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Abstract

As programs evolve, their code increasingly becomes
tangled by programmers and requirements. This mosaic
quality complicates program comprehension and mainte-
nance. Many of these activities can benefit from viewing
the program as a collection of features. We introduce an
inexpensive and easily comprehensible summary of pro-
gram changes called the feature signature and investigate
its properties. We find a remarkable similarity in the nature
of feature signatures across multiple non-trivial programs,
developers and magnitudes of changes. This indicates that
feature signatures are a meaningful notion worth studying.
We then show numerous applications of feature signatures,
establishing their utility.

1 Introduction

Any programmer who has worked on an unfamiliar soft-
ware system is accustomed to looking at a baffling piece of
code and trying to piece together a guess about that code’s
role in the larger system. They would benefit greatly from
having a rationale for the code in question. Constructing
this rationale involves mining the history of the program’s
development to understand how and why it entered the sys-
tem.

This rationale is, unfortunately, rarely documented well.
Programmers sometimes have difficulty justifying their own
code, so manually reconstructing a rationale for someone
else’s program is daunting. The problem compounds when
the original programmer who wrote the code is not easily
accessible or at any rate no longer has a stake in the project.
This is especially typical of many Open Source projects,
which are developed worldwide.

This situation presents a challenge and an opportunity
for building tools that assist programmers with rationales.
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An effective tool would be useful both to programmers who
commit changes to a codebase (by helping them endow it
with better documentation) and to those who have to study
changes in retrospect.

Other researchers have proposed tools and methodolo-
gies for automatically ascribing rationales during software
development. Some of their solutions, which we describe
in Section 9, call for severe changes in the way the pro-
grammer works. While such changes might feasibly be im-
posed on closed, strongly hierarchical groups of program-
mers, they may be unrealistic goals in, for example, the
global development environments that are typical of Open
Source software. In such environments, the set of develop-
ers is essentially unrestricted. Moreover, to the extent that
there are central managers, their impositions on contribu-
tors have to be minimal: adopting a large-scale, centralized,
top-down process is likely to drive away the volunteer pro-
grammers who are the lifeblood of such projects. In short,
the tools must match the constraints of the domain rather
than trying to force the domain to meet the operating speci-
fications of the tools.

Building programmer-friendly tools means both leaving
the development process intact and limiting the amount of
extra work that the programmer must do, relying instead
on software artifacts that are kept up-to-date as the soft-
ware evolves. One such artifact is the program itself: its
static code, its dynamic behavior, or both; after all, it is
the program that results in the executable that consumers
want. However, any ascription of human knowledge re-
quires some form of redundant specification beyond the
program source itself.

The most natural place to look for redundancy is in de-
sign documents and other forms of documentation. Sadly,
any portion of the software suite that is not immediately
useful to developers and that suffers from poor tool support
tends to be neglected; documentation is notorious in this re-
gard. Fortunately, there is one source of redundancy that
programmers often maintain, because of its utility: the test
suite. We therefore turn to test suites in this work.

This work exploits one other attribute of modern soft-
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ware systems: the ability to travel in time to the point when
a line of code enters the program, and reconstruct the pro-
gram at that time. This is especially true of Internet-scale
Open Source systems, which thrive by providing regular
snapshots of the entire development state. Our experiments
are therefore based on two such systems.

2 Test suites and Features

In this paper, we will use the term test case for the in-
put/output pair necessary to complete a single execution of
a program and specify the expected result; test suite for a
collection of test cases; and test battery for a program’s
complete set of test suites. In most of what follows, we
will focus on the level of test suites.

Our work is fairly sensitive to the quality of test suites.
We believe there are several reasons why programmers tend
to maintain test suites at least as well as any non-source
artifacts:

• Unlike many design notations or documentation, test
suites are executable. Therefore, it is easy to measure
their conformance against the program (or vice versa)
and keep them up-to-date.

• They provide immediate feedback by reporting errors,
rather than offering more vague measures of validity.
Therefore, their value is more immediately apparent
than that of, say, formal specifications or documenta-
tion.

• They provide high return-on-investment, since test
cases usually survive for a long time (and the mere act
of changing a test case’s output is useful for a program-
mer to know).

• As software construction becomes more distributed,
developers need automated means to ensure a measure
of correctness, and testing is the most readily available
technique.

