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Abstract
Several recent security-typed programming languages, such as
Aura, PCML5, and Fine, allow programmers to express and en-
force access control and information flow policies. Most of these
security-typed languages have been presented as new, stand-alone
language designs. In this paper, we instead show how to embed
a security-typed programming language within an existing depen-
dently typed programming language, Agda. This language design
strategy allows us to inherit both the metatheoretic properties, such
as type safety, and the implementation of the host language. Our
embedded language accounts for the major features of these ex-
isting security-typed programming languages, including decentral-
ized access control, stateful and dynamic policies, spatially dis-
tributed and principaled computation, and information flow. Our
embedding consists of the following ingredients: we represent the
syntax and proofs of an authorization logic, Garg and Pfenning’s
BL0, using dependent types, and implement a proof search proce-
dure, based on a focused sequent calculus, to ease the burden of
constructing proofs. Additionally, we represent computations as a
monad indexed by pre- and post-conditions drawn from the autho-
rization logic, which permits stateful policies that change during
execution. Our work shows that a dependently typed language can
be used to prototype a security-typed language with all of these
features.

1. Introduction
Security-typed programming languages allow programmers to
specify and enforce security policies, which describe both access
control—who is permitted to access sensitive resources?—and in-
formation flow—what are they permitted to do with these resources
once they get them? These languages enforce adherence to policies
using a combination of compile-time and run-time techniques. For
example, Aura [27] and PCML5 [8], enforce access control us-
ing proof-carrying authorization [7]: the run-time system requires
every access to a sensitive resource be accompanied by a proof
of authorization, while the type system aids programmers in con-
structing correct proofs. Other languages, such as Fable[38] and
Jif[18], enforce information flow properties using type systems
that restrict the use of values that depend on private information.
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Yet other languages, such as Fine[39], combine these techniques to
enforce both.

However, the security-typed languages described in the litera-
ture are presented as new, stand-alone language designs. This has
costs to the language designer, who must define and study a new
language (e.g. the metatheoretic properties of Aura take 12,000
lines of Coq code to establish), to the language implementer, who
must implement a new compiler (e.g., the prototype Fine compiler
is comprised of approximately 15,000 of F# code), and to program-
mers, who must learn new languages and their infrastructures.

In this paper, we instead show how to embed a security-typed
programming language within an existing dependently typed pro-
gramming language, Agda [33]. This language design/implementation
technique makes our implementation more concise, consisting of
only 1400 lines of Agda code. Moreover, our language inherits
standard metatheoretic results, such as type safety, from the host
language. Finally, programmers may exploit existing tools, such as
Agda’s interactive proof editor.

Our embedded language accounts for the major features of
existing security-typed programming languages:

Decentralized Access Control Access control policies are ex-
pressed as propositions in an authorization logic and enforced via
a type system that mandates the existence of certain proofs. The
authorization logic, Garg and Pfenning’s BL0 [21], permits decen-
tralized access control policies, expressed as the aggregate of state-
ments made by different principals about the resources they control.
In our embedding, we represent BL0’s propositions and proofs us-
ing dependent types, and exploit Agda’s type checker to validate
the correctness of proofs.

Stateful and Dynamic Policies Whether or not one may access a
resource is often dependent upon the state of a system. For example,
in a conference management server, authors may submint a paper,
but only before the submission deadline. Fine accounts for stateful
policies using a technique called affine types. However, affine types
require a special substructural notion of variables, which Agda does
not currently provide.

In this paper, we show that one can instead account for state-
ful policies using an indexed monad. Following Hoare Type The-
ory [32], we define a type © Γ A Γ′, which represents a com-
putation that, given precondition Γ, returns a value of type A,
with postcondition Γ′. Here, Γ and Γ′ are propositions from the
authorization logic, describing the state of resources in the sys-
tem. For example, consider the operation in a conference man-
agement server that closes submissions and begins reviewing. This
can be represented by a computation that hase type© (InPhase
Submission) Unit (InPhase Reviewing): given the confer-
ence is in phase Submission, this computation returns a value
of type Unit, and the state of the conference has been changed
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to Reviewing For comparison between the approaches, we adapt
Fine’s conference management example to our indexed monad.

Our language also permits dynamic acquisition and generation
of policies—e.g., generating a policy based on reading the state of
the conference management server from a database on startup.

Spatially-Distributed and Principaled Computation Our in-
dexed monad© Γ A Γ’ subsumes other indexed notions of com-
putation that have been used for security typed languages, such as
spatially distributed computation as in PCML5, and computation
on behalf of a principal, as in Avijit and Harper [8].

Information Flow Information flow policies constrain the use of
values based on what went into computing them, e.g. tainting user
input to avoid SQL injection attacks. We represent information flow
using well-established techniques, such as indexed monads [36]
and applicative functors [39].

Compile-time and Run-time Theorem Proving Security-typed
languages require a combination of static and dynamic verification.
For example, when the access control policy of a system is known
at compile-time, it is possible to statically verify that a program
complies with it. In our language, programs can be verified against
a statically-given policy by annotating each access to a resource
with an authorization proof, whose correctness is ensured by type
checking. However, in many programs, the policy is not known at
compile time (e.g., the policy depends upon the system state, or
information in a database). These programs must dynamically test
whether an operation is permitted by the policy before performing
that operation.

Thus, relative to typical ML or Haskell code, the added cost of
verifying security properties consists of (a) static proof annotations
and (b) dynamic checks against the policy. To reduce this burden,
we have implemented a certified theorem prover for our authoriza-
tion logic, based on a focused sequent calculus. Our theorem prover
can be run at compile-time to compute proof annotations—in which
case failure to find a proof is a compile-time error. The same theo-
rem prover can also be run at run-time to dynamically test whether
an operation is allowed by a policy—in which case failure to find
a proof is a possibility that must be handled at run-time. Our theo-
rem prover also saves programmers from having to understand the
details of the authorization logic, as they often do not need to write
proofs manually.

Our work shows that a dependently-typed language can be used
to prototype a security-typed language, and provides an example of
using a dependently-typed language to construct a domain-specific
type system. We exploit the expressiveness of dependent types in
many ways: we use indexed inductive definitions to statically check
proofs, datatype-generic programming to implement syntactic op-
erations such as weakening and substitution, type-level recursion
over values to improve the conciseness of specifications, and reflec-
tive theorem proving to automatically discharge proof obligations.

The remainder of this paper is organized as follows: In Sec-
tion 2, we show a variety of examples, including a file system inter-
face, an example of spatially distributed programming with infor-
mation flow, and a conference management server example adapted
from Fine. In Section 3, we describe the we discuss the Agda em-
bedding of our language, including the representation of the logic
and the implementation of the theorem prover. In Section 4, we
discuss some implementation details. Finally, we discuss related
work in Section 5 and conclude in Section 6. The Agda code for
this paper is available from http://www.cs.cmu.edu/~drl.

