p and A+ but not ∆: negative assumptions in
∆ have no free LF variables, because the free variables of A- are
bound by the context Ψ. Like datatype constructors in ML, con-
structor patterns are used both to build values and to pattern match.
Logically, constructor patterns correspond to using linear right-
rules to show A+ from ∆; linearity ensures that a pattern binds a
variable exactly once.

The patterns for products and sums are standard. The only
pattern for ↓A- is a variable x bound in ∆: one may not pattern-
match on negative types such as computational functions. Note that
x is bound with a contextual type 〈Ψ〉A- capturing the current
context Ψ: this contextual type binds the free LF variables of
A+, and ensures that the free LF variables of a term are properly
tracked by its type. Moreover, ↓A- is the only type at which pattern
variables are allowed: patterns may not bind variables at positive
types.

Next, we consider the patterns for computing with LF terms.
The pattern for ∃A(τ +) is a pair whose first component is an LF
term M of type A, and whose second component is a pattern for the
positive type τ +(M )—the type of the second component is com-
puted by applying the meta-function τ + to M . For example, return-
ing to the above example of lists defined as ∃nat(τlist), we have the

pattern (zero, ()) representing “nil”, because τlist(zero) = 1. The
patterns for Ψ ⇒ A+ and @A+ manipulate the LF context: λΨ.p
binds LF variables (we write Ψ for the bare variables of Ψ, without
any types), whereas box pwraps a pattern that is independent of the
LF context. The pattern for ∃W(ψ+) pairs an LF context Ψ with a
pattern for the type ψ(Ψ), analogously to ∃A(τ +).

Destructor Patterns Negative connectives are specified by the
judgement ∆ ; Ψ  n :: A- > C+, which types destructor pat-
terns. A destructor pattern describes the shape of an observation
that one can make about a negative type: the judgement means that
n observes the negative type A- to reach the positive conclusion
C +, using the LF variables in Ψ and binding the pattern variables
in ∆. The context Ψ scopes over n and A- but not ∆ and C +—
like assumptions, the conclusion C+, which abbreviates 〈Ψ0〉A+

0 ,
is modally encapsulated, potentially in a different context than Ψ.
Logically, destructor patterns correspond to using linear left-rules
to decompose A- to C+. Because we are defining an intuitionistic,
rather than classical, type theory, destructor patterns are not quite
dual to constructor patterns: constructor patterns have no conclu-
sions, whereas destructor patterns have exactly one.

The destructor patterns for the basic types are explained as fol-
lows: a negative pair A-NB - can be observed by observing its
first component or its second component; negative pairs are lazy
pairs whose components are expressions, whereas positive pairs
A+ ⊗ B + are eager pairs of values. A function A+ → B - can be ob-
served by applying it to an argument, represented here by the con-
structor pattern p, and then observing the result. As a base case, we
have shifted positive types ↑A+, which represent suspended expres-
sions computing values of type A+. A suspension can be observed
by forcing it, written ε, which runs the suspended expression down
to a value; the LF context Ψ is encapsulated in the conclusion of
the force. The destructor patterns for the remaining types are anal-
ogous to their positive counterparts: universal quantification over
LF terms ∀A(τ -) is eliminated by choosing an LF term M to ap-
ply to, and observing the result; and similarly for universal context
quantification. Finally, ΨfA- and �A- manipulate the LF context
of a negative type.

Contextual Patterns In the focusing framework below, we will
require contextually encapsulated patterns with no free LF vari-
ables. Contextual constructor patterns c have the form Ψ.p; they
are well-typed when p is well-typed in Ψ. Contextual destructor
patterns are similar. In contextual patterns Ψ.p and contextual types
〈Ψ〉A, the context Ψ is considered a binding occurrence for all its
variables, which may be freely α-converted.

Mode and Regularity The pattern typing rules in Figure 2 are
syntax-directed and well-moded: the assumptions ∆ and conclu-
sion C + of destructor pattern typing, and the assumptions ∆ of
constructor pattern typing, are outputs (synthesized), whereas all
other components of the judgements are inputs. The judgements
assume that their inputs are well-formed and guarantee that their
outputs are well-formed:

Proposition 1 (Pattern Regularity).
• If C+ ok and ∆  c :: C+ then ∆ ok.
• If C-

0 ok and ∆  d :: C-
0 > C+ then C+ ok and ∆ ok.

2.3 Focusing Framework
We present our focusing framework for polarized intuitionistic
type theory in Figure 3, which is essentially unchanged from our
previous work [34]: the extension with dependent types is localized
to the types and their constructor and destructor patterns. In these
rules, Γ stands for a sequence of pattern contexts ∆, but Γ itself is
treated in an unrestricted manner (i.e., variables are bound once
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Context Γ ::= · | Γ,∆
Pos. Value v + ::= c [σ]
Pos. Cont. k + ::= ε | cont+(φ+) | ε | k +

1 thenC+ k +
2

where φ+ ::= {c 7→ e | · · · }
Expression e ::= v + | x • k - | v - •C - k - | casevC+ v + of k + | caseC+ e of k +

Neg. Cont. k - ::= d [σ]; k + | k - thenC+ k +

Neg. Value v - ::= x | val-(φ-) | x | fix(x .v -)
where φ- ::= {d 7→ e | · · · }

Substitution σ ::= · | σ, v -/x | id | σ1, σ2

Γ ` v + :: C +

∆  c :: C+ Γ ` σ : ∆

Γ ` c [σ] :: C +

Γ ` k + : C +
0 > C +

(∆  c :: C+
0 −→ Γ,∆ ` φ+(c) : C +)

