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Computing with Univalence
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Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1) )

dependent 
function type 

(∀)

dependent
pair type

 (∃)

identity type (=)
identical terms are 

interchangeable in all 
contexts

proofs = programs

disjoint union
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even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))
even-or-odd 0         = Even even0
even-or-odd (1 + n) = 
  case (even-or-odd n) of
    Even nIsEven → Odd (odd1+ nIsEven)
    Odd nIsOdd  → Even (even1+ nIsOdd)
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even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))
even-or-odd 0         = Even even0
even-or-odd (1 + n) = 
  case (even-or-odd n) of
    Even nIsEven → Odd (odd1+ nIsEven)
    Odd nIsOdd  → Even (even1+ nIsOdd)

even-or-odd 3 = case (even-or-odd 2) of …
                        = <steps elided> 
                        = case (Even … ) of … 
                        = Odd … 

Computing by calculation:
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If  M : nat  
then  

∃ a numeral k s.t.  M ⟼* k

“programs don’t get stuck”

guides the design of a type theory

algorithm for =



A is a groupoid
M is an object
α : M → N in A

M
N

α

category theory homotopy theory

A

A : type
M : A
α : IdA(M,N)

dependent type theory

Homotopy Type Theory
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[Hofmann&Streicher,Awodey,
Warren,Lumsdaine,Garner,
Voevodsky, 1990’s and 2000’s]

Theorem: Martin-Löf’s intensional type theory has 
semantics in homotopy theory (spaces as types) and 
category theory (groupoids as types)
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Homotopy Type Theory
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points
= programs

path from M to N
= α : IdA(M,N)

topological 
space 
= type
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So what?
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Type theory can be used as a formal logical 
calculus for proving results in higher-category 
theory and homotopy theory

Correspondence suggests new logical principles 
to add to type theory
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A → B → C

curry
(A x B) x C

A x (B x C)

U

U = universe (type of types)
where paths are isomorphisms

[Hofmann&Streicher,  
Voevodsky]

Isomorphic types are interchangeable in all contexts;
or, all constructions respect isomorphism

(really weak equivalences)
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    Monoid                   = Σ X:U. MonoidStr[X]
    MonoidStr[X:U] : U = 
                    Σ ⊙ : X → X → X.
                    Σ u  : X.
                    (Πx,y,z. Id (x ⊙ (y ⊙ z)) ((x ⊙ y) ⊙ z))) ×
                    (Πx.Id (u ⊙ x) x) ×
                    (Πx.Id (x ⊙ u) x)



Work “up-to-iso”

10

    
    Monoid                   = Σ X:U. MonoidStr[X]
    MonoidStr[X:U] : U = 
                    Σ ⊙ : X → X → X.
                    Σ u  : X.
                    (Πx,y,z. Id (x ⊙ (y ⊙ z)) ((x ⊙ y) ⊙ z))) ×
                    (Πx.Id (u ⊙ x) x) ×
                    (Πx.Id (x ⊙ u) x)

If A ≃ B then MonoidStr[A] ≃ MonoidStr[B] ?
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(y ⊙’ u’) = f ((f-1 y) ⊙ (f-1 (f u)))
 = f (f-1 y ⊙ u)                by α
 = f (f-1 y)                       by unit law for ⊙ and u 
 = y                               by β

“the hard way”

f : A → B
f-1 : B → A

α : Id (f o f-1) id
β : Id (f-1 o f) id
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1.Each individual construction in type theory without 
univalence already respects isomorphism 

2.Univalence gives generic name to this principle, and 
ensures that hypotheses/extensions still do.
To make  MonoidStr[A] → MonoidStr[B]  just write 

transportMonoidStr (univalence (f,f-1,α,β))
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“The easy way”
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       transportMonoidStr (univalence (f,f-1,α,β))

Identical terms are 
interchangeable in all 

contexts

MonoidStr is one 
such context

iso determines Id

Formalized math: don’t need to prove this
by hand for each type

Programming: automatically compute monoid 
structure on B from monoid structure on A
using a generic program



Computational Interpretation
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We can prove that
     transportMonoidStr (univalence (f,f-1,α,β))
is Id-entical to what we wrote out by hand

But for type theory + univalence, as currently 
formulated, it doesn’t compute:
programs get stuck 

Formally: canonicity fails



Canonicity Property

15

If  M : nat  
then  

∃ a numeral k s.t.  M ⟼* k

“programs don’t get stuck”

guides the design of a type theory

algorithm for =



Status
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Theorem (Licata&Harper,2012): 
Canonicity for special case of a 2-dimensional 
type theory with univalent universe of h-sets
… up to equational deduction

In progress: extends to an algorithm for 2TT

One the goals for this special year:
canonicity for full higher-dimensional univalence
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Dimension Hierarchy
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h-proposition: all terms are identical
                       (in the sense of Id-type)

h-set: unique identities 
   e.g. nat

h-groupoid: unique identities between identities
   e.g. universe of h-sets

h-2-groupoid: and so on
   e.g. universe of h-groupoids

A type is an



Status
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Theorem (Licata&Harper,2012): 
Canonicity for a 2-dimensional type theory
with univalent universe of h-sets
… up to equational deduction

In progress: extends to an algorithm for 2TT

One the main goals for this special year:
canonicity for full higher-dimensional univalence

types are at most 
h-groupoids