We make a crucial assumption about the structure of test
suites in a battery: we assume that the test battery is parti-
tioned into suites that are roughly aligned with the features
of the system.1

What exactly is a feature, and how does it differ from an
object? A feature is a product characteristic that customers
find important in describing and distinguishing related soft-
ware systems. Call forwarding in telephony systems and
alarm notification in emergency service radios are but two
examples. Features have the distinguishing characteristic
that their implementation impacts (or “cross-cuts”) objects

1We recognize that some test suites exist for testing features, while
programmers devise others to capture the internal behavior of the program.
These are usually quite easy to distinguish.

in a system, which tends to scatter their code throughout
a system’s code base. Specifying and building systems ex-
plicitly as compositions of features aligns software structure
with users’ requirements, and is thus a powerful corrective
to this scattering of code and concerns. A product line, in
particular, views software as a collection of features that can
be composed to create individual products [11].

Why should tests align with features at all? In many
cases, testing is conducted by people outside the develop-
ment process; these testers can view the system only in
terms of its features (which they derive from the require-
ments documentation), not its implementation. In addition,
tests typically measure the input-output behavior of a pro-
gram, and the only externally viewable behaviors should be
in terms of the requirements (often expressed through use
cases). When individual test cases themselves correspond
to some small part of the functionality of a program that the
user can see, it is easy to collect them into suites based on
the features that those bits of functionality comprise.

The assumption of tests aligning with features is present
in other experimental work, such as that of Mehta and
Heineman [31]. We provide further empirical evidence in
Section 5. We have found that in the systems we have stud-
ied for this paper (and others we have examined informally,
or even developed ourselves), even when testers and devel-
opers coincide, most test suites still decompose largely by
feature.

As an example of factoring by feature, consider the
test battery of a programming language interpreter. The
test cases typically consist of sample programs that get
run through the interpreter, paired with their expected val-
ues. Natural groups arise from these cases. For instance,
there will be some collection of tests that deal with numer-
ical primitives, some that deal with manipulating charac-
ter strings, some that deal with the scoping of procedures,
and so on. These groups correspond to the linguistic fea-
tures that the language provides to its users. Sometimes,
the suites are even organized by the sections of the program-
ming language’s reference manual!

Describing program changes in terms of features is par-
ticularly useful to a developer new to a system. New de-
velopers typically have only a spotty understanding of a
program’s structure; instead, they will run the program and
first form their model of it through its user-observable fea-
tures. Therefore, the test suites subscribe a vocabulary that
roughly corresponds to the user’s, and thus new developer’s,
ontology of a program.

The systems we studied came with good manually con-
structed test batteries, so these are the only kind we have
studied. Many researchers have considered automatically
generating test suites from specifications [35] and other
sources. We believe having such batteries would not inter-
fere with the application of our technique; if anything, test
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suites generated from specifications are even more likely to
conform closely to features.

3 Analysis Methodology

We begin by assuming that we have two versions of the
program. This is usually easy to reconstruct from a standard
version control system such as CVS [2]. For instance, a
programmer trying to understand a specific line of code may
use the version controller to first determine when that code
entered the codebase, then to reconstruct the state of the
system just before and immediately after the change that
committed it.

For simplicity, we also assume that the test battery does
not change between the two states of the system. While it is
usual for test batteries to grow, they usually do not undergo
a massive restructuring between commits, so this assump-
tion is quite reasonable.

Given these inputs, the methodology for extracting data
about the program from the test battery is simple:

1. Use a differencing utility to contrast the two versions
of the program. The utility needs to consume the two
program sources and generate a list of blocks of code
that have been added, deleted, or changed between
the two versions. The output may need processing so
that contiguous differences get coalesced into single
blocks, in the style of the Unix diff utility.

2. Run the test battery on both versions of the program,
gathering profiling information at the level of individ-
ual test suites. Profiling tools are available for most
languages; they essentially instrument the execution of
a program to record the frequency of executing each
unit of code. The profiling tool needs to monitor exe-
cution at the same level of granularity being captured
by the differencing tool: that is, if the differencer con-
siders individual lines of code, the profiler must also
track each line, not just each function.

The data collection procedure should ideally be both
lightweight (in terms of computational effort) and non-
intrusive (in terms of human effort).

