
1

Computing with Univalence

Dan Licata

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

dependent
function type

(∀)

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

dependent
function type

(∀)

disjoint union

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

dependent
function type

(∀)

dependent
pair type

 (∃)

disjoint union

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

dependent
function type

(∀)

dependent
pair type

 (∃)

identity type (=)
identical terms are

interchangeable in all
contexts

disjoint union

Dependent Type Theory

2

Logical system underlying proof assistants: tools for

Computer-checked math

Programming

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))

dependent
function type

(∀)

dependent
pair type

 (∃)

identity type (=)
identical terms are

interchangeable in all
contexts

proofs = programs

disjoint union

Example

3

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))
even-or-odd 0 = Even even0
even-or-odd (1 + n) =
 case (even-or-odd n) of
 Even nIsEven → Odd (odd1+ nIsEven)
 Odd nIsOdd → Even (even1+ nIsOdd)

Example

3

even-or-odd : Π n:nat. (Σk. Id n 2*k) ⋁ (Σk. Id n (2*k+1))
even-or-odd 0 = Even even0
even-or-odd (1 + n) =
 case (even-or-odd n) of
 Even nIsEven → Odd (odd1+ nIsEven)
 Odd nIsOdd → Even (even1+ nIsOdd)

even-or-odd 3 = case (even-or-odd 2) of …
 = <steps elided>
 = case (Even …) of …
 = Odd …

Computing by calculation:

Canonicity Property

4

If M : nat
then

∃ a numeral k s.t. M ⟼* k

“programs don’t get stuck”

guides the design of a type theory

algorithm for =

A is a groupoid
M is an object
α : M → N in A

M
N

α

category theory homotopy theory

A

A : type
M : A
α : IdA(M,N)

dependent type theory

Homotopy Type Theory

5

[Hofmann&Streicher,Awodey,
Warren,Lumsdaine,Garner,
Voevodsky, 1990’s and 2000’s]

Theorem: Martin-Löf’s intensional type theory has
semantics in homotopy theory (spaces as types) and
category theory (groupoids as types)

6

Homotopy Type Theory

M
N

α

A

Types as Spaces

Q

7

M
N

α

A

Types as Spaces

Q

topological
space
= type

7

M
N

α

A

Types as Spaces

Q

points
= programs

topological
space
= type

7

M
N

α

A

Types as Spaces

Q

points
= programs

path from M to N
= α : IdA(M,N)

topological
space
= type

7

So what?

8

Type theory can be used as a formal logical
calculus for proving results in higher-category
theory and homotopy theory

Correspondence suggests new logical principles
to add to type theory

A x B → C

Univalence

9

A → B → C

curry
(A x B) x C

A x (B x C)

U

[Hofmann&Streicher,
Voevodsky]

A x B → C

Univalence

9

A → B → C

curry
(A x B) x C

A x (B x C)

U

U = universe (type of types)
where paths are isomorphisms

[Hofmann&Streicher,
Voevodsky]

A x B → C

Univalence

9

A → B → C

curry
(A x B) x C

A x (B x C)

U

U = universe (type of types)
where paths are isomorphisms

[Hofmann&Streicher,
Voevodsky]

Isomorphic types are interchangeable in all contexts;
or, all constructions respect isomorphism

A x B → C

Univalence

9

A → B → C

curry
(A x B) x C

A x (B x C)

U

U = universe (type of types)
where paths are isomorphisms

[Hofmann&Streicher,
Voevodsky]

Isomorphic types are interchangeable in all contexts;
or, all constructions respect isomorphism

(really weak equivalences)

Work “up-to-iso”

10

 Monoid = Σ X:U. MonoidStr[X]
 MonoidStr[X:U] : U =
 Σ ⊙ : X → X → X.
 Σ u : X.
 (Πx,y,z. Id (x ⊙ (y ⊙ z)) ((x ⊙ y) ⊙ z))) ×
 (Πx.Id (u ⊙ x) x) ×
 (Πx.Id (x ⊙ u) x)

Work “up-to-iso”

10

 Monoid = Σ X:U. MonoidStr[X]
 MonoidStr[X:U] : U =
 Σ ⊙ : X → X → X.
 Σ u : X.
 (Πx,y,z. Id (x ⊙ (y ⊙ z)) ((x ⊙ y) ⊙ z))) ×
 (Πx.Id (u ⊙ x) x) ×
 (Πx.Id (x ⊙ u) x)

If A ≃ B then MonoidStr[A] ≃ MonoidStr[B] ?

