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1 Overview

Intuitionistic type theory [43] is an expressive formalism that unifies mathematics and computation. A cen-
tral concept is the propositions-as-types principle, according to which propositions are interpreted as types,
and proofs of a proposition are interpreted as programs of the associated type. Mathematical propositions
are thereby to be understood as specifications, or problem descriptions, that are solved by providing a pro-
gram that meets the specification. Conversely, a program can, by the same token, be understood as a proof
of its type viewed as a proposition. Over the last quarter-century type theory has emerged as the central
organizing principle of programming language research, through the identification of the informal concept
of language features with type structure. Numerous benefits accrue from the identification of proofs and
programs in type theory. First, it provides the foundation for integrating types and verification, the two most
successful formal methods used to ensure the correctness of software. Second, it provides a language for
the mechanization of mathematics in which proof checking is equivalent to type checking, and proof search
is equivalent to writing a program to meet a specification.

Recent research by several authors [9, 25, 28, 34, 41, 64, 65, 69] has exposed a surprising and deep cor-
respondence between identity types in type theory, higher-dimensional morphisms in category theory, and
algebraic structures that arise in homotopy theory. This correspondence suggests a fundamental generaliza-
tion of type theory to account for higher-dimensional structure. This structure arises from a careful analysis
of equality of elements and types in general, and in particular the behavior of type-indexed families of types
(dependent types) under such identifications.! The resulting higher-dimensional type theory will have sig-
nificant applications, both to mathematics and to programming. On the mathematical side, Voevodsky [65]
is proposing to use type theory as a comprehensive foundation for mechanizing advanced mathematics, as it
coheres with contemporary practices much better than well-known formalisms such as axiomatic set theory.

In the work proposed here, we will investigate the benefits of higher-dimensional type theory for pro-
gramming. We will study the foundations of higher-dimensional type theory, by designing a syntactic
type theory that supports higher-dimensional concepts and investigating its semantics in category theory
and homotopy theory. We will also develop applications of higher-dimensional type theory to software
development and verification. In particular, we argue that higher-dimensional type theory offers benefits for
modular programming with dependent types, generic programming via universes, and software verification
using domain-specific specification logics.

Higher-Dimensional Type Theory

To explain the concept of higher-dimensional structure in types, we begin by reviewing the central concept
of dependent type theory, that of a type-indexed family of types, or family for short. A family { B(z) },ca,
assigns a type B(M) to each element M € A. Moreover, the assignment must respect equality of indices
in the sense that if M and N are equal elements of A, then B(M) and B(N) are equal types. In intensional
type theory [32, 53], this principle holds for definitional equality, which expresses purely computational

"To avoid possible confusions, it is important to stress that dimensionality, the focus of this proposal, relates only weakly to
the concept of a universe level characteristic of predicative type theories. While objects of higher universe level tend to also be
higher-dimensional (in a sense to be detailed below), higher-dimensional types exist and are important even at the lowest level of
the universe hierarchy.



equivalences such as calculating the sum of two natural numbers. Equal types classify and equate the
same elements as one another, so that whenever M and N are definitionally equal elements of A, we have
P € B(M)iff @ € B(N), and moreover P = Q € B(M) iff P = Q € B(N). Definitional equality is,
therefore, an analytic judgement, one that is justified by direct calculation, without the need for proof [44].

Mathematical practice, however, demands consideration of coarser notions of equivalence whose justi-
fication may require proof. For example, o1 and o2 may be computationally distinct sequences of natural
numbers (functions of type N — N), yet be regarded as equivalent if for every n € N, 01(n) = o3(n) € N.
In general such an equation requires justification in the form of an inductive proof that, in effect, considers
each n € N in turn. Similarly, it is often useful in practice to identify isomorphic types [20] such as A x B
and B x A. Such equations are synthetic judgements, those that require evidence in the form of a proof. For
example, to show that two types are isomorphic requires that we exhibit a pair of mutually inverse functions
between them: isomorphism is a structure, not a pure property.

The identity type [53] of intensional type theory, Id4(a, b), classifies proofs of “equality” of elements
a,b € A. Surprisingly, the rules for the identity type are sound not only for equality, but for these richer
notions equivalence. This was first observed by Hofmann and Streicher [34], who gave an interpretation of
type theory in which |d 4 is interpreted using an “equivalence relation with evidence”, or a groupoid [34]—a
category in which every map is invertible. To emphasize this more general interpretation, we write a >~ b €
A for Id 4(a, b). Reflexivity is witnessed by refl : a ~ a € A, symmetry by the inverse ™! : b~ a € A
of @ : a ~ b € A, and transitivity by composition foa :a ~c € Aofa:a~b¢e€ Aand 3 : b ~
¢ € A. To form a groupoid, these forms of evidence must satisfy algebraic laws specifying that composition
is associative with reflexivity as identity element, and that the composition (on either side) of a piece of
evidence with its inverse yields reflexivity (the identity).

The elimination form for the identity type states that families of types must respect equivalence of
indices: if B is an A-indexed family of types, then a : @ ~ b € A induces a mapping from B(a) to B(b)
(and, by symmetry, vice versa). Computationally, this action on proofs describes how to lift an equivalence
at A to an equivalence at B. Thus, each family { B(z) },c4 is equipped with an action both on elements
a € A and on proofs a : a ~ b € A, so that B(«) : B(a) ~ B(b) is evidence of equivalence of instances of
the family. Bearing in mind that groupoids are categories, this says that B forms a functor on the groupoid
of proofs of equivalence of elements of A.