Γ ` cont+(φ+) : C +
0 > C +

C +
0 = C +

Γ ` ε : C +
0 > C +

C+
1 ok Γ ` k +

0 : C +
0 > C +

1 Γ ` k +
1 : C +

1 > C +

Γ ` k +
0 thenC +

1
k +
1 : C +

0 > C +

Γ ` k - :: C - > C +

∆  d :: C- > C+
0 Γ ` σ : ∆ Γ ` k + : C +

0 > C +

Γ ` d [σ]; k + :: C - > C +

C+
0 ok Γ ` k - :: C - > C +

0 Γ ` k + : C +
0 > C +

Γ ` k - thenC +
0
k + :: C - > C +

Γ ` v - : C -

(∆  d :: C- > C+ −→ Γ,∆ ` φ-(d) : C +)

Γ ` val-(φ-) : C -
x : C -

0 ∈ Γ C - = C -
0

Γ ` x : C -
Γ, x : C - ` v - : C -

Γ ` fix(x .v -) : C -

Γ ` e : C +

Γ ` v + :: C +

Γ ` v + : C +

x : C - ∈ Γ Γ ` k - :: C - > C +

Γ ` x • k - : C +

C- ok Γ ` v - : C - Γ ` k - :: C - > C +

Γ ` v - •C - k - : C +

C+
0 ok Γ ` v + :: C +

0 Γ ` k + : C +
0 > C +

Γ ` casevC +
0
v + of k + : C +

C+
0 ok Γ ` e : C +

0 Γ ` k + : C +
0 > C +

Γ ` caseC +
0
e of k + : C +

Γ ` σ : ∆

Γ ` · : ·
Γ ` σ : ∆ Γ ` v - : C -

Γ ` σ, v -/x : ∆, x : C -
∆ ⊆ Γ

Γ ` id : ∆

Γ ` σ1 : ∆1 Γ ` σ2 : ∆2

Γ ` σ1 , σ2 : ∆1,∆2

identity principles cut principles convenient principles

Figure 3. Focusing rules

in a pattern, but may be used any number of times within the
pattern’s scope). As a matter of notation, we regard the diacritic
marks on metavariables such as C+ and C- as part of the name of
the metavariable, not as a modifier, so C+ and C- are two unrelated
types. The focusing rules are syntax-directed and well-moded, with
all pieces of the judgement as inputs.

Canonical Terms First, we discuss canonical terms, which are
typed by the unboxed rules in Figure 3. The first two judgements
define focusing and inversion for positive types. The judgement
Γ ` v + :: C + defines positive values (right focus): a positive value
is a constructor pattern under a substitution for its free variables.
The judgement Γ ` k + : C +

0 > C + defines positive continuations
(left inversion): a positive continuation is a case-analysis, specified
by a meta-function φ+ from patterns to expressions. The premise of
the rule asserts that for all constructor patterns c for C0 , φ+(c) is
an expression of the appropriate type using the variables bound by

c (by our above convention about iterated inductive definitions, ∆
and c are universally quantified here).

The next two judgements define focusing and inversion for the
negative types. The judgement Γ ` k - :: C - > C + defines negative
continuations (left focus): a negative continuation is a destructor
pattern under a substitution for its free variables followed by a
positive continuation consuming the result of the destructor. The
destructor pattern, filled in by the substitution, decomposes C - to
some positive type C+

0. The positive continuation reflects the fact
that it may take further case-analysis of C+

0 to reach the desired
conclusion C+. The judgement Γ ` v - : C - defines negative values
(right inversion): a negative value is specified by a meta-function
that gives an expression responding to every possible destructor.

The judgement Γ ` e : C +, types expressions, which are neutral
states: from an expression, one can right-focus and introduce a
value, or left-focus on an assumption in Γ and apply a negative
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continuation to it. Finally, a substitution Γ ` σ : ∆ provides a
negative value for each hypothesis.

At this point, the reader may wish to work through some in-
stances of these rules (using the above pattern rules) to see that
they give the expected typings for familiar types. First, the type
(↑A+

1 )N(↑A+
2 ) is inhabited by a lazy pair of expressions:

Γ ` e1 : 〈Ψ〉A+
1 Γ ` e2 : 〈Ψ〉A+

2

Γ ` val-((Ψ.(fst; ε)) 7→ e1 | (Ψ.(snd; ε)) 7→ e2 ) : 〈Ψ〉 (↑A+
1 )N(↑A+

2 )

Second, a function (↓A-
1 )⊕ (↓A-

2 )→ ↑B + is defined by two
cases:

Γ, x : 〈Ψ〉A-
1 ` e1 : 〈Ψ〉B+ Γ, y : 〈Ψ〉A-

2 ` e2 : 〈Ψ〉B+

Γ ` val-((Ψ.inl x) 7→ e1 | (Ψ.inr y) 7→ e2 ) : 〈Ψ〉 (↓A-
1 )⊕ (↓A-

2 )→ ↑B+

In both of these examples, the bindings Ψ in the contextual
patterns are unused, because there are no LF types mentioned be-
fore shifts. As an example where the contextual bindings are rel-
evant, consider an LF type exp representing terms of the untyped
λ-calculus. A function from exp to exp is represented by the fol-
lowing negative value:

Γ ` e1 : 〈Ψ〉 ∃exp( 7→ 1) . . .

Γ ` val-((Ψ.M1 ; ε) 7→ e1 , . . .) : 〈Ψ〉 ∀exp( 7→ ↑(∃exp( 7→ 1)))

In a more familiar notation, the type of this term is written
∀ : exp.∃ : exp.1; we assume the meta-functions τ allow constant
functions, notated by a catch-all case . A negative value of this
type is given by a meta-function whose domain is destructor pat-
terns for 〈Ψ〉 ∀exp( 7→ ↑(∃exp( 7→ 1))). All destructor patterns for
this type have the form Ψ.(Mi ; ε) where Ψ `LF M : exp because
the only destructor pattern for ∀ is application to an LF term, and
the only destructor pattern for ↑ is ε. Thus, a negative value of this
type is specified by an ω-rule with one case for each λ-term in
Ψ, and the term M in each pattern is in the scope of the variables
bound by Ψ.