Agda We briefly review Agda’s syntax, referring the reader to the
Agda Wiki(wiki.portal.chalmers.se/agda/) for more intro-
ductory materials. Dependent function types are written with paren-
theses as (x : A) � B. An implicit dependent function space is

Admin says (∀r.∀o.∀f.
HR says employee(r)
∧ System says owns(o, f)
∧ o says mayread(r, f))
⊃ mayread(r, f))

System says owns(Jamie, secret.txt)
HR says employee(Dan)
HR says employee(Jamie)
Jamie says mayread(Dan, secret.txt)
Jamie says mayread(Jamie, secret.txt)

Figure 1. Sample access control policy

written as {x : A} � B or ∀ {x} � B — arguments to im-
plicit functions are inferred. Non-dependent functions are written
as A � B. Anonymous functions are written as λ x � e. Named
functions are defined by clausal pattern-matching definitions. Let
bindings are written as let x = e1 y = e2 ... in e, and lists
are constructed by [] and :: (note that : is used for type anno-
tations). Agda supports infix and mix-fix operators, which we will
use heavily in our embedded logic. Set is the classifier of classifiers
in Agda, like the kind type in ML or Haskell.

2. Examples
Security-typed languages provide a variety of mechanisms for en-
forcing security policies, and the best methodologies for applying
these tools in building larger applications are not yet understood.
In this section, we consider several small examples, which demon-
strate that our language provides the type-theoretic tools necessary
to implement the benchmark examples considered in the literature.
We leave a careful study of the best ways of deploying these tools
in practice to future work.

2.1 File IO with Access Control
2.1.1 Policy
We introduce BL0 access control policies with the example in Fig-
ure 1. This policy should be read as follows: First, the princi-
pal Admin says that for any reader, owner, and file, if human re-
sources says the reader is an employee, and the system administra-
tor says the owner owns the file, and the owner says the reader
may read a file, then the reader may read the file. Admin is a
distinguished principal whose statements will be used to govern
calls to operations like reading a file. Second, the system adminis-
trator says Jamie owns secret.txt. Second, human resources says
both Dan and Jamie are employees. Fourth, Jamie says Dan and
Jamie may read the file. This policy illustrates decentralized ac-
cess control using the says modality, where policies are comprised
of the statements by a variety of different principals about the re-
sources they control. Various definitions of says have been stud-
ied [1, 2, 3, 7, 8, 16, 21, 23, 24, 26, 27, 29].

For the principal Dan to read secret.txt, it will be sufficient
to deduce the goal Admin says mayread(Dan, secret.txt). This
proposition is provable from the above policy because of three
properties of says: First, says is closed under instantiation of uni-
versal quantifiers (that is, k says ∀x.A(x) entails ∀x.k saysA(x)).
Second, says distributes over implications (k says (A ⊃ B) entails
((ksaysA) ⊃ (ksaysB)). Third, every principal believes that every
statement of every other principal has been made (k says A entails
k′ says (k says A))—though it is certainly not the case that every
principal believes that every statement of every other principal is
true. Thus, the goal can be proved by taking the policy stated by
Admin (∀r.∀o.∀f. . . .), instantiating the quantifiers, and using the
other statements in the policy to satisfy the preconditions.
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The above policy is rendered in Agda as the first element of the
following context (list of propositions):

Γpolicy =
(Prin "Admin" says
(∀e principal · ∀e principal · ∀e filename ·

let owner = . (iS (iS i0))
reader = . (iS i0)
file = . i0 in

( ( (Prin "HR" says (a- (Employee · reader)))
∧ (Prin "System" says (a- (Owner · (owner , file))))
∧ (owner says (a- (Mayread · (reader , file)))))
⊃
(a- (Mayread · (reader , file)))))) ::

(Prin "Admin" says
(∀e principal ·
∀e filename ·
(Prin "System" says (a- (Owner · (. iS i0 , . i0))))
⊃
(a- (MayChown · (. iS i0 , . i0))))) ::

[]

Similarly, the second clause expresses a policy that an owner
of a file may change its ownership. Variables are represented as de
Bruijn indices (i0, iS), constants are represented as injections of
strings (Prin "Admin"), and atomic propositions are tagged with
a polarity (a+ or a-), which can be thought of as a hint to the
theorem prover. Quantifiers are written ∀e τ · A, where τ is the
domain of quantification and A is the body of the quantifier. Atomic
propositions are written p · t, where p is a proposition constant
such as Mayread and t is a term (see Section 3 for details).

Next, we define a context representing a particular file system
state. This context includes all the employee, ownership, and read
facts mentioned above, with one additional clause saying that Dan
may su as Jamie.

Γstate =
(Prin "System" says

(a- (Owner · (Prin "Jamie" , File "secret·txt"))))
:: (Prin "HR" says (a- (Employee · (Prin "Dan"))))
:: (Prin "HR" says (a- (Employee · (Prin "Jamie"))))
:: (Prin "Jamie" says

(a-(Mayread · (Prin "Dan" , File "secret·txt"))))
:: (Prin "Jamie" says

(a-(Mayread · (Prin "Jamie" , File "secret·txt"))))
:: (Prin "Admin" says

(a- (MaySu · (Prin "Dan" , Prin "Jamie"))))
:: []

Γall = Γpolicy ++ Γstate

Finally, we let Γall stand for the append of Γpolicy and Γstate.

2.1.2 Compile-time Theorem Proving
We now explain the use of our theorem prover:

goal = a-(Mayread · (Prin "Dan" , File "secret·txt"))

proof? : Maybe (pfCtx Γall ` goal)
proof? = prove 15

theProof : pfCtx Γall ` goal
theProof = solve proof?

The term proof? sets up a call to the theorem prover, attempting
to prove mayread(Dan, secret.txt) using the policy specified by
Γall. Proofs are represented by the Agda type θ ` A, where θ
is a context and A is a proposition. The function pfCtx : TCtx+
[] � Ctx coerces a list of propositions (abbreviated TCtx+ [])
such as Γall into a context (see Section 3 for more on the context
structure of the logic). The context and proposition arguments

to prove can be inferred by Agda, and so are left as implicit
arguments. The term theProof checks that the theorem prover
succeeds at compile-time in this instance: the function solve has
type Maybe A � A, provided that the Maybe A is known to be
of the form Some x. The term proof? is (definitionally) equal
to Some p in Agda; in general, a call to the theorem prover on
a context and a proposition that has no free Agda variables will
always be equal to either Some p or to None.