Moreover, identity types can describe structures more general than a groupoid, because the equations
relating refl, o, and — ! are required to hold only up to higher equivalences—that is, it may require further
evidence, such as § : « o™t ~ refl : a ~ a € A, to establish these algebraic laws. This leads to the
interpretation of types as weak w-groupoids [41, 64], in which equivalence of elements of a type exhibits
a groupoid structure whose equational properties hold only up to a higher notion of equivalence. Adapting
the terminology of n-categories, we say that the elements of a type are O-cells, that evidence for equivalence
of elements are 1-cells, evidence for equivalence of evidences for equivalence are 2-cells, and so on without
end. This higher-dimensional structure of types is the subject of intense interest in both the context of this
proposal and for the mechanization of advanced mathematics [9, 65]. In particular the concept of a weak
w-groupoid plays a central role in abstract accounts of homotopy theory [9, 65, 69].

In many situations, however, it is sufficient to consider only low-dimensional types, those for which
the higher cells are trivial, in that any two proofs of equivalence are themselves equivalent. We say that a
type is d-dimensional if all d’-cells are trivial in this sense for d’ > d. A type in a conventional dependent
type theory with uniqueness of identity proofs® is, in this terminology, 0-dimensional, meaning that any
two proofs of equivalence are themselves equivalent. We call such types sets to emphasize that they have no
interesting structure besides their elements. Under the principle of proof irrelevance, individual propositions
are —1-dimensional because any two proofs of a proposition are identified. The collection of n-dimensional

Zany two terms of type Id(a,b) are themselves propositionally equal



types naturally forms a n + 1-dimensional type. For example, the type Prop forms a set of propositions
considered modulo interprovability. More interestingly, a type Set of sets considered modulo isomorphism
is 1-dimensional—because there can be many different isomorphisms between two sets. This is a natural
first example of a higher-dimensional type, which goes beyond traditional type theories by having a com-
putationally relevant notion of equivalence. Because a traditional type theory has only sets (0-dimensional
types), we say that the type theory as a whole is 1-dimensional. A dependent type theory in which types
themselves may be 1-dimensional, like Set, is called 2-dimensional dependent type theory, or 2T'T'; this
theory forms the focus of this proposal.

Identity types in intensional type theory are compatible with richer notions of equivalence, but current
type theories do not expose this fact to the programmer: there is no way to define higher-dimensional
types, nor to exploit the functorial action of the type constructors. Voevodsky’s univalence axiom [65] is
one way to remedy this, but it does not provide the computational behavior of functoriality definitionally.
One contribution of the proposed work is to investigate a new syntactic type theory that accounts for these
higher-dimensional concepts.

Applications. Higher-dimensional type theory will have significant applications to the formalization of
mathematics, because it is common mathematical practice to treat equivalent objects as interchangeable.
Here, we propose to investigate analogous applications of this idea in programming. In computational
terms, higher-dimensional type theory equips each type and term with an action on equivalences, which can
be thought of as a generic program that is defined for all types in the language. This is related to previous
work on generic traversals of data structures, which automatically lift a transformation on a type to data
structures that contain occurrences of that type [11, 36]. For example, if d € N — N is the doubling
function on natural numbers, then d may be lifted to types such as N x N — N x N by applying d to either,
or both, components of a pair. The choice of which, and the code to do it, is determined by specifying which
of the two occurrences of N in the type N x N is to be the locus of activity. The desired transformation
arises as the functorial action of the corresponding type constructor. For example, d x N doubles the first
component, N x d the second, and d x d both components. These are, respectively, the actions of the type
constructors (—) x N, N x (=), and (—) x (—).

In higher-dimensional type theory, we write such generic programs by choosing an appropriate notion
of equivalence for a type A, whereupon the type theory ensures that equivalence at A can be lifted to any
family { B(z) }zeca. For example, consider a type Set whose elements are sets and whose equivalences
are isomorphisms between them, so that A x B and B x A are regarded as equivalent sets. We may lift
this postulated isomorphism to more complex data structures, simply by specifying an operator on sets,
and applying its functorial action. If F' : Set — Set is a set-indexed family of sets, then the principle
of respect for equivalence dictates that F'(A x B) is equivalent to F'(B x A), which means, as sets, they
must be isomorphic. The required isomorphism is simply the functorial action of F' on the isomorphism
i:AXx B=Bx A,yielding F(i) : F(Ax B) = F(B x A). The program F'(7) is determined generically
from the isomorphism 4.

This idea solves numerous problems with current dependently typed programming practice. The first is
modularity via type abstraction: To promote code reuse and maintainability, it is good practice to hide the
implementation of types and programs from clients. However, in a dependently typed language, this curtails
opportunities for after-the-fact reasoning about these programs. A solution is to export a view [45, 47, 66] of
an abstract type ¢ as a concrete type 7', and of each operation on ¢ as a corresponding operation on 7". Then
clients may code and reason using the view, while implementers are free to exploit any representation that
supports the same view. w T T supports this style of programming: the view is represented as an equivalence
t ~ T € type between the abstract and concrete types, and corresponding equivalences between operations.
The generic lifting of an isomorphism is crucial for stating and programming with these equivalences, as we



illustrate below.