Non-canonical Terms To make a convenient programming lan-
guage, we add non-canonical forms and general recursion in the
boxed rules in Figure 3. The first class of non-canonical forms
are internalizations of the cut principles for this presentation of
intuitionistic logic; these terms create opportunities for reduction.
The most fundamental cuts, v - •C - k - and casevC+ v + of k +, put
a value up against a continuation. The three remaining cut prin-
ciples, caseC+ e of k + and k - thenC+ k + and k +

0 thenC+ k +
1 , allow

continuations to be composed: the first composes a continuation
with an expression, the second composes a negative continuation
with a positive one, and the third composes two positive continua-
tions. The second class of non-canonical forms are internalizations
of the identity principles, which say that terms need not be fully
η-expanded. Negative identity (x ) allows a variable to be used as
a value, whereas positive identity (ε) is the identity case-analysis.
The identity substitution (id) maps negative identity across each
assumption in ∆. Finally, we allow substitutions to be appended
(σ1, σ2) so that the identity substitution can be combined with
other substitutions, and we allow general-recursive negative values
(fix(x .v -)).

Canonical terms (the unboxed rules in Figure 3) contain no type
annotations, and can be checked against a single type annotation
provided at the outside. However, non-canonical terms have either
too little type information or too much. Cuts have too little type in-
formation because they do not obey the subformula property, so we
annotate them with the mediating type. On the other hand, identities

e ; e′

∆  c :: C+ φ+(c) defined

casevC + c [σ] of cont+(φ+) ; φ+(c) [σ : ∆]
pr

casevC +
0
v + of (k +

0 thenC +
1
k +
1 ) ; caseC +

1
(casevC +

0
v + of k +

0 ) of k +
1

casevC + v + of ε ; v + idk+

∆  d :: C-
0 > C+ φ-(d) defined

val-(φ-) •C -
0

(d [σ]; k +) ; caseC + (φ-(d) [σ : ∆]) of k +
nr

v - •C -
0

(k -
0 thenC +

1
k +
1 ) ; caseC +

1
(v - •C -

0
k -) of k + k-k+

fix(x .v -) •C -
0

k - ; v - [(fix(x .v -)/x) : (x : C -
0 )] •C -

0
k - fix

e ; e′

caseC + e of k + ; caseC + e′ of k + k+ee

caseC + v + of k + ; casevC + v + of k + k+ev

Figure 4. Operational Semantics

have too much type information: for example, when x is used as a
value, both the type in the context and a type to check against are
given. Consequently, type checking identity terms requires com-
paring two types for equality. Moreover, the identity terms x and
ε are the only terms that force two arbitrary types to be compared
for equality, because η-expansion pushes the type equality check
down to base type. (For other instances of this phenomenon, see
LFR [35], where subtyping at higher types is characterized by an
identity coercion, and OTT [1], where an η-expanded identity co-
ercion is induced by proofs of type equality). In the rules, we write
C1 = C2 for “syntactic” equality of types, which is a straightfor-
ward congruence with meta-functions compared extensionally—
i.e., two meta-functions are equal if they agree on all inputs.

Operational Semantics The operational semantics of our lan-
guage, defined by the judgement e ; e ′ in Figure 4, are quite
simple and essentially unchanged from our previous work [34].
Reduction happens when a focus term is put up against the corre-
sponding inversion term. E.g., in the rule pr, a positive value c [σ]
is being scrutinized by a positive continuation cont+(φ+); this is
reduced by applying the meta-function φ+(c), which performs the
pattern matching, and then applying the substitution σ to the result.
Though the types of terms are computationally irrelevant, the oper-
ational semantics maintain the annotations on cuts in the interest of
a simple type safety result. We elide the definition of substitution
(e [σ : ∆], and similarly for the other syntactic categories), which
is standard, except that it carries the types of the substituted terms
so that the substitution into x • k - can be defined to be v - •C - k -

when v -/x ∈ σ and x : C - ∈ ∆.
Type safety is proved by the usual simple structural induction:

Theorem 1 (Type safety).
Progress: If C+ ok and · ` e : C + then e = v+ or e ; e ′.
Preserv.: If C+ ok and · ` e : C + and e ; e ′ then · ` e ′ : C +.

Decidability of Type Checking Because all of the judgements
of our type theory are syntax-directed and well-moded, a simple
induction reduces their decidability to decidability of meta-function
typing and equality:
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Theorem 2 (Decidability). Realize meta-functions τ, ψ with an im-
plementation that admits decidable type checking and equality, and
realize meta-functions φ with an implementation that admits decid-
able type checking. Then all type formation, pattern formation, and
focusing framework judgements are decidable.

It is reasonable to assume an effective procedure for type
checking an implementation of meta-functions—e.g., if the meta-
functions are presented by a finite set of branches with positive
pattern variables standing for unexplored parts of a pattern, then
one need only type check a finite number of cases. However, ex-
tensional equality of the meta-functions appearing in types (τ, ψ)
will not in general be decidable. Nonetheless, decidability can be
restored in various ways: One option is to restrict τ and ψ to a class
of meta-functions whose equality is decidable. E.g. if only finite
branching without recursion, and not arbitrary type-level compu-
tation, is allowed, then equality may be decidable. Alternatively,
we may implement a sound but conservative approximation to type
equality C0 = C for use in type checking. When this tactic fails
to prove a true equality, the programmer can prove the equality by
manually η-expanding the identity coercion (the identity rules are
admissible given the other rules of the system). As a practical mat-
ter, it may be more convenient to prove equalities explicitly, rather
than by η-expanded identity coercions, in which case we could per-
mit explicit equality proofs as part of the identity terms, perhaps by
internalizing proofs of type equality as a type in the language. We
plan to explore these options in future work.