2.1.3 Computations
We present a monadic interface for file operations in Figure 2. This
figure shows both the generic IO operations, as well as three file-
specific operations for reading, creating, and changing the owner of
a file. The type© Γ A Γ’ represents a computation with precon-
dition Γ and postcondition Γ’. The postcondition is a function from
A’s to contexts, modelling the fact that the postcondition can depend
on the result of the computation (see create below). The generic
operations are typed as follows: The postcondition of return is
the same as its precondition, because it does not modify the state
of the world. Bind (>>=) chains together two computations, where
the postcondition of the first is the precondition of the second, for
all results of the computation. Both pre- and postconditions can
be weakened to larger and smaller contexts, respectively; the Good
predicate can be ignored until Section 2.1.4 below. In this interface,
primitives like getLine (reading a line of input) and print do not
change the state and do not require proofs. The postcondition of
error can be arbitrary, as it will never be reached. The remaining
computations are defined as follows:

Read The function read takes a principal k and a file f, along
with a proof that the principal may read the file (Mayread(k,f))
and that the computation is running as the principal (As(k)). the
proof must be given in the context Γ that is the precondition of the
computation, ensuring that the proof is valid in the current state of
the world. read returns a String, and leaves the state unchanged.
The proof argument ensures that well-typed programs adhere to the
authorization policy. Additionally, these proofs may be logged for
later audit by system administrators [27].

An example call to read looks like this:

jread : © (Γall as "Jamie") String (λ _ � (Γall as "Jamie"))
jread = read (Prin "Jamie") (File "secret·txt")

(solve (prove 17))

jreadprint : © (Γall as "Jamie") Unit (λ _ � (Γall as "Jamie"))
jreadprint = jread >>= λ x �

print ("the secret is: " ^ x)

The function call Γall as k is shorthand for adding the proposi-
tion As(k) to the context Γall. The computation jread reads the
file secret.txt as principal Jamie; the proof argument is sup-
plied by a call to the theorem prover, which ensures at compile-time
that the required fact is derivable from the policy. The computation
jreadprint first reads the file and then prints the result.

Create The type of create is similar to read, in that it takes a
principal and a proof that the principal can create a file (in this case,
the fact that the principal is a registered user is deemed sufficient).
It returns a String, the name of the created file, and illustrates
why postconditions must be allowed to depend on the return value
of the computation: the postcondition says that the principal is the
owner of the newly created file. Thus, after a call to create(k),
the postconditions signify System says Owner(k,f), where f is
the name of the new file.

Chown To specify chown, we use a type Replace x y Γ ∆,
which means that ∆ is the result of replacing exactly one occur-
rence of x in Γ with y. Replace (whose definition is not shown) is
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defined by saying that (1) there is a de Bruijn index i showing that
x is in Γ and (2) ∆ is equal to the output of the function replace y
i, which recurs on the index i and replaces the indicated element
by y. The type of chown should be read as follows: if the principal k
as whom the computation is running has the authority to change the
owner of a file, and replacing owns(k,f) with owns(k’, f) in Γ
produces ∆, then we can produce a computation which changes the
owner of f from k to k’, leaving the remaining context unchanged.

For an example call to chown, we define a context Γstate’
that is the result of replacing the fact that Jamie owns secret.txt
with Dan owning that file. Next, we do a call to chown that, running
as Dan, changes the owner of the file from Dan to Jamie, and then
we do a computation as Dan named dreadprint that reads the
file. dreadprint is defined below. proveReplace is a tactic for
proving that Γ’ is Γ with the ownership of secret.txt changed.
solve (prove 15) calls the theorem prover (at compile-time) to
prove the current user has permission to chown secret.txt.

Γstate’ = replace {_} {Γstate}
(Prin "System" says

(a- (Owner · (Prin "Dan" , File "secret·txt"))))
i0

Γall’ = Γpolicy ++ Γstate’

dchown : © (Γall’ as "Dan") Unit (λ _ � Γall as "Dan")
dchown = chown (Prin "Dan") (Prin "Dan") (Prin "Jamie")

(File "secret·txt")
(solve proveReplace) (solve (prove 15))

>> dreadprint

Sudo We now give a well-typed version of the Unix command
sudo, which allows a principal to run a computation as another
principal. A first cut for the type of sudo is as follows:

sudo1 : ∀ { Γ A Γ’} � (k1 k2 : _)
� (Proof Γ (a- (MaySu · (k1 , k2))))
� © ((a+ (As · k2)) :: Γ) A (λ _ � (a+ (As · k2)) :: Γ’)
� © ((a+ (As · k1)) :: Γ) A (λ _ � (a+ (As · k1)) :: Γ’)

If there is a proof that k1 may sudo as k2 (e.g., a password was
provided), and As(k1) is in the precondition, then it is permissible
to run a subcomputation as k2. This subcomputation have a post-
condition saying that it leaves the state running as k2, and then the
overall computation returns to running as k1. However, since our
contexts are ordered (represented as lists rather than sets), sudo has
the type in Figure 2, which allows the As facts to occur anywhere
in the context. sudo’s type may be read: if replacing As(k1) with
As(k2) in Γ equals ∆, and if replacing As(k2) with As(k1) in
∆’ equals Γ’, and k2 has permission to su as k1, then a compu-
tation with preconditions ∆ and postconditions ∆’ can produce a
computation with preconditions Γ and postconditions Γ’.

The following example call to sudo defines a computation as
Dan that su’s as Jamie to run the computation jreadprint de-
fined above:

dreadprint : © (Γall as "Dan") Unit (λ _ � Γall as "Dan")
dreadprint = sudo (Prin "Dan" ) (Prin "Jamie")

(solve proveReplace)
(λ _ � solve proveReplace)
(solve (prove 15))
jreadprint

This requires proving that Γstate as "Jamie" and Γstate as
"Dan" are related by replacing replacing As(Prin "Jamie") with
As(Prin "Dan") (in both directions). Our tactic proveReplace
proves of these equalities. Additionally, a call to the theorem
prover (solve(prove 15)) proves MaySu · (Prin "Dan" ,
Prin "Jamie").