The second is code reuse in the presence of datatype-generic programming via universes [4, 13]. A
universe circumscribes a particular collection of types on which certain functions can be defined once-
and-for-all, saving programmers the effort of implementing the operation for the datatypes specific to their
programs. For example, it is possible to define universes that support a generic equality test, generic parsing
and serialization, generic traversals, and generic zippers (cursor data structures that facilitate algorithms that
zoom in on a part of a structure, modify it, and then put the result back together) [1, 4, 5]. Universes can
also be used to embed domain-specific type systems, such as modal types for distributed computing [39]
and contextual types for programming with abstract syntax [38]. Formally, a universe consists of a type U
of codes for types, along with a function El(—) : U — type that maps each code to the type it represents.
Generic programs are written by recursion on codes. A problem with this style of programming is that
the proliferation of universes with different generic operations creates multiple isomorphic copies of each
data type: lists that can be parsed and printed are represented differently than traversable lists, or lists with
zippers, and so on. wTT’s generic support for isomorphisms will automatically allow code written for one
universe to be used with code written for another.

The third is reasoning about polymorphic programs. When verifying programs that use a polymorphic
operation f : Vo : Set.A(a) — B(«) it is often necessary to use the fact that different instances of f are
related by naturality. This kind of reasoning has been studied in external parametricity logics and relational
interpretations [14, 57] and in previous category-theoretic accounts of polymorphic (but not dependently
typed) languages [10]. In wTT, these reasoning principles are available inside the type theory, using the
action on equivalences of such a term f: if o : a 22 b € Set, then f, = B(a) o f, o A(a™!). Thus, various
“free theorems” [67] are available as reasoning principles.

Directed Type Theory

Thus far, we have considered only symmetric higher-dimensional structures. Symmetry of equivalence
plays an important role in the functorial action of type constructors. For example, suppose that F'(—) sends
X € Setto X — X € Set. The actionof F oni : A= Bisthe functioni™! — i € (4 — A) — (B — B)
that transforms b € B to i(f(i~1(b))), where f € A — A. Symmetry of equality, which is expressed by the
existence of inverse maps, is critical to ensuring that every set constructor, F' € Set — Set, have an action
on proofs of equality (that is, isomorphisms) of sets. Without this assumption, the required action need not
exist. This observation is critically important in the context of this proposal, as a second major contribution
of the proposed work will be to show that the assumption of symmetry can be relaxed.

We propose to study a higher-dimensional directed dependent type theory (wDTT), which is based on
relaxing the groupoid interpretation of equivalence (which demands symmetry by requiring inverses) to a
categorial interpretation (which allows, but does not require, that every map have an inverse). There are sev-
eral motivations for this generalization. First, the development of directed homotopy theory [29] demands
consideration of non-symmetric transformations between paths in a space. Second, and more importantly
for present purposes, there are good applications to programming of directed transformations between the
instances of a type family determined by a directed relationship between the instantiating indices. Returning
to the applications discussed above: For modularity, directed types will support one-way views, which de-
couple the methods for constructing and deconstructing an abstract type. For generic programming, directed
types will allow generic use not just of type isomorphisms, but general coercions between types, as arise,
for example, in subtyping. For reasoning, directed types will provide more general forms of naturality,
such as the familiar principle that a polymorphic function commutes with the map function on lists. We
also propose to investigate two additional applications: First, directedness facilitates the implementation of
domain-specific logics and their use in verifying software, as we discuss in detail below. Second, directed-
ness may have applications to formalizing the metatheory of programming languages, which are rife with



directed phenomena—e.g., reduction in operational semantics and monotone functions in domain-theoretic
denotational semantics, both of which have been analyzed in categorical terms [60, 61, 68].

The natural semantic setting for wDTT is that of weak w-categories, in which the characteristic axioms
hold for an n-cell only up to equivalences given by symmetric n+1-cells (but not all higher-dimensional cells
need be equivalences). The restriction to the 2-dimensional case, called 2DTT, amounts to associating, with
each type, a category of transformations between elements (generalizing a pre-order with evidence) such
that families of types respect these transformations. That is, writing « : a < b € A for a transformation of a
into b as elements of A, if B is an A-indexed family of types, then we ask that B determine a transformation
B(a) : B(a) < B(b) on instances of the family. That is, the family should determine a functorial action on
the transformations between elements of the type.

It is immediate that directed type theory generalizes higher-dimensional symmetric type theory, in that
every groupoid is a fortiori a category. But it is less obvious how to formulate 2- (or higher-) dimensional
directed type theory. We propose to investigate the following foundational issues, which arise immediately
in an attempt to formulate 2DTT:

1. The transformations « : @ < b € A may no longer be represented as elements of the Martin-Lof
identity type, for the simple reason that the identity type is inherently symmetric. (That is, symmetry
of equality is derivable using the elimination form for the identity type.) Instead, we treat o« : a S b €
A as a basic judgement form, rather than as an instance of type membership o € ld4(a,b).

2. In the absence of symmetry not all type families admit functorial actions; the variances of the family
must be considered [2, 16, 23, 62]. For example, the set operator (—) — N is contravariant, the
operator N — (—) is covariant, and the operator (—) — (—) is non-variant. Directed type theory
must take account of variances from the outset, in sharp contrast to the symmetric case.