2.4 Discussion
Now that we have given a technical presentation of our type the-
ory, we call attention to some subtle aspects of our treatment of
computation with LF terms.

α-equivalence Positive continuations k + and negative values v -

are defined using meta-functions φ on patterns, which contain LF
terms. We ensure that these meta-functions respect α-equivalence
of LF terms by defining them on α-equivalence classes of patterns,
where the definition of α-equivalence for patterns is a straightfor-
ward extension of the definition of α-equivalence for LF: The con-
text Ψ in the judgements ∆ ; Ψ  p :: A+ and ∆ ; Ψ  n :: A- >
C+ binds LF variables, as do the binding forms Ψ.p, Ψ.n , λΨ.p,
and unpack Ψ.d , and the contexts Ψ in contextual assumptions and
conclusions 〈Ψ〉A+ and 〈Ψ〉A-. All of these binders can be inde-
pendently α-renamed.

Scoping We support a variety of types that manipulate the LF
context (⇒/f,@/�) by associating an LF context with each assump-
tion and conclusion in a sequent C-

1, . . . , C
-
n ` e : C +. This results

in many different LF contexts scoping over different parts of a com-
putation. For example, a positive continuation k + is typed by two
LF contexts, one for the input to the continuation (giving the LF
variables that may be used in patterns), and another for the output
(giving the LF variables that may be used in the result)—a con-
tinuation may consume terms in one context and produce terms
in another. A positive value v + has one LF context determining
the variables in scope in the pattern, and other, potentially differ-
ent, LF contexts for each negative value in the substitution, al-
lowing for patterns that bind LF variables in a negative subterm.
The type annotations on cuts also cause a context switch. E.g., in
casev〈Ψ〉A+ v + of k +, the value v + and the patterns of the continua-
tion k + are in the LF context Ψ, but the conclusion of k+ may be in
a different context.

Adequacy The LF methodology relies on bijections between the
syntax and derivations of a DSL and the LF terms of particular
types. We may import these adequacy results into our language
because the positive values of type ∃A( 7→ 1) are essentially the

LF terms of type A (if we canonized substitutions σ by treating id
and σ1, σ2 as derived forms, then this would be a bijection):

Proposition 2 (Adequacy).

• If Ψ `LF M : A then Γ ` (Ψ.(M , ())) [·] :: 〈Ψ〉 ∃A( 7→ 1).
• If Γ ` v+ :: 〈Ψ〉 ∃A( 7→ 1), then v+ is (Ψ.(M , ())) [σ] where

Γ ` σ : · and Ψ `LF M : A.

Thus, by type safety, we know that any closed expression of type
〈Ψ〉 ∃A( 7→ 1) either is an LF term of type A or steps towards one.

Dependent Pattern Matching Our rules for pattern-matching de-
compose LF terms and contexts with an infinitary rule, giving
one case for each LF term of the appropriate type (e.g., nat is
pattern-matched with the ω-rule). Consequently, the patterns pre-
sented above do not include a number of features found in other
pattern languages for LF [45, 46, 48]: unification variables for LF
terms, non-linear patterns, unification variables over LF variables,
and context variables. These features may play a role in the imple-
mentation of meta-functions φ, ψ, and τ , which we do not specify.

For example, we illustrate how meta-functions give an abstract
account of dependent pattern matching. Consider the nat type de-
fined by zero and succ, with an identity type defined in LF as fol-
lows:

id : nat -> nat -> type.
refl : {n : nat} id n n.

What are the patterns of type ∃nat(n 7→ ∃nat(m 7→ id n m))? In
Twelf, one would write (X , (X , refl X)), where the unifica-
tion variable X must be used non-linearly for the pattern to be well-
typed. In our formalism, one is required to enumerate all closed
instances of this pattern:

(zero, (zero, refl zero))
(succ zero, (succ zero, refl (succ zero)))
...

Because we allow dependency only on LF terms, dependency can-
not force negative variables from ∆ to be used non-linearly (though
dependency on computation would do so).

3. Examples
3.1 Security-Typed Programming
Security-typed languages, such as Aura [30] and PCML5 [4], use
an authorization logic to control access to resources. The basic
ingredients of an authorization logic are:

• Resources, such as files and database entries, and principals
such as users and programs.
• Atomic propositions describing permissions—e.g., a proposi-

tion K mayread F for a principal K and file resource F.
• A modality K says A meaning that principal K affirms the truth

of proposition A. The says modality permits access control
policies to be specified as the aggregation of statements by
many different principals, which is important when different
principals have jurisdiction over different resources.