The data that ensue from this process have the following
form:

ts 1 ts 2 ts 3 · · · ts m

block 1 1 0 0 0
block 2 1 1 0 0
block 3 0 0 0 0
block 4 1 1 1 1

...
block n 0 0 1 0

Each row of this table corresponds to one block of code that
the differencing utility identified as being added, deleted, or
changed in this modification to the program. Each column
depicts the execution of one test suite. A 1 in a particular
entry means that that particular code block was exercised
(as recognized by the profiler) by that test suite; a 0 means
that it was not run. For additions and changes, we use the
profiling results from the program after the change; for dele-
tions, we must use the results from the program before the
change.

Each row of this table tells us how the test suites im-
pacted the edit block on that row. In turn, the test suites
tell a story of the features that the edit likely impacts: the
row provides a capsule summary of the edit’s relationship
to the system’s features. We therefore call each row that
difference block’s feature signature: the feature signature
of a block of code is the vector of 0’s and 1’s that indicates
which test suites executed it.

Having obtained the feature signature of each difference
block, we can then summarize these data into a simple
graphical form. First we compute the sum of 0’s and 1’s in
the feature signature of each difference block, which tells us
how many test suites impacted that modification. We then
generate a histogram of these sums. This results in a précis
of the ways in which the test suites exercised the changes:

 0

 1

 2

 3

 4

 0  1  2  3  4

This is a histogram of the count of difference blocks
whose feature signatures have as many 1’s as the corre-
sponding x-axis value, that is, the count of difference blocks
that were executed by exactly x different test suites.

At this point, we ask the reader to pause and consider
what shape they expect of this histogram.

Where did the 0’s go? The column of 0’s in the his-
togram counts the number of difference blocks that were
not exercised by any test suites. We should be dismayed to
find any differences fall in this category! Yet in fact, we do
find several such differences in our experiments, but most
of these are harmless because they fall into two acceptable
categories:

1. The difference is caused by a comment or other meta-
data, not changes to the executing source.

2. The changes reside under pre-processor directives that
don’t get activated in this particular build. This is par-
ticularly common in programs like virtual machines
that contain directives to parameterize the program by
platform.

We therefore left these out of the histogram.
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4 Parameters for Case Study

This paper contains a case study that analyzes the form of
feature signatures. Our study employed two large software
systems:

• The standard interpreter for the Python [3] language,
written by Guido van Rossum and others.

• MzScheme [17], the virtual machine for the DrScheme
programming environment [16] and other applications.

The tests we used for MzScheme were factored into 25 to
38 suites, while the tests for Python were factored into 113
to 196 suites. (We list ranges because the number of tests
changes over time.)

Though both are language implementations, their imple-
mentation details differ in enough ways to mask superficial
similarities. In addition to significant differences in the lan-
guages they implement (some of whose features affect the
rest of the language and significantly alter implementation
strategy), the internals are structured as an interpreter versus
a partial compiler, employ a conservative garbage collec-
tor [10] versus a reference counter, support different num-
bers of platforms, etc. In addition, they have different devel-
opment models, release schedules and numbers and types of
contributors.

We chose these language implementations for four rea-
sons. First, they represent non-trivial implementation ef-
forts over many years. Second, they have a significant num-
ber of features (in this case, largely the language constructs;
though Scheme itself [23] is a small language, MzScheme
supports exceptions, classes, mixins, two module systems,
and more). Third, by already being familiar with the general
architecture of programming language implementations, we
were able to save the time of acquainting ourselves with the
ontologies of the systems, which we would need to know
to manually evaluate the success of our methodologies. Fi-
nally, we use these freely available Open Source programs
to make it easy for others to repeat our experiments.

We emphasize that we worked with both systems “in a
state of nature”. That is, starting from the publicly available
implementations, we made no changes to source code, and
only minor changes to test batteries. The changes to the
batteries primarily involved

• disabling test suites incompatible with our hardware
(e.g. audio tests), and

• separating multiple, clearly-identified suites that
resided in a single file into separate files.

We should stress that we were careful to not exploit the
third author’s developer status in the DrScheme project;
we treated the MzScheme corpus exactly as we did that of

Python, working strictly through the anonymous CVS ac-
cess provided to all.

Both of these programs are written in C. We needed
to choose corresponding tools for differencing and profil-
ing. We chose to adopt the naı̈ve differencing that Unix’s
diff offers. Because diff reports differences as contigu-
ous blocks of changed lines, the function-level profiling of
gprofwas inappropriate; we therefore instead used gcov,
which is part of the gcc compiler suite. In our reports, we
adopt the convention that a block executes if at least one
of the lines in it executes (according to gcov); difference
blocks are not restricted to being basic blocks [4]. Fortu-
nately, for manually-written code in C, the line is a useful
unit of abstraction.