Acquire The function acquire allows a program to check
whether a proposition is true in the state of the world. For example,
a call to acquire might check to see if System says owns(Prin
"Jamie" , File "secret.txt"). The function acquire takes
two continuations: one to run if the check is successful, whose pre-
condition is extended with the proposition, and an error handler,
whose precondition is the current context, to run if the check fails.
In fact, we allow acquire to test an entire context at once: given a
context Γn, a computation with preconditions Γ extended with Γn
(the success continuation), and a computation with preconditions
Γ (the error continuation), acquire returns a computation with
preconditions Γ. We use the notation acquire Γn / _ no⇒ s
yes⇒ f to write a call to acquire in a pattern-matching style.
The _ elides a Good argument, which is explained below.

main : © [] Unit (λ _ � [])
main = acquire (Γall as "Jamie") / _

no⇒ print "acquiring policy failed"
yes⇒ weakenPost jreadprint (λ _ ()) _

This example call begins and ends in the empty context. The call to
acquire examines the system state to check the truth of each of the
propositions in Γall as "Jamie". If all of these are true, then we
run jreadprint and use weakening to forget the postconditions
we would know to be true after running jreadprint. If some
proposition cannot be verified, then main calls error.

2.1.4 Verifying Policy Invariants
When authoring the above monadic signature for file IO, the pro-
grammer may have in mind some invariants about which con-
texts Γ should be allowed. For example, the above type for chown
would have unexpected consequences if there ever were more than
one owner of a file, or more than one copy of System says
owns(k,f) in the Γ (only one copy would be replaced, leaving
a file with two owners in the postcondition). Our interface permits
programmers to specify context invariants using the predicate Good
Γ. The intended invariant of the interface is that a monadic compu-
tation © Γ A Γ’ should have the property that Γ’ is good if Γ
is. To achieve this, the weakening operations and acquire require
preconditions that certain contexts are Good, and the programmer
must verify that operations such as read, chown, and sudo pre-
serve goodness. This establishes that all computations provided by
the interface preserve goodness, so it is not necessary to make each
monadic operation require a proof that the precondition is Good—
when writing a particular program, the programmer needs only to
verify that the initial policy and those in calls to weakening and
acquite satisfy the invariants.

In the above examples, we took Good to be the trivially true
invariant, so the proofs could be elided with an _. A simple but
nontrivial invariant that one may wish to enforce is that for every
file f there is at most one statement of the form System says
Owner(_ , f) in the context. This is defined in Agda as follows:

Good : TCtx+ [] � Set
Good Γ = ∀ {k k’ : _} {f : _}
� (a : (Prin "System" says (a- (Owner · (k , f)))) ∈ Γ)
� (b : (Prin "System" says (a- (Owner · (k’ , f)))) ∈ Γ)
� Equal a b

Then we may prove that the postcondition of each operation is
Good if the precondition is; e.g.

ChownPreservesGood : {Γ ∆ : _} (k1 k2 : _) (f : _)
(pfRep : (Replace (Prin "System" says (a-(Owner · (k1 , f))))

(Prin "System" says (a-(Owner · (k2 , f))))
Γ ∆))

� Good Γ � Good ∆
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Generic operations:
© : TCtx+ [] � (A : Set) � (A � TCtx+ []) � Set

return : ∀ { Γ A} � A � © Γ A (\ _ � Γ)

_>>=_ : ∀ {A B Γ Γ’ Γ’’}
� (© Γ A Γ’)
� ((x : A) � © (Γ’ x) B Γ’’)
� © Γ B Γ’’

weakenPre : ∀ {A Γ Γ’ Γn }
� (Good Γn � Good Γ)
� © Γ A Γ’ � Γ ⊆ Γn � © Γn A Γ’

weakenPost : ∀ {A Γ Γ’ Γn}
� © Γ A Γ’
� ((x : A) � (Γn x ⊆ Γ’ x))
� ((x : A) -> (Good (Γ’ x) � Good (Γn x)))
� © Γ A Γn

getLine : ∀ {Γ} � © Γ String (\ _ � Γ)

print : ∀ {Γ} � String � © Γ Unit (\ _ � Γ)

error : ∀ {A Γ Γ’} � String � © Γ A Γ’

acquire : ∀ {A Γ Γ’} � (Γn : TCtx+ [])
� (Good Γ � Good (Γn ++ Γ))
� © (Γn ++ Γ) A Γ’ � © Γ A Γ’
� © Γ A Γ’

File-specific operations:
sudo : ∀ { Γ A Γ’ ∆ ∆’} � (k1 k2 : _)
� Replace (a+ (As · k1)) (a+ (As · k2)) Γ ∆
� ((x : A) � Replace (a+ (As · k2)) (a+ (As · k1))

(∆’ x) (Γ’ x))
� (Proof Γ (a- (MaySu · (k1 , k2))))
� © ∆ A ∆’
� © Γ A Γ’

read : ∀ {Γ} (k : _) (file : _)
� Proof Γ ( (a- (Mayread · (k , file)))

∧ (a+ (As · k)))
� © Γ String (λ _ � Γ)

create : ∀ {Γ} (k : _)
� Proof Γ ( (a- (User · k))

∧ (a+ (As · k)))
� © Γ String

(λ new � (Prin "System" says
(a-(Owner · (k , File new)))) :: Γ)

chown : ∀ { Γ ∆} � (k k1 k2 : _) � (f : _)
� Replace (Prin "System" says (a-(Owner · (k1 , f))))

(Prin "System" says (a-(Owner · (k2 , f))))
Γ ∆

� (Proof Γ ( (a+ (As · k))
∧ (a- (MayChown · (k , f)))))

� © Γ Unit (\ _ � ∆)

Figure 2. File IO with Authorization

In the companion code, we revise the above examples so that they
maintain this invariant, using a tactic to generate the proofs of
goodness.

2.2 File IO with Access Control and Information Flow
Next, we extend the above file signature with information flow,
adapting an example from Swamy et al. [39]. First, we define a

type Tracked A L which represents a value of type A tracked with
security level L. Following Fine, we define Tracked as an abstract
functor that distributes over functions (though different type struc-
tures for information flow, such as an indexed monad [36], can of
course be used in other examples):

Tracked : Set � Label � Set
fmap : ∀ {A B L} � (A � B) � Tracked A L � Tracked B L
_�_ : ∀ {A B L1 L2} � Tracked (A � B) L1

� Tracked A L2 � Tracked B (L1 t L2)

Note that an application f � x joins the security levels of the
function and the argument.