Beyond these simple ingredients, there are many choices: Is the
logic first-order or higher-order, intuitionistic or classical? What
laws should the says modality satisfy? How are principals and re-
sources represented? How are principals’ statements authenticated?
Unlike Aura [30] and PCML5 [4], which provide fixed answers to
these questions, our type theory allows programmers to program
many different authorization logics, and to combine code written
using different logics in a single program.
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sort : type.
princ : sort.
res : sort.

term : sort -> type.
self : term princ.

aprop : type.
prop : type.
atom : aprop -> prop.
implies : prop -> prop -> prop.
says : term princ -> prop -> prop. %infix says.
all : (term S -> prop) -> prop.

hyp : prop -> type. %postfix hyp.
conc : type.
true : prop -> conc. %postfix true.
affirms : term princ -> prop -> conc. %infix affirms.

|- : conc -> type.
init : (atom X) hyp -> |- (atom X) true.
aff : |- K affirms A

<- |- A true.
impr : |- (implies A B) true

<- (A hyp -> |- B true).
impl : ((implies A B) hyp -> |- J)

<- |- A true
<- (B hyp -> |- J).

saysr : |- (K says A) true
<- |- K affirms A.

saysl : ((K says A) hyp -> |- K affirms C)
<- (A hyp -> |- K affirms C).

allr : |- (all ([c] A c)) true
<- {c : term S} |- (A c) true.

alll : ((all A) hyp -> |- J)
<- ((A T) hyp -> |- J).

cut : |- J
<- |- A true
<- (A hyp -> |- J).

%% a policy for file access:

dan : term princ.
/home/dan/plan : term res.

owns : term princ -> term res -> aprop. %infix owns.
mayrd : term princ -> term res -> aprop. %infix mayrd.

ownsplan : (atom (dan owns /home/dan/plan)) hyp.
danplan : (dan says

(all [p] atom (p mayrd /home/dan/plan))) hyp.
grantrd : all ([p] (all ([q] (all [r]

implies (atom (p owns r))
(implies (p says atom (q mayrd r))

(atom (q mayrd r))))))) hyp.

Figure 5. LF Signature for Authorization Logic

An Authorization Logic In this section, we define a first-order,
intuitionistic authorization logic, where says is an indexed lax
modality (indexed monad), following Garg and Pfenning [23]. For
simplicity, we consider only a fixed collection of principals and
resources, represented in LF, and a fixed access control policy. We
present an LF encoding of this logic in Figure 5. There are two sorts
of terms, principals and resources, with a distinguished principal
self on behalf of whom the programs runs. Propositions include
atomic propositions (classified by LF type aprop), implication,
universal quantification over terms, and the says modality K says
A. The logic is defined as a sequent calculus with one kind of

hypothesis (A hyp) and two kinds of conclusions: A true, and K
affirms A—the judgement on which the says modality is based.
We mix prefix, infix, and postfix notation to match the standard
syntax for these judgements; note that |- binds more loosely than
true and affirms, so |- A true is |- (A true). The rules
for atomic propositions, implication, and universal quantification
are standard, and the rules aff, saysr, and saysl give the return
and bind operations for the lax modality. We include cut as an
explicit rule, for reasons discussed below. This LF encoding uses
higher-order abstract syntax to represent the syntax of propositions
(e.g., all) and to manage the assumptions of the sequent calculus
(e.g., all left rules as well as allr and impr add assumptions to
the context; the alll rule uses LF function application to perform
substitution). Using LF to define logics saves programmers the
bureaucracy of implementing variable binding concretely.

Next, we define principals and resources specific to an applica-
tion, along with an access control policy for them. As a very simple
example, we may control reads to files on a file system. To do so,
we define principals for file owners (in this case, dan), resources for
files (/home/dan/plan) and two atomic propositions, stating that
a principal owns a resource (written K owns R) and that a principal
may read a resource (K mayrd R). The access-control policy is de-
fined by loading the LF context with certain initial hypotheses; in
this case, that Dan owns his plan file (ownsplan), that Dan says that
all principals may read his plan (danplan), and that if the owner of
a resource says that some principal can read it, then that principal
can read it (grantrd). This last axiom provides a controlled way of
escaping from the affirmation monad back to truth. Programmers
can prove propositions in the logic by constructing LF terms rep-
resenting derivations; for example, it is simple to show that self
may read the file /home/dan/plan by constructing a derivation of
|- (atom (self mayrd /home/dan/plan)) true. The deriva-
tion uses danplan, ownsplan, and grantrd, as well as logical
rules.

Access-Controlled Operations Now that we have a logic for
specifying authorization, we may use it to give rich types to func-
tions that interact with resources, such as a function for reading the
contents of a file:
read : 〈 · 〉 ∀r:term res.

∀ :|- (atom (self mayrd r)) true.
↑ string

To write this type, we use an informal concrete syntax for meta-
functions, allowing ourselves to write ∀X : A.B+ for the type
∀A(X 7→ B +) when the meta-function can be defined uniformly
with only one pattern branch binding a meta-variable X . To re-
main in the formalism presented above, we define string as
(∃ : lstring.1), where lstring as an LF type representing lists of
characters.

To call this function, a programmer must provide a file resource
r as well as a proof that the program may read r. The resource r
is used as the file name, and the function returns the contents of
the file. The intended invariant of this DSL is that a proof of self
mayrd F implies that the file F exists and that the program has the
appropriate file system permissions to read it; if this invariant is
violated (i.e. the DSL itself is incorrect), then read will abort, e.g.
by looping or raising an exception. If a client program uses this
interface for all reads, then all reads are authorized by the access
control policy. It is important that read is typed in the empty LF
context (i.e., that its contextual type is 〈·〉A-): otherwise, clients
could simply bind new LF variables standing for proofs and use
them to justify a call to read.

How is read implemented? One option is to simply ignore the
proof, map the resource to a string, and call a primitive read func-
tion (we did not include I/O effects in the above presentation of our
type theory, but they are simple to add). In this case, dependency
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is used only to enforce an invariant, with no bearing on the actual
run-time behavior. Alternatively, following Vaughan et al. [57], we
may wish read to log the provided proofs for later audit. Adminis-
trators can use such logs to diagnose unexpected consequences of
an access-control policy. Logging requires a function
tostring : 〈 · 〉 ∀J:conc. ∀ :(|- J). ↑string
which can be implemented by induction on LF terms.