Note that this data collection procedure meets our orig-
inal goal of being both lightweight and non-intrusive. It
is (hopefully!) common practice to run a test battery be-
fore committing changes. Our system can easily run in the
background to collect its information, since it requires no
additional programmer intervention.

5 Feature Signature Analysis

Figures 1 and 2 show the histograms that result from our
case study. Recall that the ith bar of the histogram tells the
number of changed blocks of code that were executed by
exactly i test suites. The left-hand-side of each graph thus
shows the number of change blocks that were executed by
only a small number of test suites, while the right-hand-side
shows how many were impacted by most of the test suites.

Figure 1 presents histograms for the following (relatively
small) changes to Python:

(a) The total number of difference blocks is 42. The change
allows Python users to subclass builtin classes.

(b) The total number of difference blocks is 56. The change
adds deep object comparison to the language.

(c) The total number of difference blocks is 32. The change
modifies the default behavior of the division operator.

(d) The total number of difference blocks is 27. The change
reflects an optimization of the unary arithmetic opera-
tors.

Each of these changes was made over the course of between
one and five CVS commits. Examining these graphs shows
that they have a very distinctive shape: most differences
blocks fall near the left or right edge of the histogram. Very
few of the blocks fall in the middle. Note that the above
changes are semantically unrelated, so the similarity in fea-
ture signature structure is not (as best as we can tell) in any
way due to a deep similarity in the language itself or the
implementation of these particular operations.
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Figure 1. Feature signature histograms for small changes to Python
These are histograms of the number of difference blocks that were executed by exactly each number of different test suites.5



Figure 2. Feature signature histograms for large changes to Python and MzScheme
These are histograms of the number of difference blocks that were executed by exactly each number of different test suites.

The line graph shows the number of naı̈ve clusters present among changes with each number of 1’s in their feature
signatures.
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We created these histograms for several other Python
changes of similar magnitude. In all these cases, we found
graphs that were nearly identical in shape to those above,
despite also being for semantically unrelated changes.

Figure 2 presents much more significant changes to
Python—no longer at the level of a small number of com-
mits, but at the level of significant releases:

(a) The total number of difference blocks is 2442. The
change represents the edits between Python version
1.5.2 and 2.2.

(b) The total number of difference blocks is 103. The
change represents the edits between Python version 2.2
and 2.2.1.

These changes are different from the previous set in two
notable ways:

• The number of difference blocks is much greater, as
much as by two orders of magnitude.

• The changes consist of aggregates of from fifty to sev-
eral hundred commits.

Remarkably, even in these two cases the graphs have the
same shape—change blocks concentrated at the left and
right ends.

The changes we have seen so far are all edits to the
Python source, which leaves open the possibility that these
are artifacts of the Python development methodology. We
therefore repeated these experiments on an unrelated source
code base, namely MzScheme. Figure 2 presents the fol-
lowing changes:

(c) The total number of difference blocks is 668. The
change captures the edits between MzScheme versions
102 and 103. The edits took place over two months and
mostly consisted of small bug fixes. Thus, while large
in scope, it was small in impact.

(d) The total number of difference blocks is 2400. The
change reflects the edits between versions 103 and 200,
which took 21 months. These are actually consecutive
versions; the new version number series reflects sub-
stantially revisions not only in the implementation but
also to the language itself. Changes included a dif-
ferent object system, a different macro system, a new
module system, another garbage collector, and so on.
Thus, this was a change of enormous scope.

We see again the same concentration of change blocks at
the left and right ends of the histogram. Because many of
the changes were to the core language implementation, it is
not surprising that the graphs are skewed slightly more to
the right than those for Python, for the reason we explain
below.

We have also manually studied the difference blocks in
many of these cases, and in each case found that the number
of suites impacting the block is consistent with the change’s
actual impact:

1. Blocks that are on the right appear to affect all uses
of the system. In the case of Python and MzScheme,
we find that these tend to be changes to infrastructure
such as the garbage collector. We therefore call such
differences infrastructural.

2. Blocks that are on the left really do appear to pertain
to a very small number of features (i.e., their position
is not merely a test suite artifact). We label these fea-
turistic changes.