Next, we give flow-sensitive types to read and write: read tags
the value with the file it was read from, and write requires a proof
of MayAllFlow provs file, representing the fact that all of the
files upon which the the string to be written depends may flow into
file.

read : ∀ {Γ} (k : _) (file : _)
� Proof Γ ((a- (Mayread · (k , file))) ∧ (a+ (As · k)))
� © Γ (Tracked String [ file ]) (λ _ � Γ)

write : ∀ {Γ provs} (k : _) (file : _)
� Tracked String provs
� Proof Γ ( (a- (Maywrite · (k , file)))

∧ (a+ (As · k))
∧ (MayAllFlow provs file))

� © Γ Unit (λ _ � Γ)

For example, we can read two files and write their concatenation
to secret.txt:

go : © (Γ as "Jamie") Unit (\ _ � (Γ as "Jamie"))
go = read (Prin "Jamie") (File "file1.txt")

(solve (prove 15)) >>= \ s �
read (Prin "Jamie") (File "file2·txt")

(solve (prove 15)) >>= \ s’ �
write (Prin "Jamie") (File "secret·txt")

((fmap String.string-append s) � s’)
(solve (prove 15))

Here the theorem prover shows that both file1.txt and file1.txt
may flow into secret.txt, according to the policy. This proof
obligation results from the fact that
(fmap String.string-append s) � s’ has type
Tracked String [ "file1.txt" , "file2.txt" ].

2.3 Spatial Distribution with Information Flow
Next, we show how to account for spatial distribution as in
ML5 [31], which tracks where resources and computations are
located using modal types of the form A @ w. For example,
database.read : (key � value) @ server says that a func-
tion that reads from the database must be run at the server, while
javascript.alert : (string � unit) @ client says that
a computation that pops up a browser alert box must be run at
the client. Network communication is expressed in ML5 using an
operation get : (unit � A) @ w � A @ w’ that (under some
conditions which we elide here) goes to w to run the given compu-
tation and brings the resulting value back to w’. In other work [30],
we have shown how to build an ML5-like type system on type of
an indexed monad of computations at a place,© w A, with a rule
get : © w’ A � © w A.

Here, observe that this monad indexing can be presented using
a proposition At(w), where get is given a type analogous to sudo:

get : (w1 w2 : _) � ∀ {Γ A Γ’ ∆ ∆’}
� Replace (a+ (At · w1)) (a+ (At · w2)) Γ ∆
� Replace (a+ (At · w2)) (a+ (At · w1)) ∆’ Γ’
� © ∆ A (\ _ � ∆’)
� © Γ (Tracked A w2) (\ _ � Γ’)
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Additionally, we combine spatial distribution with information
flow, tagging the return value of the computation with the world
it is from. Note that the postcondition must be independent of the
return value, as there is in general no coercion either way between
A and Tracked A L.

Information flow can be used in this setting to force strings to
be escaped before they are sent back to the client—e.g. to prevent
SQL injection attacks:

sanitize : Tracked String (client) � HTML

str : Tracked String (server) � HTML

Strings from the client must be escaped before they can be included
in an HTML document, whereas strings from the server are as-
sumed to be non-malicious, and can be included directly.

Instead of (or in addition to) using information flow for get, we
could use the logic to restrict get, so that e.g. only certain values
may flow from one world to another.

2.4 Continue: A Conference Management System
Next, we adapt a formalization of the Continue conference man-
agement server [28] from Dougherty et al. [17], Swamy et al. [39]
We show an excerpt of an authorization policy for Continue, which
specifies who may perform actions—submit a paper, submit a re-
view, change the phase of the conference (e.g., submission, noti-
fication, etc). We give a proof-carrying monadic interface to the
computations which perform actions, and we show the main event
loop of the server.

2.4.1 Policy
We formalize the policy for Continue using terms of various types:
actions represent requests to the web server; principals repre-
sent users; papers and strings are used to specify actions; roles
define whether a user is an Author, PCMember, and so on. The
policy is also dependent on the phase of the conference (e.g.,
an Author may submit a paper during the submission phase).
The proposition May · (k , a) states that k may perform action
a. Each action is a first-order term constructed from some argu-
ments (e.g., Submit, Review, Readscore, Read all have pa-
pers, while Progress has two phases, the phase the conference is
in before and after it is progressed).

Fine specifies Continue’s policy as a collection of Horn clauses,
which are simple to translate to our logic; e.g.

Γpolicy : TCtx+ []
Γpolicy =

((∀e principal · ∀e string ·
let

author = . iS i0
paper = . i0

in
(((a- (InPhase · (Submission))) ∧

((a- ( InRole · (author , Author)))))
⊃ (a- (May · (author , (Submit · paper))))))) ::

((∀e principal · ∀e paper ·
let

reviewer = . (iS i0)
paper = . i0

in
(((a- (InPhase · (Reviewing))) ∧

((a- (Assigned · (reviewer , paper)))))
⊃
(a- (May · (reviewer , (Review · paper) )))))) :: []

The first proposition reads: for all authors and paper names, if
the conference is in the submission phase, and the principal is
an author, then the principal may submit a paper. The second
proposition reads: for all reviewers and papers, if the conference

is in the reviewing phase and the principal is assigned to review a
paper, then they may review the paper.

We have also begun to reformulate the policy using the says
modality. For example, we may describe a policy which allows
authors to share their paper scores with their coauthors:

Γsays : TCtx+ []
Γsays =
((∀e principal · ∀e paper · ∀e principal ·

let
primary = . i0
paper = . (iS i0)
coauthor = . (iS (iS i0))

in
(( ((a- (InPhase · (Notification)))) ∧

((a- (Author · (primary , paper) ))) ∧
(primary says (a- (May · (coauthor ,

(Readscore · paper))))))
⊃ (a- (May · (coauthor , (Readscore · paper))))))) :: []

This rule states that, for any principal author, paper paper, and
principal coathor, if the conference is in notification phase, and
author is the author of paper, and author says coauthor may
read the scores for paper, then coauthor may read the scores
for paper. Similarly, using says, it is straightforward to specify
a policy allowing PC members to delegate reviewing assignments
to subreviewers.

2.4.2 Actions
Rather than defining an individual computation for each action—
doRead, doSubmit, etc.— we use type-level computation to write
one command for processing all actions; this simplifies the code for
the main loop presented below. The generic command for process-
ing an action, doaction, has the following type:

doaction : ∀ {Γ} (k : _) (a : _) � (e : ExtraArgs Γ a)
� Proof Γ (a- (May · (k , a))) ∧ (a+ (As · k))
� © Γ (Result a) (λ r � PostCondition a Γ e k r)

doaction takes a principal, an action to perform, and some
ExtraArgs for the that action, along with a proof that the com-
putation is running as the principal, and that the principal may per-
form that action. It returns a Result, and has a Postcondition,
both of which are dependent upon the action being performed. In
Agda, ExtraArgs, Result, and Postconditions are functions
defined by recursion on actions, which compute a Set, a Set, and
a context, respectively.

Several actions, such as Submiting a paper, require extra data
that is not part of the logical specification (e.g., the contents of the
paper should not be part of the proposition which authorizes it to
be submitted). ExtraArgs produces the set of additional arguments
each action requires.