Policy Analysis We can use computation with LF terms to in-
vestigate the properties of the stated access control policy. As a
very simple example, we may wish to know that the only owner
of /home/dan/plan is dan. We can encode this theorem with a
negative value of the following type. Because we included general
recursion in the language, a term with this type is not necessarily a
proof, but we do not use fix to write this particular term.

onlydan : 〈·〉 ∀P : term princ.
∀ : (atom (P owns /home/dan/plan)) hyp.
↑∃ : id P dan. 1

This theorem says: for any principal P that owns /home/dan/plan,
P is dan, where id is an LF type family representing equality:

id : term S -> term S -> type.
refl : id T T.

We implement onlydan with a meta-function on destructors:

onlydan = val-(dan ; ownsplan ; ε 7→ (refl, ()) [·])

A meta-function φ implementing onlydan is well-typed when:

(∆  d :: 〈·〉A- > C+ −→ · ` φ(d) : C +)

where A- is the type ascribed to onlydan above. In this LF sig-
nature and context, the only destructor pattern of this type is
dan ; ownsplan ; ε, in which case ∆ is empty and C + is the contex-
tual type 〈·〉 ↑∃ : id dan dan.1—the result type is refined by the
case analysis. The positive value (refl, ()) [·] inhabits this type.

Auditing and Cut Elimination We have deliberately included
cut as a rule in our authorization logic because the time and space
costs of normalizing proofs can be large, and proofs using cut
suffice as justifications for read. Moreover, logging cut-full proofs
may provide clues to auditors [57]. On the other hand, proofs with
cut may contain irrelevant detours that make it difficult to see who
to blame for unexpected consequences of a policy, whereas the
corresponding cut-free proof expresses the direct evidence used to
grant access. Thus, it is important to be able to eliminate cuts from
log entries during auditing. Fortunately, Garg and Pfenning [23]
give a Twelf proof of cut admissibility for their logic, and exploiting
open-endedness, we can import their Twelf code as a function in
our language.

LetW stand for LF contexts of the form

x1:term S1, x2:term S2, . . . , p1:A1 hyp, p1:A2 hyp, . . .

for some Si and Aj (in Twelf, these contexts are described by a
regular worlds declaration [45]). The key lemma in cut elimination
is cut admissibility, which is stated as follows:

∀ · ` Ψ ∈ W
Ψ `LF A : prop
Ψ `LF C : prop
Ψ `LF D : |-cf A true
Ψ `LF D ′ : Π :A hyp. |-cf C true :

∃ Ψ `LF D ′′ : |-cf C true

We write |-cf for the cut-free version of |-, which is specified
by all the rules for this judgement in Figure 5 except for cut. Cut

admissibility proves that one can substitute cut-free evidence for A
for a hypothesis of A and obtain a cut-free result.

The proof of this theorem is a meta-function which can be used
to implement a negative value of the following type:

〈·〉 ∀W . ∀A : prop.
∀C : prop.
∀D : |-cf A true.
∀D′ : (Π :A hyp. |-cf C true).
↑(∃D ′′ : |-cf C true.1)

Here we write ∀W .A- for ∀W(Ψ 7→ ΨfA-); this type quantifies
over all contexts in the world W and then immediately binds the
context in A-. A value of this type is implemented as follows:

val-(Ψ; unpack Ψ.A ; C ; D ; D ′ ; ε 7→ (gp(Ψ,A,C ,D ,D ′), ()) [·])

Inverting the possible destructors for this type yields exactly the
premises of the Twelf theorem. To construct a result, we use the
notation gp to call Garg and Pfenning’s Twelf code to compute an
LF term. Twelf is a logic programming language for programming
with LF terms, so their proof is not a function but a total relation,
which may associate more than one output with each input. We can
resolve this non-determinism by simply choosing to return the first
result produced by Twelf’s proof search.

Discussion We hope to have suggested with the above example
that our type theory has an appropriate type structure for embed-
ding a security-typed language. However, the above security-typed
language is quite limited in several ways: it relies on a static col-
lection of principals, resources, and policies; atomic propositions
such as mayrd can only refer to LF terms; it only allows execution
on behalf of one principal (self). We plan to consider embedding
more-extensive security-typed languages in future work.

3.2 Logical relations for Gödel’s T
Twelf’s computational language for proving metatheorems about
languages and logics represented in LF permits only ∀∃-statements
over LF types. Moving to a higher-order functional programming
language like Delphin [48], Belgua [46], and our type theory has a
number of advantages. For example, when proving decidability of
a judgement J in Twelf, one must inductively axiomatize its nega-
tion ¬J and prove non-contradiction (J ∧ ¬J ) → 0 explicitly.
With more quantifier complexity, one can define ¬J as J → 0,
so non-contradiction is implemented by function application, and
prove decidability (J ∨ (J → 0)).

Additionally, because Twelf allows only ∀∃-statements over LF
types, it is not possible to formalize a logical relations argument
by interpreting the types of an object language as the types of the
Twelf computational language.1 While Delphin and Beluga have
sufficient quantifiers to interpret object-language types, they do not
permit the definition of a type by induction on an LF term, which
seems necessary to define a logical relation by induction on object-
language types. Because our type theory provides type-level com-
putation, we can conduct such logical relations arguments directly,
using the quantifiers of our computational language. It is of course
possible to formalize this style of argument in a dependent type
theory such as Coq or Agda which similarly provides large elimi-
nations; the advantage of our approach is that the programmer can
carry out a logical relations argument while using LF to represent
the language’s binding structure.