The shape of the typical histogram says that almost all
change blocks are either featuristic or infrastructural.

We find it quite remarkable that these and other experi-
ments exhibit such strong similarity. Obviously we cannot
extrapolate wildly from these findings, but we find these
similarities promising, and suggest that an analysis based
on them may apply broadly.

6 Clustering

While feature signatures and their frequencies give us
some information about program changes, for many of the
applications we describe later the number of differences is
simply too many. Obviously, a programmer cannot contend
with thousands of little difference blocks; we must group
these into clusters of related ones. Clusters must reflect
conceptual changes: aggregates of changed blocks that the
programmer thinks of as one change to the program. It is of
course impossible for a tool to determine these relationships
automatically; the best we can do is abduce intent based on
similarity, as do many other AI tools. (Fortunately, we en-
vision that the results of clustering will be used primarily
to guide humans, not in a purely automatic manner.) In the
programs we studied, there was always more than one con-
ceptual change per CVS commit (if there were only one,
then we could simply make a commit a single cluster).

6.1 Naı̈ve Clustering

One easy clustering technique is to simply group to-
gether all of the code blocks with identical feature signa-
tures. We call the clusters that ensue from this grouping
naı̈ve clusters. To analyze this technique’s utility, we per-
formed an analysis of the naı̈ve clusters for the seven small
changes to Python. For these changes, we had good com-
ments by the authors in the change logs about the concep-
tual changes made; there was always more than one such
conceptual change between the versions we studied.
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Our study of the naı̈ve clusters suggests that they match
well with conceptual changes. That is, in the changes we
investigated, all the code blocks grouped into a naı̈ve clus-
ter were clearly identifiable as one conceptual change to the
program. In addition, the test suites that exercised the ed-
its in a cluster corresponded with the features that the edits
impacted conceptually.

Furthermore, our analysis showed that for both small and
large edits, the number of naı̈ve clusters was significantly
less than the number of change blocks. Since the num-
ber of clusters is not very meaningful for small changes,
we present them only for the major changes to Python and
MzScheme (see the line graphs in Figure 2). (This presenta-
tion makes sense because change signatures must have the
same number of ones in order to have a chance of being
equal, so naı̈ve clusters can only be formed among change
blocks that fall in the same bar of this graph.) Reading
the graphs left-to-right, the number of clusters begins small,
then dwindles to one or zero.

6.2 Other Potential Clustering Methods

While the naı̈ve clusters are a significant improvement
over looking at blocks individually, they are “incomplete”,
in the sense that not all change blocks that are part of the
same conceptual edit always fall within the same cluster.
We therefore undertook a more careful study of the data.
We took several Python program changes and, for each one,
manually partitioned the naı̈ve clusters into a small number
of conceptual changes. We found that naı̈ve clusters with
feature signatures that had a low Hamming distance (the
count of placewise discrepancies between the two vectors)
tended to group together. However, another prevalent pat-
tern we observed was that naı̈ve clusters such as these two,

ts 1 ts 2 ts 3 . . . ts m

Block 1 1 1 0 . . . all 0’s . . . 0
Block 2 1 1 0 . . . all 1’ . . . 1

where all test suites that ran Block 1 (the block run by fewer
tests) also ran Block 2 (the one run by more tests), often
needed to be grouped into the same conceptual edit. These
naı̈ve clusters have a high Hamming distance; that is, they
do not have a high absolute number of ones in common
components. However, two vectors cannot share more ones
than the number of ones in the vector with fewer of them,
and the percentage of ones that they share relative to this
bound is high.

We can exploit this pattern by using a clustering algo-
rithm that is parametrized by a similarity metric and sup-
plying an appropriate metric. We employed the following
one:

1. Treat the two feature signatures as vectors of zeroes

and ones, u and v of length n, where n is the number
of test suites run.

2. Let count(v) =
∑n

i vi; that is, the number of ones in
v.

3. Let sharedones(u, v) = u · v. Note that because u

and v are vectors of zeroes and ones, this dot product
counts the number of ones they share in the same com-
ponent.

4. The similarity between two vectors is given by

d(u, v) = sharedones(u,v)
ρ∗min(count(u),count(v))+(1−ρ)∗max(count(u),count(v))

where a useful value of ρ was 0.8. The higher ρ is,
the more important it is that vectors share all possible
ones; smaller values of ρ place more emphasis on the
absolute number of ones in common.

