Computing with Univalence
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Dependent Type Theory

Logical system underlying proof assistants: tools for

* Computer-checked math
% PrOgramming disjoint union

l

even-or-odd : I;I n:nat. (%k. ld n 2*Kk) v (2k. IcAj n (2°k+1) )

dependent dependent identity type (=)
function type pair type identical terms are
(V) (2) interchangeable in all
contexts

proofs = programs
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Example

even-or-odd : [l n:nat. (2k. Id n 2*k) v (2k. Id n (2"k+1))

even-or-odd O = Even evenO
even-or-odd (1 + n) =
case (even-or-odd n) of
Even nisEven — Odd (odd1+ nisEven)
Odd nlsOdd — Even (even1+ nlsOdd)



Example

even-or-odd : [l n:nat. (2k. Id n 2*k) v (2k. Id n (2"k+1))

even-or-odd O = Even evenO
even-or-odd (1 + n) =
case (even-or-odd n) of
Even nisEven — Odd (odd1+ nisEven)
Odd nlsOdd — Even (even1+ nlsOdd)

Computing by calculation:

even-or-odd 3 = case (even-or-odd 2) of ...
= <steps elided>
=case:(Eveniioli=s
=:)qE



Canonicity Property

“programs don’t get stuck”
algorithm for =

If M: nat
then

3anumeral ks.t. M= k

guides the design of a type theory
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dependent type theory
A : type

M: A

 : lda(M,N)

category theory homotopy theory
A Is a groupoid
M is an object
x:M—=>NInA



Homotopy lype [heory

Theorem: Martin-Lof’s intensional type theory has
semantics in homotopy theory (spaces as types) and
category theory (groupoids as types)

[Hofmann&Streicher,Awodey,
Warren,Lumsdaine,Garner,
Voevodsky, 1990’s and 2000’s]
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Types as Spaces

path from M to N
=  : lda(M,N)

I

points
= programs-




So whatf & e
M : A

0 :- |da(M,N)

category theory homotopy theory

A is a groupoid
M is an object
x:M—=NinA
A

* Type theory can be used as a formal logical
calculus for proving results in higher-category
theory and homotopy theory

% Correspondence suggests new logical principles
to add to type theory
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Univalence

[Hofmann&Streicher,
Voevodsky]

U

U = universe (type of types)
where paths are isomorphisms

(really weak equivalences)

Isomorphic types are interchangeable in all contexts;
or, all constructions respect isomorphism
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Work “up-to-iso”

Monoid =2 X:U. MonoidStr[X]
MonoidStr[X:U] : U =
2 O X X —pEX:
2l X
(Mx,y,z. Id (X © (y © 2) (X ©y) © 2)) x
(MNx.ld (U © x) X) x
(MNx.ld (x © u) x)



Work “up-to-iso”

Monoid =2 X:U. MonoidStr[X]
MonoidStr[X:U] : U =
2 O X X —pEX:
2l X
(Mx,y,z. Id (X © (y © 2) (X ©y) © 2)) x
(MNx.ld (U © x) X) x
(MNx.ld (x © u) x)

If A = B then MonoidStr[A] = MonoidStr[B] ?



MonoidStr : type — type

‘thehardway”  \1onoidStr X = = 0:X= X=X, uX. ...
Given  (f,f',,B) : Iso(A, B) fff.‘; : BA
and (0,Uu,...) : MonoidStr[A] s Id.(fof'1) "
make (0’,u’,...) : MonoidStr[B] B:1d (F o f) id
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MonoidStr : type — type

hehardWay™ — \1onoidStr X = = 0:X—X—X. = uX. ...
Given  (f,f1,0,B) : Iso(A, B) fff.‘; : BA
and (0,Uu,...) : MonoidStr[A] s Id.(fof'1) "
make (0’,u’,...) : MonoidStr[B] B:1d (F o f) id

O S BRI RO E ST
LB ca=Tok
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: = MonoidStr : type — type
the hard way MonoidStr X = 3 0: XXX, S u:X. ...

Given  (f,f1,0,B) : Iso(A, B) f:A—B
f1:B—A

and (0,Uu,...) : MonoidStr[A] o :1d (F o ) id

make (0’,u’,...) : MonoidStr[B] B:1d (F o f) id

Vi @1 yoi= (e ()
LB ca=Tok

f

= VEe L by

=Sy by unit law for © and u
y

by B
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"I he easy way”

1.Each individual construction in type theory without
univalence already respects isomorphism

2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] = MonoidStr[B] just write

transportmonoiastr (Univalence (f,f1,c,B))
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2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] = MonoidStr[B] just write
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\
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"I he easy way"

transportMono.dStr (univalence (f,f1,x,p))

Shce

Identical terms are MonoidStr is one IS0 determines Id
interchangeable in all such context
contexts

* Formalized math: don’t need to prove this
by hand for each type

* Programming: automatically compute monoid
structure on B from monoid structure on A
using a generic program
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Computational Interpretation

* We can prove that
transportmonoiastr (Univalence (f,f1,x, B))
Is |d-entical to what we wrote out by hand

* But for type theory + univalence, as currently
formulated, it doesn’t compute:
programs get stuck

* Formally: canonicity fails
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Canonicity Property

“programs don’t get stuck”
algorithm for =

If M: nat
then

3anumeral ks.t. M= k

guides the design of a type theory




Status

* Theorem (Licata&Harper,2012):
Canonicity for special case of a 2-dimensional
type theory with univalent universe of h-sets
... Up to equational deduction

* In progress: extends to an algorithm for 2TT

% One the goals for this special year:
canonicity for full higher-dimensional univalence
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Homotopy lype [heory

dependent type theory
A : type

M: A

 : lda(M,N)

category theory homotopy theory
A Is a groupoid
M is an object
x:M—=>NInA



Dimension Hierarchy

A type is an

* h-proposition: all terms are identical
(in the sense of Id-type)

* h-set: unigue identities
e.g. nat

* h-groupoid: unique identities between identities
e.g. universe of h-sets

* h-2-groupoid: and so on
e.g. universe of h-groupoids
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Status types are at most
h-groupoids
* Theorem (Licata&Harper,2012): /

Canonicity for a 2-dimensional type theory
with univalent universe of h-sets
... Up to equational deduction

* In progress: extends to an algorithm for 2TT

% One the main goals for this special year:
canonicity for full higher-dimensional univalence
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