1 It is possible to formalize logical relations arguments in Twelf by inter-
preting types as quantifiers in a specification logic encoded in LF [50], but
this requires independent verification of the consistency of the specification
logic, which is often tantamount to the theorem one is trying to prove.
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tp : type.
nat : tp.
arr : tp -> tp -> tp.

tm : tp -> type.
z : tm nat.
s : tm nat -> tm nat.
iter : tm nat -> tm C -> (tm C -> tm C) -> tm C.
lam : (tm A -> tm B) -> tm (arr A B).
app : tm (arr A B) -> tm A -> tm B.

eval : tm A -> tm A -> type.
eval/z : eval z z.
eval/s : eval (s E) (s E).
eval/lam : eval (lam E) (lam E).
eval/iterz : eval (iter E Ez Es) Ez’

<- eval E z
<- eval Ez Ez’.

eval/iters : eval (iter E Ez Es) Es’
<- eval E (s E’)
<- eval (Es (iter E’ Ez Es)) Es’.

eval/app : eval (app E1 E2) E’
<- eval E1 (lam E)
<- eval (E E2) E’.

Figure 6. LF Representation of Gödel’s T

As an example, we show how type-level computation with LF
terms can be used to type a logical relations argument for the ter-
mination of Gödel’s T (simply-typed λ-calculus with iteration over
natural numbers). For simplicity, we index terms with their types so
that only well-typed terms are representable, and we give a call-by-
name evaluation relation on closed terms where successor is treated
lazily. Binders lam and iter are represented using higher-order
abstract syntax, and the evaluation relation uses LF application to
perform substitution.

The ultimate theorem we would like to prove is:

〈·〉 ∀A:tp.∀E:tm A.∃E’:tm A.∃D:eval E E’.1

The logical relations proof of this theorem works by constructing
a closed term model, interpreting the types of Gödel’s T as the
types of the programming language. The logical relation is defined
by induction on object-language types. In our calculus, this is
represented by a meta-function ht from LF terms to positive types:

(· `LF A : tp and · `LF E : tm A −→ 〈·〉 ht(A, E) type)
ht nat E = ∃ : htnat E.1
ht (arr A1 A2) E = ∃((λ u.E’):Π :tm A1. tm A2).

∃D:eval E (lam (λu.E’)).
(∀E1:tm A1.ht(A1, E1)→ ↑ht(A2, [E1/u]E’)

Here we use one-level pattern-matching and inductive calls to no-
tate the meta-function ht, which maps every Gödel’s T type and
closed term to a positive type. The case for arr says that E evalu-
ates to a lambda, and moreover, for every hereditarily terminating
argument, the substitution into the body of the lambda is hereditar-
ily terminating. We write [E1/u]E2 for LF substitution, which is
defined as a meta-function on LF terms. The base case refers to an
auxiliary relation htnat which is defined as follows:
htnat : tm nat -> type.
htnat/z : htnat E

<- eval E z.
htnat/s : htnat E

<- eval E (s E’)
<- htnat E’.

The fundamental lemma of logical relations states that all well-
typed terms are in the relation. One difficultly is that the relation
is defined only for closed terms, but for the sake of the proof, the

theorem must be generalized to consider open terms. The standard
maneuver is to interpret open terms under a grounding substitution
of hereditarily terminating terms. To do this, we need a type repre-
senting substitutions, which we may define in LF as follows:

tplist : type.
tnil : tplist.
tcons : tp -> tplist -> tplist.

subst : tplist -> type.
snil : subst tnil.
scons : tm A -> subst As -> subst (tcons A As).

The type tplist codes an LF context (u : tm, d : of u A, . . .) by
the list (tcons A . . . tnil). The indexed list (subst As) con-
tains one tm of type A for each A in As.

We also need a type expressing that a substitution contains
hereditarily terminating terms:

(· `LF As : tplist and · `LF Es : subst As −→ 〈·〉 hts(As, Es) type)
hts tnil snil = 1
hts (tcons A A2) (scons E Es) = ht(A,E)⊗ hts(As,Es)

Then the fundamental lemma is stated as follows, whereW contain
LF contexts (u : tm, d : of u A, . . .).

〈·〉 ∀W(Ψ 7→ Ψf ∀A : tp.∀E : tm A.
�(∀Es : subst(tpsΨ).hts(Es, (tpsΨ))→ ↑ht(A, E [Es]))))

For any Ψ in W , given an E of type A in Ψ, along with a closed
hereditarily terminating substitution Es for each of the free vari-
ables of E, we produce a proof that the simultaneous substitution
E [Es] is hereditarily terminating. The type � is used to express
the fact that the substitution consists of closed terms. The meta-
operation tpsΨ, codes a context Ψ as a tplist; it is defined by
induction on Ψ. The meta-function E [Es] implements simulta-
neous substitution for LF terms. This meta-function need not be
implemented directly for this instance: it can be derived from a
generic simultaneous substitution theorem for LF.

We implement this type by induction on E, using standard lem-
mas (closure under head expansion, and an inductive lemma show-
ing that the iterator is in the relation). The proof uses several exten-
sional type equalities involving properties of simultaneous substi-
tution. These equalities are true (e.g., they were proved by Harper
and Pfenning [26] in the course of studying LF using logical re-
lations), and because we treat equality extensionally, they are not
reflected in the proof term. We plan to study a concrete language
for type equality proofs in future work.

4. Related Work
There has been a great deal of work on integrating various forms
of dependent types into practical programming languages and their
implementations [3, 7, 9, 10, 11, 15, 19, 20, 37, 39, 42, 44, 52,
53, 55, 59, 60, 61, 64], building on dependently typed proof as-
sistants such as NuPRL [12] and Coq [6]. However, none of these
languages provide built-in support for representing variable bind-
ing and hypothetical judgements, which are essential ingredients
of domain-specific logics.