MonoidStr : type → type
MonoidStr X = Σ ⊙:X→X→X. Σ u:X. …

(⊙,u,…) : MonoidStr[A]
(⊙’,u’,…) : MonoidStr[B]

(f,f-1,α,β) : Iso(A, B)Given
and
make

11

“the hard way”

f : A → B
f-1 : B → A

α : Id (f o f-1) id
β : Id (f-1 o f) id

MonoidStr : type → type
MonoidStr X = Σ ⊙:X→X→X. Σ u:X. …

(⊙,u,…) : MonoidStr[A]
(⊙’,u’,…) : MonoidStr[B]

(f,f-1,α,β) : Iso(A, B)Given
and

y1 ⊙’ y2 = f ((f-1 y1) ⊙ (f-1 y2))
u’ = f u

make

11

“the hard way”

f : A → B
f-1 : B → A

α : Id (f o f-1) id
β : Id (f-1 o f) id

MonoidStr : type → type
MonoidStr X = Σ ⊙:X→X→X. Σ u:X. …

(⊙,u,…) : MonoidStr[A]
(⊙’,u’,…) : MonoidStr[B]

(f,f-1,α,β) : Iso(A, B)Given
and

y1 ⊙’ y2 = f ((f-1 y1) ⊙ (f-1 y2))
u’ = f u

make

11

(y ⊙’ u’) = f ((f-1 y) ⊙ (f-1 (f u)))
 = f (f-1 y ⊙ u) by α
 = f (f-1 y) by unit law for ⊙ and u
 = y by β

“the hard way”

f : A → B
f-1 : B → A

α : Id (f o f-1) id
β : Id (f-1 o f) id

“The easy way”

12

1.Each individual construction in type theory without
univalence already respects isomorphism

2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] → MonoidStr[B] just write

transportMonoidStr (univalence (f,f-1,α,β))

“The easy way”

12

1.Each individual construction in type theory without
univalence already respects isomorphism

2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] → MonoidStr[B] just write

transportMonoidStr (univalence (f,f-1,α,β))

Identical terms are
interchangeable in all

contexts

“The easy way”

12

1.Each individual construction in type theory without
univalence already respects isomorphism

2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] → MonoidStr[B] just write

transportMonoidStr (univalence (f,f-1,α,β))

Identical terms are
interchangeable in all

contexts

MonoidStr is one
such context

“The easy way”

12

1.Each individual construction in type theory without
univalence already respects isomorphism

2.Univalence gives generic name to this principle, and
ensures that hypotheses/extensions still do.
To make MonoidStr[A] → MonoidStr[B] just write

transportMonoidStr (univalence (f,f-1,α,β))

Identical terms are
interchangeable in all

contexts

MonoidStr is one
such context

iso determines Id

“The easy way”

13

 transportMonoidStr (univalence (f,f-1,α,β))

Identical terms are
interchangeable in all

contexts

MonoidStr is one
such context

iso determines Id

Formalized math: don’t need to prove this
by hand for each type

Programming: automatically compute monoid
structure on B from monoid structure on A
using a generic program

Computational Interpretation

14

We can prove that
 transportMonoidStr (univalence (f,f-1,α,β))
is Id-entical to what we wrote out by hand

But for type theory + univalence, as currently
formulated, it doesn’t compute:
programs get stuck

Formally: canonicity fails

Canonicity Property

15

If M : nat
then

∃ a numeral k s.t. M ⟼* k

“programs don’t get stuck”

guides the design of a type theory

algorithm for =

Status

16

Theorem (Licata&Harper,2012):
Canonicity for special case of a 2-dimensional
type theory with univalent universe of h-sets
… up to equational deduction

In progress: extends to an algorithm for 2TT

One the goals for this special year:
canonicity for full higher-dimensional univalence

A is a groupoid
M is an object
α : M → N in A

M
N

α

category theory homotopy theory

A

A : type
M : A
α : IdA(M,N)

dependent type theory

Homotopy Type Theory

17

Dimension Hierarchy

18

h-proposition: all terms are identical
 (in the sense of Id-type)

h-set: unique identities
 e.g. nat

h-groupoid: unique identities between identities
 e.g. universe of h-sets

h-2-groupoid: and so on
 e.g. universe of h-groupoids

A type is an

Status

19

Theorem (Licata&Harper,2012):
Canonicity for a 2-dimensional type theory
with univalent universe of h-sets
… up to equational deduction

In progress: extends to an algorithm for 2TT

One the main goals for this special year:
canonicity for full higher-dimensional univalence

types are at most
h-groupoids