ExtraArgs : TCtx+ [] � Term [] (action) � Set
ExtraArgs Γ (Review · _) = Term [] (string)
ExtraArgs Γ (Submit · _) = Term [] (string)
ExtraArgs Γ (Progress · (p1 , p2)) = Σ λ ∆ �

Replace (a- (InPhase · p1))
(a- (InPhase · p2)) Γ ∆

ExtraArgs Γ _ = Unit

Reviews and paper submissions must be accompanied by their
contents, represented as a term of type string (the Agda type Term
[] (string) is an injection of strings into the language of first-
order terms that we use to represent propositions, as described in
Section 4 below). Progressing the phase of the conference requires
a proof that the conference is in the first phase, along with a new
context in the resulting phase, which we represent by a pair of a
new context ∆ and a proof of Replace.

Next, we specify the result type of an action:
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Result : Term [] (action) � Set
Result (Submit · _) = Term [] (paper)
Result (Review · _) = Unit
Result (BeAssigned · _) = Unit
Result (Readscore · _) = String
Result (Read · _) = String
Result (Progress · _) = Unit

Readscore and Read return the papers’ reviews and contents,
while submit produces a Term [] paper, i.e. a unique id for the
paper.

Finally, we define the PostCondition of each action, which
is dependent upon the action itself, the precondition, the extra
arguments for the action, the principal performing the action, and
the Result of the action.

PostCondition : (a : Term [] (action)) (Γ : TCtx+ [])
� ExtraArgs Γ a � (k : Term [] (principal))
� Result a � TCtx+ []

PostCondition (Submit · y) Γ e k r =
(a- (Submitted · r )) :: (a- (Author · (k , r))) :: Γ

PostCondition (Review · y) Γ e k r =
(a- (Reviewed · (k , y))) :: Γ

PostCondition (BeAssigned · y) Γ e k r =
(a- (Assigned · (k , y))) :: Γ

PostCondition (Readscore · y) Γ e k r = Γ
PostCondition (Read · y) Γ e k r = Γ
PostCondition (Progress · (ph1 , ph2)) Γ e k r =
(fst e)

Submitting a paper extends the preconditions with two proposi-
tions: one saying the paper has been submitted, and one saying
the submitting principal is its author. Reviewing and Assigning
a paper add that the paper is reviewed by or assigned to the prin-
cipal, respectively. Readscore and Read leave the conditions un-
changed. The postcondition of progress is the first component of
its ExtraArgs, i.e. the context determined by replacing the current
phase with the resulting one.

In writing the main server loop, we will use the following
monadic wrapper of our theorem prover, in order to test at run time
whether a given proposition holds in the current state of the server:

prove/dyn : ∀ {Γ1} � Nat � (Γ : TCtx+ []) �
(A : Propo- []) �
© Γ1 (Maybe (Proof Γ A)) (λ _ � Γ1)

These dynamic tests are necessary because the policy is not known
statically.

2.4.3 Server Main Loop
In Figure 3 we show the code for the main loop of the Continue

server, implemented using the interface described above. The main
loop serves request made by a principal who wishes to perform an
action. Our proof-carrying interface ensures that this code adheres
to the authorization policy described above: the action will only be
executed if the principal is authorized to do so. The loop works by
(1) reading in an action and its arguments, (2) reading in a principal,
(3) acquiring the credentials to su as that principal, (4) computing
the precondition of the su, (5) computing the postconditions of
performing the action, (6) su-ing as the principal, (7) proving the
principal may perform the action, (8) performing the action, and
(9) recurring. The fact that we have coalesced all of the actions into
one primitive command makes this code much more concise than it
would be otherwise, when we would have to repeat essentially this
code as many times as there are actions.

This code is rendered in Agda as follows. First, main is given
the type ∀ {Γ} � © Γ Unit (λ _ � []): given any pre-
condition, the computation returns Unit and an empty postcondi-
tion (we do not expect to run any code following main so it is

main : ∀ {Γ} � © Γ Unit (λ _ � [])
main = fix loop where
loop : (∀ {Γ} � © Γ Unit (λ _ � [])) �

(∀ {Γ} � © Γ Unit (λ _ � []))
loop rec {Γ} =

{-1-} prompt "Enter an action:" >>= λ astr �
case (parseAction astr)
None⇒ error "Unknown action"
Some⇒ λ actionArgs �
let a = (fst actionArgs)

args = (snd actionArgs) in
{-2-} prompt "Who are you?" >>= λ ustring �

let u = parsePrin ustring in
{-3-} acquire [ ((a- (MaySu · (Prin "Admin" , u)))) ] / _

no⇒ error "Unable to su"
{-4-} yes⇒ case make-replace

None⇒ error "oops, not running as admin"
Some⇒ λ asadmin �

{-5-} case (inputToE a _ args)
None⇒ error "Bad input (e.g. not in phase)"
Some⇒ λ args �

{-6-} (sudo (Prin "Admin") u
(snd asadmin)
(\x � (snd (repAsPost (snd asadmin) {a} x)))
(lfoc i0 init-)

{-7-} (prove/dyn 15 _ _ >>=
none⇒ error "Unauthorized action"
some⇒ λ canDoAction �

{-8-} doaction u a args canDoAction) )
{-9-} >>= λ _ � rec

Figure 3. Continue Main Loop

not worthwhile to track the postconditions). main is defined by
taking the fixed point of the auxillary function loop, which is
abstracted over the recursive call. On line (1), the loop prompts
the user to enter an action to perform, parseAction then parses
the string to produce a : action and args: InputArgs, and
raises an error otherwise. (2) The loop prompts for a username,
parses it into a Term [] principal. (3) The loop attempts to
acquire credentials that "Admin" may su as the principal (e.g.,
by prompting for a password). (4) The loop calls the functions
make-replace to produce the preconditions for the su, by re-
placing (As (Prin "Admin")) with (a+ (As u). (5) The loop
calls inputToE to produce the ExtraArgs for the action from the
args; for Progress, this function computes the postcondition of
the action from the current context. (6) The loop su-s as the prin-
cipal. The first replace argument to su is the result of step (4),
the proof argument is the assumption acquired in step (3), the sec-
ond replace argument is discussed below. (7) The loop calls the
theorem prover at runtime to prove the principal may perform the
requested action. (8) The loop calls doaction and (9) recurs.

The second replace argument to su is generated using a proof
that As is preserved in the PostCondition of an action:

postPreservesAs : ∀ {a Γ e k r k’ }
-> (a+ (As · k’) ∈ Γ)
-> ((a+ (As · k’)) ∈ PostCondition a Γ e k r)

This is another example of using Agda to verify invariants of the
pre- and post-conditions, as in Section 2.1.4.