5. Subtracting the similarity from 1 gives the distance.

We used the similarity metric based on d with the k-
mediods clustering algorithm [22], which is parametrized
by the similarity metric used to compare vectors, as well as
the number of clusters generated (k).

While the results of using d were encouraging, they did
not correspond exactly to our manually-constructed clus-
ters. In part, this is because there are several meaningful
clusterings of the changes, so disagreement with our manual
clustering was not always indicative of a problem. Only in
very few cases, moreover, did we consider the automatically
constructed clusters wrong. However, one shortcoming of
this specific method is that it requires the programmer to
propose a number of clusters (the k in k-mediods), though
this is a concern common to many data mining approaches.

Consequently, the experimental work in the rest of this
paper relies on naı̈ve clusters—underapproximation is gen-
erally safer than overshooting, and hand-examination re-
vealed that the naı̈ve clusters were useful underapproxima-
tions. However, the d metric shows how knowledge about
the structure of feature signatures can be applied in the de-
sign of a clustering technique. We have included this pre-
sentation of an alternative clustering technique to highlight
that advances in clustering techniques can improve our re-
sults, and to present a direction for further exploration. This
remains a significant area for future research.

7 Applications

Feature signatures and their clusters are versatile: they
give rise to numerous useful and diverse analyses.
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7.1 Rationale Construction

There are two ways to apply the information from the test
suite vectors to the rationale problem. The first is a tool that
helps programmers write better rationales when they per-
form a commit; the second is a related tool that helps later
programmers discover rationales ex post facto for poorly-
annotated changes.

At its simplest, the feature signature is useful for creating
templates of change logs that are kept in version control
software. A tool can generate a template for each change
block as follows:

Objects/classobject.c_4
[lines 1235-1235 in the new version]

is associated with the features:
test_class
test_coercion

(The _4 identifies a unique block amongst the changes
made to the file. The subsequent lines list the features in
its feature signature.)

Given a cluster of blocks that are part of a conceptual
edit, we can supply the union of their non-infrastructural
feature signatures as the rationale template. For example:

Blocks:
Objects/listobject.c_9 [1364-1364 (new)]
Objects/listobject.c_8 [1361-1362 (new)]
Objects/listobject.c_7 [1344-1344 (new)]
Objects/listobject.c_6 [1341-1342 (new)]
are associated with the features:
test_types
test_userlist

Generating these templates has two main benefits: (a)
it prompts programmers to provide meaningful descriptions
of changes, and (b) it reminds programmers of changes they
may otherwise forget to document by giving much more
fine-grained information than merely which files changed.2

The templates also help a subsequent code browser identify
incomplete logs. Furthermore, by being lightweight and au-
tomatic, this process is easy to integrate with a tool such as
CVS.

This process is equally useful to programmers attempt-
ing to understand a program. Given an unclear code frag-
ment, the programmer gets the changes that impacted the
code, and then applies our methodology to pairs of versions;
the features that the code impacted at each change then tell
the programmer something about how the code evolved to
its current state.

2In their personal experience as developers, the authors have certainly
had instances when they have forgotten about changes made between com-
mits and hence failed to document some of them.

The key reason that these techniques are meaningful is
the pattern of featuristic and infrastructural changes: a code
block will likely either have only a few features in its ra-
tionale or be infrastructural. Rationale generation would
also benefit from detailed knowledge of which individual
test cases impacted the difference, especially if the number
of test cases is small. We have not explored this extension
in the present work.

7.2 Test Suite Structure Investigation

Following the work of Birkhoff [9], Ganter and Wille
[18] defined the notion of concept analysis as a way of un-
derstanding and clustering data. Concept analysis lets users
alternate between tabular and hierarchical views of lattices.
In particular, given the tabular view, it lets the user con-
struct a lattice whose ordering relationship identifies the
relationship between maximal collections of “objects” (in
our case, difference blocks) that have the same set of “at-
tributes” (here, test suites). Concept analysis has been used
in other software engineering projects for program refactor-
ing such as that of Siff and Reps [36] and Tip and Snelting
[38].

Most changes should carry enough information in the
matrix of 0’s and 1’s to construct concept lattices. We show
in Figure 3 the concept lattice that ensues from adding deep
object comparison to Python.3 Studying the concept lattice
helps the user understand potentially subtle relationships
between the test suites. For instance, the shaded portion
of the figure highlights a pair of test suites, test format
and test unicode (labeled (a) and (c) in the figure, re-
spectively), with the relationship that whenever the first ex-
ercised a difference block, so did the second.