3. The analog of symmetric type theory’s quotient types is the notion of an internal category in directed
type theory, which will allow programmers to define their own directed types by giving a collection
of elements and a notion of transformation between them.

4. The concept of the opposite of a category, which ordinarily plays a central role in accounting for
variances, is much more subtle in the dependent (fibered) case than in the non-dependent case usually
considered. A full accounting of variances involves a modality for contravariance that demands further
investigation.

5. Semantically, it is clear that one should be able to internalize the judgement « : @ < b € A by a type
Hom 4(a, b) of transformations between a,b € A, as long as a is treated as a contravariant position.
However, the introduction and elimination rules for this type require further study.

6. It is paramount to adapt familiar type constructors, such as an inductive datatype mechanism, to
the directed case. Some type constructors interact with variances in interesting ways. For example,
there are two forms of dependent function type, one that is contravariant in its domain (as might be
expected), and one that is covariant in its domain (which, surprisingly, exists, and is important to the
main application of 2DTT described below).

We propose to investigate these issues, and others as may arise, in the formulation of a syntactic higher-
dimensional type theory. In addition, we propose to investigate its semantics in higher-dimensional category
theory and homotopy theory.

Applications. In addition to the applications discussed above, we propose to develop the practical ap-
plication of 2DTT to programming with domain-specific specification logics. Our previous project on



Integrating Types and Verification shows that the use of logics specific to an application domain is a promis-
ing way to verify software within a dependently typed programming language. Examples of domain-specific
logics include separation logic [59], which has been used to verify imperative programs [51], and authoriza-
tion logics, which have been used to verify security properties in security-typed languages [8, 35, 46, 63],
as investigated in our previous project on Manifest Security. Our initial investigation into 2DTT arose out
of a desire to design a better meta-language for defining specification logics such as these.

The central notion in logic is consequence—entailment from premises to conclusions—and, in our pre-
vious project, we identified two notions of consequence necessary for programming with logics: derivabil-
ity, which captures uniform reasoning, and admissibility, which captures inductive proofs and functional
programs. Derivability is necessary for representing the syntax of propositions and proofs, whereas ad-
missibility is necessary to prove theorems and implement theorem provers. Presently, derivability is better
supported in LF-based proof assistants, such as Twelf, Delphin, and Beluga [30, 55, 56, 58], whereas ad-
missibility is better supported in proof assistants based on Martin-Lof type theory, such as Coq, Agda, and
Epigram [19, 43, 45, 54]. In our previous project, we began to explore an approach to reconciling these
differences by offering better support for derivability inside of Martin-Lof type theory. Our approach uses
pronominal representations of syntax in the style originally advocated by de Bruijn [21, 52] in which vari-
ables are regarded as pronouns that refer to a binding site that fixes their referents. Semantically, pronominal
representations can be analyzed using the category theoretic concepts of functors and monads [3, 24, 33].

2DTT will allow us to put this theory directly into practice, and to generalize it in important ways: First,
by giving a simple description of the syntax of the propositions and proofs of a specification logic in 2DTT,
programmers will have access to a generic implementation of the structural properties of consequence rela-
tions. These structural properties are essential for programming with domain-specific logics, and the burden
of implementing them manually for each logic reduces the applicability of this verification technique. In
2DTT, the structural properties arise naturally out of the language-wide notion of respect for transforma-
tions. Second, 2DTT affords a language of signatures that significantly extends that of logical frameworks
such as LF, because representations of logics may exploit admissibility (functional programs), an idea we
explored in the simply-typed case in our previous project [38, 40]. This enables a wide class of more conve-
nient representations of logics, encompassing negated premises in inference rules, infinitary sequent calculi
for inductive types [31], and domain-specific languages and logics that inherit pattern-matching from the
host language [71].

To demonstrate these applications, it is essential to develop an implementation of 2DTT. While a full-
scale implementation comparable to current systems such as Coq [19] or Agda [54] is beyond the scope of
the present proposal, we propose to develop a prototype as a proof of concept and as a foundation for future
work on the implementation of higher-dimensional directed dependent type theory. Specifically, we will
develop a type checker for 2DTT that is capable of verifying the static correctness of programs written in
the language. This core type checker will serve as a foundation for an elaboration process that translates a
more user-friendly language into the fundamental type theory. Elaboration would be responsible for such
tasks as argument synthesis (a generalization of type inference) and variance inference.

Summary

We propose to investigate a fundamental generalization of type theory to account for higher-dimensional
and directed structures. This generalization is based on a semantic correspondence with higher-dimensional
category theory and homotopy theory, which is ripe for exploitation. The design of a higher-dimensional
and directed type theory requires foundational work on reflecting these semantic structures in a program-
ming language. In return, the resulting theory will have significant applications, both to dependently typed
programming, by improving modularity and code reuse, and to software verification, by facilitating the con-
struction of domain-specific logics and providing powerful reasoning principles for polymorphic code. In
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Figure 1: 2DTT: Key Constructs

the remainder of this proposal, we describe the 2DTT type theory in more technical detail, and then sketch
the extensions and applications of 2DTT that constitute the proposed work.