2.4.4 Dynamic Policy Acquisition
Here we describe an example of dynamic policy acquisition: we
read the reviewers’ paper assignments from a database, parse the
result into a context, acquire the context, and start the main server
loop with those preconditions (see Figure 4). This is simple in a
dependently typed language because contexts themselves are data.
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getReviewerAsgn : ∀ {Γ} � String �
© Γ (List (List String)) (λ _ � Γ)

parseReviewers : List String � TCtx+ []

mkPolicy : ∀ {Γ} � © Γ (TCtx+ []) (λ _ � Γ)
mkPolicy = getReviewerAsgn "papers.db" >>= λ asgn �

return (List.fold [] (λ x � λ y �
parseReviewers x ++ y) asgn)

start = mkPolicy {[]} >>= λ ctx �
acquire ctx / _

no⇒ error "policy not accepted"
yes⇒ main

Figure 4. Continue Policy Acquistion

The function getReviewerAsgn takes a string, representing a path
to the database, and returns the list of list of reviewers for each pa-
per. The function parseReviewers then turns each of these lists
into lists of propositions, each stating the parsed reviewer is a re-
viewer of the paper. The actual Continue implementation would
read a variety of other propositions from the database as well
(which papers have been submitted, reviewed, etc.) The compu-
tation mkPolicy calls getReviewerAsgn and parses the results.
The computation start uses mkPolicy to generate an initial pol-
icy, acquires these preconditions, and starts the main sever loop.

3. Embedding BL0

BL0 [21] extends first-order intuitionistic logic with the modal-
ity k says A. While a variety of definitions of says have been
studied [1, 2, 3, 4, 7, 8, 9, 10, 16, 21, 23, 24, 25, 26, 27, 29],
in BL0, says is treated as a necessitation (2) modality, and
not as a lax modality (i.e. a monad) [1, 8, 24, 27]. The def-
inition of says in BL0 supports exclusive delegation, where a
principal delegates responsibility for a proposition to another
principal, without retaining the ability to assert that proposi-
tion himself. For example, consider a policy that payroll says
∀t.(HR says employee(t)) ⊃ MayBePaid(t). Under what cir-
cumstances can we conclude payroll says MayBePaid(Alice)? The
fact that HR says employee(Alice) should be sufficient. How-
ever, the fact that payroll says employee(Alice) should not, as
the intention of the policy is that payroll delegates responsibil-
ity for the employee predicate to human resources, without re-
taining the ability to assert employee instances itself. When says
is treated as a lax modality, payroll says employee(Alice) implies
payroll saysHRsaysemployee(Alice), which is enough to conclude
the goal. Abstractly, we wish k saysA to imply k′ says (k saysA),
but not k says (k′ says A). The modality satisfies several other ax-
ioms: for example, principals say all consequences the statements
they have made (k says (p ⊃ q) entails (k says p ⊃ k says q)) and
principals believe what they say is true (k says ((k says s) ⊃ s)).

3.1 Terms and Types
In the above examples, we used a variety of atomic propositions
(Mayread, Owns, etc.) about a variety of datatypes (principals, pa-
pers, conference phases, etc.). We have parametrized the repre-
sentation of BL0 and its theorem prover over such datatypes and
atomic propositions by defining a generic datatype of first-order
terms, with free variables, over a given signature. This allows us
to specify the types, terms, and propositions for an example con-
cisely, while exploiting datatype-generic definition of weakening,
substitution, etc., which are necessary to state the inference rules
of the logic. The following excerpt from the signature for Continue
illustrates what programmers write to define an individual example:

data Propo : Polarity -> ICtx -> Set where
_⊃_ : ∀ {Ω} -> Propo+ Ω -> Propo- Ω -> Propo- Ω
∀i_ : ∀ {Ω τ} -> Propo- (τ :: Ω) -> Propo- Ω
a- : ∀ {Ω} -> Aprop Ω -> Propo- Ω
↓ : ∀ {Ω} -> Propo+ Ω -> Propo- Ω

_∨_ : ∀ {Ω} -> Propo+ Ω -> Propo+ Ω -> Propo+ Ω
_∧_ : ∀ {Ω} -> Propo+ Ω -> Propo+ Ω -> Propo+ Ω
⊥ : ∀ {Ω} -> Propo+ Ω
> : ∀ {Ω} -> Propo+ Ω
∃i_ : ∀ {Ω τ} -> Propo+ (τ :: Ω) -> Propo+ Ω
_says_ : ∀ {Ω} -> Term Ω principal ->

Propo- Ω -> Propo+ Ω
a+ : ∀ {Ω} -> Aprop Ω -> Propo+ Ω
↑ : ∀ {Ω} -> Propo- Ω -> Propo+ Ω

Figure 5. Agda Representation of BL0 Propositions

data BaseType : Set where
string paper role action phase principal : BaseType

data Const : BaseType -> Set where
Prin : String -> Const principal
Paper : String -> Const paper
PCChair Reviewer Author Public : Const role
Init Presubmission Submission ... : Const phase

data Func : BaseType -> Type -> Set where
Review BeAssigned ... : Func action (paper)
Progress : Func action (phase ⊗ phase)

data Atom : Type -> Set where
InPhase : Atom (phase)
Assigned ... : Atom (principal ⊗ paper)
May : Atom (principal ⊗ action)
As : Atom (principal)

The programmer defines a datatype of base types, a datatype giving
constants of each type, a datatype of function symbols, and a
datatype of atomic propositions over a given type. Additionally,
the programmer must define a couple of operations on these types
(equality, enumeration of all elements of a finite type) which in a
future version of Agda could be generated automatically [5].

Types are BaseTypes, unit and pair types (τ1 ⊗ τ2). The
terms over a signature are given by a datatype Term Ω τ , where Ω
is a list of basetypes and represents the free variables of the term.
An ICtx Ω is a list of BaseTypes, and represents a context of
individual variables. E.g. a context x1 : τ1, . . . , xn : τn will be
represented by the list τ1 :: ... :: τn :: []. Variables are represented
by well-scoped de Bruijn indices, which are pointers into such a
list of types—i0 says x ∈ (x :: l) element, and iS says that x
∈ (y :: l) if x ∈ l. Terms are either variables (. i), where i
: τ ∈ Ω is a de Bruijn index, constants, applications of function
symbols (f · t), or [] and (t1 , t2) for unit and product types.
Atomic propositions, written (p · t), consist of an Atom paired
with a term of the appropriate type. We have defined weakening
and substitution generically on terms, and proved several properties
of them (e.g. functionality of weakening).