We have manually examined some of the concept lattices
to find that the relationships contained in the lattices are
in fact semantically meaningful. Instances when they are
not point developers to problems with the code, test suite
structure or both. In particular, they suggest instances when
suites contain tests that are not especially pertinent to the
feature that the test purports to capture.

We believe we can use this lattice to improve the clus-
tering of difference blocks as well. As Section 6 explains,
while naı̈ve clusters are useful, they sometimes draw too
many distinctions. Relaxing this clustering amounts to
knowing when a 0 in one feature signature can “match” a
1 in another. Knowing the relationship between test suites
helps us determine when we should perform feature sub-
sumption. For instance, in Figure 3, the concept labeled
(b), test sre, dominates (c), test format; indeed, we
found that the test sre column was more important than
the test format column when manually clustering.

3We thank Christian Lindig for sharing his software for generating con-
cept lattices.
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Figure 3. Concept lattice for a Python change

7.3 Visualizing Related Changes

Many code editors and browsers use colors to highlight
syntactic “parts of speech”. While this may be useful to
some programmers, it provides only minimal information
about the program’s semantics; in particular, syntactic col-
oring merely restates what is fairly obvious from the pro-
gram source. Visually identifying features is likely to be
much more useful to a user. The relatively small number
of clusters means the user will not be swamped by an over-
whelming panoply of colors.

Figure 4 shows the prototype of such a tool operating on
a small segment of the Python source. Each cluster is given
a different color. All lines of code that are given the same
color are part of the same feature; syntactically distant but
semantically related edits have the same color. A tool like
Codesurfer [5] has built-in support for performing such col-
oring. Natural extensions to such a tool include a “mouse-
over” action that displays the feature set corresponding to a
particular color.

7.4 Aspect Mining

When developers commit significant changes to a code-
base, they often add important new features to the system.

We see this in our case studies just from the growth of the
number of feature-oriented test suites. Yet each new fea-
ture often corresponds to edits to multiple portions of the
program source that may not be immediately related. The
very fact that multiple difference blocks for the same fea-
ture fall within a single cluster immediately suggests this
kind of distribution of a feature’s implementation, since
by definition distinct difference blocks correspond to non-
contiguous changes to the code. This corresponds exactly
to (and validates) the intuition behind aspect-oriented pro-
gramming [25].

Our visualization helps programmers to identify these
kinds of changes to the codebase. In principle, a program-
mer should then be able to extract these changes and isolate
them into a module.

Unfortunately, this process runs into shortcomings in
modern aspect technology. Some forms, such as As-
pectJ [24], are very good at performing an intrusive (i.e.,
without respect to modular boundaries and interfaces) but
consistent change at many places in the program. Other
forms, such as mixin layers [37] or HyperJ [19], are best
at performing disparate changes but only at well-defined
points. The changes we identify are both intrusive and dis-
parate. This suggests the need for better aspect technology
to capture and modularize the kinds of changes we notice
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Figure 4. Code colored according to naı̈ve
clusters

occurring in practice. Due to the lack of such technologies,
we are unable to provide tool support for this form of aspect
mining.

8 Related Work

Our work on code rationales was significantly influenced
by past work on design rationales in other engineering con-
texts. Many other researchers have studied the need for
recording design rationales and techniques for doing so.
First, various formal languages and processes have been
proposed for manually encoding rationales for decisions
as they are made. These include Problem-Centric Design
Rationale [28], Issue-Based Information System [12], De-
sign Representation Language [27], and Questions, Op-
tions, Criteria[29]. While these efforts help structure the
rationale discovery process, and can hence lead to substan-
tial documentation, the significant human element means
they provide very limited opportunity for automation.

Other techniques provide near-complete automated ra-
tionale capture by requiring engineers to adopt new prac-
tices and tools. Myers, et al. [33] describe a tool for ratio-
nale capture of circuits by observing the designers actions
in a CAD tool. Baxter [8] uses program transformations
over a clean initial specification to capture rationales. Un-
fortunately, such tools are deeply intrusive, and are certainly
unlikely to work at the Internet scale.