2 Technical Details
2.1 2DTT

In this section, we outline a preliminary account of 2-dimensional directed type theory, 2DTT [37]. Our goal
is to illustrate the two main technical differences between directed type theory and ordinary symmetric type
theory: First, the specification of a typical dependent type theory consists of three main forms of syntax,
contexts I' ctx, dependent types I' - A type, and terms ' - M : A. Because transformations cannot be
represented by the identity type, 2DTT adds a fourth form of syntax, transformations ' - o : M <4 N.
In addition to type-generic rules giving reflexivity and transitivity, there are specific transformation rules
for each type A. For example, a transformation between natural numbers m <p,t n is a proof of equality
of m and n. A transformation between functions f <4_.p g is a point-wise transformation that for every
x : A gives a transformation f z Sp g z. Next, consider a universe set of 0-dimensional types, equipped
with a function EI(.S) that maps each set to a type. A transformation between sets S1 Seet S2 is a function
El(S;) — EI(S2) from elements of S} to elements of Sy.

Additionally, 2DTT includes a construct map which states that types respect transformation: For any
type z: A  C type, a transformation v : My <4 My induces a function map,., ~ a from C[M;] to
C[Ms)]. For natural numbers, map says that equal natural numbers determine transformable types—in this
case the transformation is the identity. For sets, map says that any type x:set - C type with a free set
variable induces a higher-order function (EI(S1) — EI(S2)) — C[S1] — C][S2]. For example, when
C = list(x), map, jist(;) is the standard map function on lists, which applies the given function to each
element. In this case, map is not the identity—it has real computational content.

Second, to describe all of the usual type constructors, 2DTT must track the variance of type construc-
tors, because — is contravariant in the domain, but covariant in the range. We accomplish this using two
technical devices: First, each assumption in the context is annotated with a variance, which is either * or

Second, there is a dualization operation on contexts, written I'°P, which swaps the variance of each
assumption.

This is made precise in the rules in Figure 1. The first line of rules define contexts: If I' is a context, then
its dual I'°P is also a context. A context can be extended by a covariant assumption x : A*, in which case the



type A must make sense in I', and additionally by a contravariant assumption, in which case A must make
sense in I'°P.

The next rule describes map: given a type B with free variable z : A*, a transformation « induces a
function from B[M;] to B[M,]. In fact, a more general version of map is possible: the map rule in the
figure allows transformation at one covariant assumption z : A*, but in general we may allow simultaneous
transformation of any number of co- and contravariant assumptions.

The next set of rules describe dependent functions, which illustrate the methodology for defining types
in 2DTT. The type I1 2: A. B is well-formed if A is well-formed contravariantly in I', and B is well-formed
covariantly in I', with x as a new contravariant assumption. The terms for dependent functions are the
standard A and application forms, adjusted to account for variance: When typing A z:A. M, A is assumed
contravariantly; when typing M; My, the argument M5 is typed contravariantly. Using these rules, we can
give the following computation rule for map at function type:

mapyy,.4 g @ f =Az.mapg a (f (mapy a z))

This rule says that a function f is transformed by pre-composing with transformation in its domain type
A, and post-composing with transformation in its range type B. The contravariance of A is necessary for
(map4 a x) to be oriented in the correct direction.

The next two rules define transformations at II-types: a transformation is introduced by giving a point-
wise transformation, as discussed above, and eliminated by the principle that transformable functions, ap-
plied to any transformable arguments, are themselves transformable. The direction of the transformation
between arguments is reversed, which is appropriate for contravariant positions.

2DTT has a straightforward semantics in Cat, the 2-category of categories, functors, and natural trans-
formations [37]; investigating additional models is an interesting piece of our proposed work.

2.2 Universes

A natural example of a higher-dimensional type is a universe, a type whose members themselves represent
types. For example, we may define a universe setwhose members represent O-dimensional types, and whose
transformations are functions:

T b S:set L, @:El(S)" = M:ES) IHa: MSE s N
' Fsettype I F EI(S) type I'ka.M:S Seet S DEx: M Spyey M T'E M = N:EI(S)

The first rule says that set is a type, and the second that any term of type set determines a type EI(S)
classifying the members of S. The next rule says that a transformation between sets S and S’ consists
of a function z.M from EI(S) to EI(S"). On the other hand, because sets are O-dimensional, the only
transformation at EI(S) is the identity, as the next two rules state—we write = for the equality judgement
on terms, which is a finer notion than equivalence.? In this case, transformation at EI(S) is symmetric, and
we sometimes write M ~ El(s) N to emphasize this point.

Sets are closed under the usual dependent type constructors, such as dependent functions IT1z:S. S’
and pairs X z:5. 5, as well as empty (0), unit (1), boolean (2), and inductive and coinductive types (nat,
list(S), ...). We elide the rules defining these sets and their members; the type constructors take account
of variance in the same way as above (e.g. in [T z:S5. S’, S is a contravariant position). Each set determines
an action on transformations; for example map . . El(list(a)) is the familiar map function on lists. Itis a
common notational convenience to elide the coercion from sets to types, writing S for El(S); we follow this
convention below.