In contrast, our language builds on a wide range of experience
representing logical systems in LF [27] and computing with them
in Twelf [45], and thus is most closely related to the functional
languages LF/ML [49], Delphin [48], and Beluga [46]. LF/ML al-
lows run-time datatypes dependent on LF terms, which permits e.g.
writing a type checker that returns an LF certificate that a program
is well-typed. However, LF/ML does not allow pattern-matching
computation with LF terms themselves, either at the type level or
at the value level. Relative to Delphin and Beluga, our contribu-
tion is to provide an account of type-level computation with LF
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terms, and to investigate a different formalism for integrating open
LF terms into a computational language. For example, in Delphin,
all types are interpreted relative to one ambient LF context, as in
Twelf. With this type structure, it is unclear how one would express
functions that take different arguments in different contexts; e.g.,
the type of the fundamental lemma in Section 3.2 uses our con-
nective � to express a substitution containing only closed terms.
On the other hand, in Beluga, every individual LF type is explic-
itly contextual—the inclusion of LF types into the computational
language is the contextual modality—and there is no notion of a
computational-language type in an LF context. Consequently, one
must write types with the LF contexts distributed to the leaves, i.e.,
(Ψ⇒ A)⊕ (Ψ⇒ B) instead of Ψ⇒ (A⊕ B). Types of the lat-
ter form can be more syntactically convenient (as in Delphin, a sin-
gle context scopes over many LF types), but this is a minor differ-
ence, as these two types are isomorphic in our language [34]. A
more significant difference is that our contextual modality 〈Ψ〉A is
different than that of contextual modal type theory [40] and Beluga,
where contextual variables are eliminated by substitution. In previ-
ous work, we studied a framework [34] that allows inference rules
with side conditions, expressed as computational functions, which
place restrictions on the ambient contexts in which the rule may be
applied. The presence of such side conditions can invalidate struc-
tural properties such as weakening and substitution, and thus the
type theory must not commit to these properties by building them
into the meaning of contextual types. Instead of eliminating contex-
tual types by substitution, we allow pattern matching on contextual
types, and view substitution as an admissible property, defined in
the meta-function language. Consequently, the type theory we have
presented in this paper is compatible with a future extension to a
framework integrating binding and computation.

There are many techniques for representing variable binding
besides LF, ranging from concrete representation techniques [5]
to other theories of binding, such as nominal logic [8, 47, 56];
our previous work includes a detailed comparison with these ap-
proaches [34]. There have also been semantic studies of variable
binding, both for the nominal approach [21] and for the pronom-
inal approach where variables are projections from a context (see
Fiore et al. [18] and Hofmann [28]).

Polarized intuitionistic logic has the same basic type structure
(→,N,>,↑,⊗,1,⊕,0,↓) as call-by-push-value [32], but the programs
of our calculus are different than those of CBPV, which are not fully
focalized. Though our type theory exhibits the usual asymmetries
of intuitionistic logic, the treatment of positive types via construc-
tors and negative types via destructors was inspired by the duality
between proofs and refutations in computational interpretations of
classical logic (see, for example, Curien and Herbelin [14], Filinski
[17], Selinger [51], Zeilberger [62]).

5. Conclusion
In this paper, we have generalized our previous work on comput-
ing with binding to a simple form of dependent data, yielding a
language for programming with domain-specific logics. However,
there are still many interesting avenues for future work:

Computation in Representation We have chosen to take LF “off
the shelf” in this paper, and thus our type theory does not account
for embedding computation in data (e.g., a datatype with a compu-
tational function as a component). We plan to lift this restriction in
two stages: First, we can consider allowing run-time datatypes that
mix binding and computation, while still restricting dependency to
purely positive types (those with no shifts), which restricts depen-
dency to LF-like data. More ambitiously, we may consider full-
spectrum dependency on negative types as well. Full-spectrum de-
pendency is more difficult because it imposes constraints on run-

time features such as effects, but it would allow a fully integrated
treatment of dependent binding and computation.

Meta-functions In this paper, we have demonstrated that our lan-
guage has a suitable type structure for programming with domain-
specific logics, but the examples are necessarily abstract, as we
have not formally defined a finitary syntax for meta-functions
τ, ψ, φ. We are now free to consider different implementations
of meta-functions without disturbing the meta-theoretic properties
of our language. For example, a simple language of meta-functions
could consist of two ingredients: First, we would define a syntax
of meta-patterns, extending the grammar for constructor patterns
c with meta-variables ranging over patterns. A meta-function can
then be specified by a finite list of meta-pattern/expression pairs,
where the expression is allowed to use meta-variables bound by
the pattern to construct values. Type checking these meta-functions
will require determining exhaustiveness of patterns (Dunfield and
Pientka [16] describe some recent work addressing this problem).
Second, we would give a fixed collection of datatype-generic pro-
grams witnessing the structural properties of LF (weakening, ex-
change, contraction, substitution, subordination-based strengthen-
ing). This language of meta-functions would allow pattern match-
ing up to a finite depth, which is sufficient for the value level,
because we have general recursion in the language. For expressive
type-level computation, we may also include recursively defined
meta-functions with named auxiliary functions.

Effects, Polymorphism, and Modules In scaling the calculus pre-
sented here to a full-scale programming language, we intend to in-
vestigate whether polarity and focusing offer any new insights on
features such as effects, polymorphism, and modularity. In partic-
ular, we plan to consider indexing the shift types ↑A+ and ↓A- to
more precisely track what effects are permitted—e.g., distinguish-
ing ↓impure A-, at which general recursion is allowed, from ↓pure A-,
which classifies total programs. We may be able to permit program-
mers to reason about effectful code using domain-specific logics
(e.g., coding up Ynot’s separation logic [39] as a library) by index-
ing shifts with propositions defined in a DSL.
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