Some design rationale techniques strike a balance be-
tween these extremes by requiring some effort on the part of
the user but also automating what rationale capture they can.
Bahler and Bowen [6] describe a programming language for
constructing constraint-based design advisors; these advis-
ing programs record rationale in terms of either the con-
straints satisfied by an action or the constraints that a user
is disabling in order to complete an action. Egyed [13] uses
a profiling technique to help generate and validate associa-
tions among source code and other software artifacts; code
rationale could then be presented in terms of those other
artifacts. However, the programmer must seed the system
with some hypothetical relationships. Program understand-
ing tools such as the Programmer’s Apprentice [34] allow
the user to tile the program with common code patterns,
and thus explain pieces of code in terms of patterns. Mur-
phy and colleagues [32] provide a method for finding where
an abstract model of a system and the source code diverge,
thus allowing the programmer to check his guesses about
the overall program structure. These are extremely differ-
ent in flavor than the tools we describe in this paper.

Many aspects of our work rely on techniques that have
been thoroughly treated in the literature. Clustering is one
such technique; Fasulo [15] provides an overview of current
clustering techniques, while Kaufman and Rousseeuw [22]
describe the k-mediods algorithm that we used. Concept
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analysis was pioneered by Ganter and Wille [18], and has
since been applied to program comprehension and refactor-
ing [36, 38].

In this paper we use diff for program comparisons.
Yang [41] describes a better program comparison utility.
Even better results should ensue by accounting for the pro-
gram’s behavior, but tools that do this [20, 21] tend to be
very sensitive to the quality of pointer analyses. While there
are some efficient points-to analyses for C, they tend to per-
form poorly in the face of complex pointer manipulations,
which manifest repeatedly in the kinds of applications we
have studied in this paper. (In general, there is a tension
between the underapproximation resulting from testing and
the overapproximation inherent in static analyses.)

Our work is closely related to dynamic slicing [26] and
similar tracing techniques. This has mainly been employed
for program comprehension and debugging [26] and visu-
alizations [7, 30]. For instance, χSuds [1] lets the user vi-
sualize code features using coloring schemes similar to the
one we propose, but lacking clustering; we believe the vol-
ume of data would pose an overwhelming cognitive burden
to the programmer.

In the same vein, Mehta and Heineman [31] describe
a process for refactoring legacy systems into components.
They offer a technique for clustering test cases into feature-
specific suites, which we can exploit when applying our
work to systems whose test batteries are not already so fac-
tored. They then propose separating code into components
by feature by computing the ratio of coverage of each func-
tion by each test. Their distinction between “core” and “li-
brary” code is similar to ours between featuristic and infras-
tructural changes. Their experimental work, however, does
not consider the evolution of systems over time, nor does
it identify evolutionary patterns akin to those presented by
our histograms.

Wilde and colleagues [39, 40] describe a dynamic analy-
sis based on test cases for discovering the code implement-
ing a single specific feature. They propose identifying fea-
tures through tests using two small test suites, one related to
the feature and another unrelated, then finding basic blocks
exercised by the first suite and not by the second. Their
work is, however, limited to a single feature at a time, and
does not provide the analysis of feature signatures that we
do. Eisenbarth, Koschke and Simon [14] expand this work
to multiple features using concept analysis. Though the pro-
filing data they collect and the concept lattice they build
are similar to ours, they utilize the concept lattice to guide
manual feature discovery based on the program dependency
graph rather than to investigate the structure of the test bat-
tery.

9 Conclusion and Future Work

We have presented a lightweight yet effective technique
for studying the evolution of programs. We propose a no-
tion of feature signature, which identifies the features of a
system that impact a change. We determine impact dynam-
ically by profiling using a program’s test suites.

Our experiments with two significant software systems
shows that feature signatures are a useful measure of
changes. In particular, we find that most changes tend to
pertain to either a very small number of features or to al-
most all of them. As a result, we can draw a distinction
between changes made to the program’s infrastructure and
ones made to implement or modify very specific features.
We also use the feature signatures as inputs to clustering al-
gorithms to group related changes. We then show that the
bimodal nature of changes, and the availability of clusters,
lead to numerous useful applications. We present proto-
types of tool support for most of these applications.

For future work, we need to consider many more sources
of information, such as fine-grained changes to test suites,
success and failure of test cases, profiling counts, better
differencing techniques, and better clustering algorithms
(such as ones that can exploit the test suite relationships de-
scribed by the concept lattice). Additionally, experiments
with other software systems would test our claims about the
shape of feature signatures.
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