3These transformation rules treat transformation at EI(S) like equality in extensional type theory [18].
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Figure 2: View for a Dictionary ADT in 2DTT

An alternative is to define a symmetric universe of sets set™, where transformation is isomorphism:

[, x:E(S) Ff:EI(S) T,y:EN(S) +Fg:ENS) flg/zl=y glf/yl==
D S Sgetr 9

The advantage of the symmetric universe is that all constructions possible in standard dependent type theory
are possible; in particular, the rules for set™ constructors need not account for variances. The disadvantage
of the symmetric universe is that map can only be used to lift isomorphisms, not arbitrary functions, which
provides a less useful generic program.

As we illustrate below, both directed and symmetric universes are useful, and studying the relation-
ships between them is an important component of the proposed work. For example, there are both co- and
contravariant inclusions from set™ to set that choose the appropriate side of the isomorphism.

2.3 Application: Modularity and Code Reuse

We are now in a position to sketch an illustrative example of using 2DTT to specify an abstract data type. We
implement a dictionary data structure, mapping keys to values, where the implementation of the dictionary
type, and the operations on it, are held abstract. However, the interface provides a view of the dictionary
in terms of a simple but inefficient implementation using association lists. This view can be used both
for programming—converting a dictionary to and from a list—and, more importantly, for after-the-fact
verification, from the “outside” of the abstract type.

We show the dictionary interface in Figure 2. First, we define abstract types key, value, and dict,
represented as assumptions of type set™. As discussed above, these assumptions can be freely used in
positions of either variance, and we exploit this fact in defining various operations on these abstract types,
in this case lookup and insert.

Next, we define the view: transformations show and hide that relate dict to list(key x val). The intention
is that dict is implemented by some efficient representation, such as a balanced binary tree, with the list
view representing the dictionary in extension, as a list of ordered pairs. Thus, we require the composition
show o hide to be the identity: retract states that showing a dictionary determined by its extension should
give back that extension. We do not require the converse, hide o show, to be the identity, because there may
be many internal representations with the same extension—e.g. different arrangements of the tree. Because
this pair does not constitute an isomorphism, this example is not programmable using the identity type in
symmetric higher-dimensional type theory.

On the implementation side, show and hide are written by giving functions dict — list(key x val) and
vice versa. On the client side, these transformations can be used to coerce a dictionary to a list and back
using map. An example of this is in specifying the behavior of lookup and insert: |kspec and insspec state
that lookup and insert behave like the coercion of the equivalent operations on the list implementation by
hide and show. This coercion is represented using map, using an annotation that identifies the appropriate
positions in the type to coerce. For lookup, this is the argument dictionary, which is a contravariant posi-
tion; for insert, this is the argument dictionary (represented by the contravariant variable d’) and the result



(represented by the covariant variable d). The calls to map supply an appropriate transformation for each
position: using the computation rules for map, these assumptions expand to

lookup ~ A d, k. L.lookup (map show d) k
insert ~ A\ d, k, v. map hide (L.insert (map hide d) k v)

which say that the abstract operations behave like the specification operations.
This interface can be used to derive properties of the abstract implementation using its specification. For
example, we can prove
lookup (insert d k v) k ~ some(v)

because, after expanding the definition of map, and collapsing showohide using retract, the equation reduces
to the corresponding property of the specification.

The benefit of 2DTT for this style of programming, relative to current type theories, is that views can be
automatically lifted to the types of the operations using map. In fact, the example can be made even more
concise by packaging up the operations on the abstract type:

dictmethods(dict*, dict™) = { lookup : dict™ — key — value option
insert : dict” — key — value — dict"}

This specifies the operations in terms of a covariant type dict® and a contravariant type dict”. Then lookup,
insert, lookupspec, and insertspec can be replaced by the following:

m : dictmethods(dict, dict)
mMSpeC @ M = MAaPg.set d’:set”.dictmethods(d,d’) (hide/d,show/d’) L.m

While the increased conciseness is modest in this small example, the ability to automatically derive these
specifications will be more important with interfaces with tens or hundreds of operations, where writing and
maintaining them would be impractical. Additionally, 2DTT provides type-generic reasoning principles,
which can be exploited in proofs. Moreover, here, we have verified a simply-typed program using dependent
types, but the approach scales to dependently typed programs as well, as we discuss below.

The application of 2DTT to code reuse has a similar flavor: map can be used to lift an isomorphism to
an interface of operations, mediating between the different but isomorphic representations of types that arise
when doing generic programming.

2.4 Application: Domain-Specific Logics

In our previous project on Integrating Types and Verification, we studied the use of domain-specific logics to
verify software. Examples of domain-specific logics include separation logic [59], which has been used to
verify imperative programs in Ynot [51], and authorization logics, which have been used to verify security
properties in security-typed languages [8, 35, 46, 63].

For example, in Ynot, imperative programs are specified using Hoare Triple Types { P} A{@}, which
classify a command that, if precondition P holds, returns a value of type A, in a state satisfying (). Here P
and () are predicates on the heap. For example:

write : VI, v.{3'.(l — v')(before) bunit{after = before[l — v]}

This specification for writing a value v to a memory cell [ says that if the location [ points to some value v’
in the initial heap (before), then the final heap (after) is the initial heap updated with [ pointing to the written
value v. Ynot has been used to verify various imperative data structures [17], such as stacks, queues, hash
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tables, binary search trees, and binomial trees; algorithms, such as parsing [17]; and libraries, such as a web
services interface [70] and database management software [42].

Security typed programming languages use authorization logics to specify decentralized access control
policies, where access control is expressed as the aggregate of statements by different principals about the
resources they control. For example, a clause of a file system policy for a company might say that

Vr.¥o.V f.(HR says employee(r) A FS says own(o, f) A o says mayread(r, f)) D mayread(r, f)

That is, if the human resources department says that r is an employee, and the file system says that o owns a
file f, then if o says that » mayread f, then r should be granted access to f. This policy refers to statements
by several different principals, each of which has authority over different information—who is an employee,
who owns a file, who may read a file. Authorization logics have been used to specify file systems [27] and
intelligence declassification procedures [26], and security-typed languages have been used to implement
medium-sized examples such as a conference management server and an e-mail client [63].

Our initial interest in higher-dimensional type theory arose out of a desire for a better meta-language in
which programmers can implement and verify programs with such domain-specific logics. Key activities
when programming with domain-specific logics are (1) representing the syntax of propositions and proofs,
(2) proving meta-theoretic results about the logic, and (3) implementing theorem provers. A dependently
typed programming language can facilitate these activities by offering support for two kinds of functions,
derivability and admissibility. 2DTT will support these two concepts better than any existing dependent
type theory: it will allow automatically deriving the structural properties for logics specified by rules that
mix admissibility and derivability, as we now explain.

Structural Properties The syntax of a domain-specific logic can be represented by a family of types
¥ :ctxt = formulaft] type indexed by contexts 1) : Ctx consisting of a finite sequence of parameters. The
values of type formula[i)] represent say the formulas of a domain-specific logic generated by a collection
of constructors over the parameters in 1. So, for example, exists(v.l < v) (“there exists a value such that
location [ points to that value) has type formula[l], since it has one free variable, [. Here x.t is an abstractor,
which indicates that the parameter, x, is bound within the term ¢, and hence may be renamed without change
of meaning.*

A key property of the syntax of formulas is that it is structural, which means that it obeys the following
properties of variables:

e Reflexivity: x : formula[z]. Parameters are terms.

e Weakening: formulafy] < formula[y, ¢']. Parameters may “occur” vacuously.

Contraction: formulaf, z, z,¢'] ~ formula[y, x,¢']. A parameter may be used more than once.

Permutation: formula[y, x, y, '] ~ formula[y, y, z,v’]. The order of parameters is immaterial.

Substitution: if ¢ : formulaft, 2] and w : formula[¢], then [u/z]t : formulafi]. We may replace a
parameter by a term (avoiding capture of parameters bound by abstractors).

The structural properties are essential both for stating inference rules defining the truth of a formula, and for
computing with formulas.

In the functorial/monadic approach to abstract syntax [6, 24, 33], weakening, contraction, and permuta-
tion are consolidated into the principle of respect for the ordering on contexts,

if ¢ < ¢/, then formulafy] < formula[y/’|

“Informally, “he” and “she” are equivalent grammatical pronouns when it comes to resolving their referents.
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derived from the ordering on contexts given by the following axioms (writing ¢ ~ 1’ for equivalence
relation induced by ) < v'):

o Y Sy
b /11)7 :L‘, x’ 11ZJ/ = w’ 1:7 /lj)/'
b w? x? y? 77/}/ = w? y? x? w/'

The functorial action of formula]—] implements the weakening, contraction, and permutation transforma-
tions on terms. Substitution is accounted for by showing that formula[—| determines a relative monad [7].

Next, we sketch two elements of our proposed work. The first, internal categories, will permit the
definition of a one-dimensional type ctx whose terms are contexts and whose transformations give the struc-
tural properties. The second will permit the definition of inductive types of formulas formulat] that are
automatically equipped with a generic implementation of the structural properties.

One-dimensional types such as ctx may be defined by specifying an internal category—by defining a
category inside the type theory:

O:set™ A:0— O —set™ r:llz:0.Azx t:llzy,20,23:0.Axo 293 — Ay 20 > ATy 23

cat{mem = O, < = A, refl = r,0 = t}) type

This says that a programmer may specify a type by giving a set of members of the type (O), a set of
transformations between any two members A, equipped with reflexivity and transitivity; the ellipsis elides
additional premises stating that reflexivity and transitivity are associative and unital.

For example, a representation of contexts of sorted variables x; : 01, ... 2, : 0, in de Bruijn form [21]
will be specified by ctx = cat{mem = list(sort), <= A\ ¥, ¥y.. Wy F Wy, refl = ..., 0 = ...}. This
definition states that the terms of type ctx are lists of sorts o, while the transformations are given by a type
¥, F W, which gives the structural properties of the logic; for example, by choosing - to be variable-for-
variable substitutions, we will obtain the structural properties of weakening, exchange, and contraction.
must satisfy identity and composition properties to fill the holes for refl and o.

Next, syntax can be represented as an inductive datatype that is automatically equipped with the struc-
tural properties. For example, we may represent syntax using well-scoped de Bruijn indices [6, 12, 15] for
variables: we will introduce a set ¢ € W representing proofs that the sort o is in the list ¥; the inhabitants
are fancily-typed natural numbers, with 0 proving o € (¥, ) and s proving o € (¥,0’) from o € W. The
type o € — is functorial, with action on an index given by applying the substitution.

We propose to adapt well-known formalisms for inductive datatypes, such as indexed containers [5], to
directed type theory. Using such a datatype mechanism, the syntax of a second-order authorization logic

pu=a|Jr:T.¢p|ksaysA| ...
can be described as follows:

formula i ctx — set

formulaty = vof (formula € ) | exists of X s:sort. formula (1, s) | says of principal 1) x formula 1)
The constructor v says that formula variables can be used as formulas; the constructor exists that a formula
can be constructed from a sort and a formula in a context extended with that sort; the constructor says states
that a formula can be constructed from a principal and a formula.

The advantage of describing this datatype in directed type theory is that the structural properties are
implemented automatically by functoriality. Because the type theory knows about the functorial action on
transformations <. of each type used in the definition, ¢ € — and x and X, the action of the inductive type
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can be derived. Thus, we obtain weakening, exchange, and contraction for free. To handle substitution as
well, we propose to investigate general conditions under which such a type determines a relative monad [7].

Generically equipping syntactic types like formula with the structural properties is possible using our
previous work [38]. The real benefit of 2DTT is that it extends to representing the structural properties of
proofs. After defining the syntax of propositions, the next step in programming with domain-specific logics
is to specify a type ¥ - ¢ which defines the truth of the proposition ¢ under assumptions . This type
should also be structural in W, but the definition of structurality is more subtle. For example, consider the

rule of substitution:
Ubkeio W,z:0,0F ¢

U, Wle/x] - gle/x]

This rule states that the substitution into the derivation shows that the substitution into the context entails the
substitution into the proposition. To make this substitution principle come true, it must be the case that each
inference rule of the logic commutes with substitution, in the sense that the substitution into the conclusion
of the rule is the rule itself applied to the substitution into the premises.

2DTT elegantly accounts for exactly these two issues. First, proofs can be represented analogously to
syntax, defining an indexed datatype pf : (X ¢:ctx. formula 1)) — set, representing ¥ F ¢ as terms of type
pf (¥, ¢). Functoriality of 3-types gives exactly the desired structural property, where e.g. substitution into
the proof proves the substitution into the formula—illustrating the benefits of analyzing functoriality not
just for simple type constructions but for dependent types like 3 and II. Second, the fact that the subjects of
judgements commute with substitution arises from the fact that all ferms, as well as types, respect transfor-
mation: in addition to map, which states that substitution instances of types by transformable arguments are
transformable, 2DTT contains rules stating that substitution instances of terms by transformable arguments
are transformable.

Admissibility Once one has represented the syntax of propositions and proofs, dependent types allow the
logic to be used to verify code—e.g. by annotating functions or computations (as in Ynot) with pre- and
post-conditions. However, to know that this verification makes sense, it is necessary to prove properties of
the logic, such as consistency; and, to make programming with logics practical, it is necessary to develop
theorem provers that automatically discharge proof obligations. These tasks, mechanizing the metatheory
of programming languages and logics, or, equivalently, computing with logical systems, require support for
writing recursive functions that traverse syntax and proofs. For example:

consist : pf (-, L) — 0
prove : I1¢:ctx. IT ¢:formula . pf (1), ¢) option

A consistency proof consist for a logic should have a type expressing that there are no closed proofs of
falsehood. A theorem prover prove should have a type expressing that for any context and formula, the
prover either returns a proof of the formula in that context, or fails.

However, rendering these types in 2DTT raises a subtle issue of what a function whose domain is a
higher-dimensional type, such as IT:ctx. A, means. By analogy with type polymorphism, such a function
may be parametric, if it behaves the same for all instantiations of «, or ad-hoc, if its behavior differs at dif-
ferent instances. Parametric quantification admits stronger reasoning principles, relating different instances
by naturality. On the other hand, ad-hoc polymorphism admits more functions, by allowing more expres-
sive elimination forms, including case-analysis and recursion on contexts and proofs. In 2DTT, functions
of type ITv:ctx. A are necessarily parametric, as a consequence of a general principle that all terms respect
transformation. However, there is a modality ! A that gives the underlying set of a structured type like ctx,
and functions of type IT¢:!ctx. A(¢)) are ad-hoc. We propose to investigate these two kinds of quantifiers,
and their application to programming with logics.
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Once we have investigated these issues, 2DTT will afford a language of signatures that significantly
extends that of logical frameworks such as LF [30], because representations of logics may exploit ad-
missibility (functional programs). This enables a wide class of more convenient representations of logics,
encompassing negated premises in inference rules, infinitary sequent calculi for inductive types [31], and
domain-specific languages and logics that inherit pattern-matching from the host language [71]. For ex-
ample, a specification logic will often include inductive types or predicates. These can be represented
conveniently and concisely if they are eliminated not by induction, but by an w-rule. For example:

t:nat P(0) P(1) P(2)
P(t)

To prove P(t), it suffices to show P(k) for each numeral k. The premise of this rule can be thought of as a
function that delivers a proof of P(k) for every k, and represented in 2DTT as follows:

omega : (IT k:nat. nd (¢, P[lit(k)])) — nd (b, VP)

That is, to prove a predicate of all natural numbers, it suffices to show the predicate for each numeral in turn.
This representation permits the logic to inherit induction and pattern-matching from the meta-language,
which simplifies the development and leads to concise proofs of consistency via cut elimination [71].
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