3.2 Propositions
BL0 propositions include conjunction, disjunction, implication,
universal and existential quantification, and the says modality:

Propositions A,B,C ::= P | A ∧B | A ∨B | A ⊃ B | >
| ⊥ | ∀x : τ .s | ∃x : τ .A | k saysA

In Figure 5, we represent this syntax in Agda. Propositions (Propo)
are indexed by a context of free variables, and additionally by a
polarity (+ or -), which will be helpful in defining a focused se-
quent calculus below. Because the syntax of propositions is polar-
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ized, there are two injections a- and a+ from atomic propositions
Aprop to negative and positive propositions, respectively. Addi-
tionally, there are the shifts ↓ and ↑, which include negative into
positive and vice versa; we have supressed the shifts up to this point
in the paper. The remaining datatype constructors correspond to the
various ways of forming propositions in the above grammar. For ex-
ample, the _∧ _ constructor takes two terms of type Propo+ Ω and
returns a term of type Propo+ Ω. The constructor ∃i (existential
quantification over individuals), takes a positive proposition, in a
context with one new free variable of type τ , and returns a positive
proposition in the original context Ω.

3.3 Proofs

Sequent calculus. Sequents in BL0 have the form Ω; ∆; Γ
k−→ A.

The context Ω gives types to individual variables (e.g. it is extended
by ∀), and the context Γ contains propositions that are assumed to
be true (e.g. it is extended by ⊃)—these are the standard contexts
of first-order logic. The context ∆ contains claims assumptions
of the form k′ claims A; claims is the judgement underlying the
says connective [21, 34]. Finally, k, the view of the sequent, is the
principal on behalf of whom the inference is made.

The rules for says are as follows:

Ω; ∆; []
k−→ A

Ω; ∆; Γ
k0−→ k saysA

SAYSR

Ω; ∆, (k claimsA); Γ, (k saysA)
k0−→ C

Ω; ∆; Γ, (k saysA)
k0−→ C

SAYSL

Ω; (∆, k claimsA); (Γ, A)
k0−→ C k0 ≥ k

Ω; (∆, k claimsA); Γ
k0−→ C

CLAIMSL

In order to show ksaysA, one empties the context Γ of true assump-
tions, and reasons on behalf of k with the goal A (rule saysR). It
is necessary to empty Γ because the the facts in it may depend on
claims by the principal k0, which are not valid when reasoning as
Alice. The rule saysL says that if one is reasoning from an as-
sumption k says A, one may proceed using a new assumption that
kclaimsA. Claims are used by the rule claimsL, which allows pas-
sage from a claim k claims A to an assumption that A is actually
true. This rule makes use of a preorder on principals, and asserts
that any statements made by a greater principal are accepted as true
by lesser principals.

Focused sequent calculus. To help with defining a proof search
procedure, we present BL0 as a weakly-focused sequent calculus.
Garg [21] describes both an unfocused sequent calculus and a fo-
cused proof system for FHH, a fragment of BL0; here we give a
focused sequent calculus for all of BL0. Focusing [6] is a proof-
theoretic technique for reducing inessential non-determinism in
proof search, by exploiting the fact that one can chain together cer-
tain proof steps into larger steps. In the Agda code above, we po-
larized the syntax of propositions, dividing them into positive and
negative classes. Positive propositions, such as disjunction, require
choices on the right, but are invertible on the left: a goal C is prov-
able under assumption A+ if and only if it is provable under the
left rule’s premises. Dually, negative propositions involve choices
on the left but are invertible on the right. Weak focusing [35] forces
focus (choice) steps of like-polarity connectives to be chained to-
gether, but does not force inversion (pattern-matching) steps to be
chained together. We use weak, rather than full, focusing because
it is slightly easier to represent in Agda, and because it can some-
times lead to shorter proofs if one internalizes the identity princi-
ples (which say that A entails A)—though we do not exploit this
fact in our current prover.

The polarity of ksaysA is as follows:A is negative, but ksaysA
itself is positive. As a simple check on this, observe that k says A
is invertible on the left—one can always immediately make the
claims assumption—but not on the right—because saysR clears
the true assumptions. For example, a policy is often of the form
k1 says A1, . . . kn says An, with a goal of the form k′ says B.
It is necessary to use claimsL to turn all propositions of the
form k says A in Γ into claims in ∆ before using saysR on the
goal—if one uses saysR first, the policy would be discarded. This
polarization is analogous to 2 in Pfenning and Davies [34] and
to ! in linear logic [6], which is reasonable given that says is a
necessitation modality.

Our sequent calculus has three main judgements:

• Right focus: Ω; ∆; Γ
k−→ [A+]

• Left focus: Ω; ∆; Γ
k−→ [A-] > C

• Neutral sequent: Ω; ∆; Γ
k−→ [C-]

Here ∆ consists of claims k claims A- and Γ consists of positive
propositions. For convenience in the Agda implementation, we
break out a one-step left-inversion judgement Ω; ∆; Γ

k−→ A+ >I

C, which applies a left rule to the distinguished proposition A+

and then reverts to a neutral sequent. The rules are a fairly simple
integration of the idea of weak focusing [35] with the focusing
interpretation of says described above. The interested reader can
find the inference rules for these judgements in Appendix A.

Agda Representation In Figure 6, we show an excerpt of the
Agda representation of this sequent calculus. First, we define a
record type for a Ctx, which tuples together the Ω, ∆, Γ, and k
parts of a sequent—we write Θ for such a tuple. Γ is represented
as a list of propositions; ∆ is represented as a list of pairs of a prin-
cipal and a proposition, written p claims A; k is a term of type
principal. Record fields are selected by writing R.x, where the type
of the record is R and the desired field is x (e.g., Ctx.rk selects the
principal from a Ctx record). Note that Ctx is a dependent record:
the true context, the claims context, and the view can mention the
variables bound in the individual context rΩ. We define several
helper functions on Ctxs: sayCtx clears the Ctx of true proposi-
tions, and changes the principal we are reasoning on behalf of to its
argument. ictx (not shown) projects the Ω from a Ctx—it is short-
hand for Ctx.rΩ. addTrue and addClaim (not shown) add a true
proposition onto Γ or a claim onto ∆, respectively. addVar adds a
variable to Ω, and weakens the remaining pieces of the context as
necessary.

When writing down the calculus on paper, it is obvious that
extending Ω does not affect Γ or ∆; any variables bound in Ω
will be bound in Ω′ ⊇ Ω. However, in Agda, it is necessary to
explicitly weaken terms of type X Ω into terms of type X Ω′. We
have defined weakening functions for many of the types indexed
by Ω: terms (weakenTerm), propositions, claims, true contexts
(weakenT+), claims contexts (weakenC), . . .

There are 4 judgments in our weakly-focused sequent calcu-
lus; analogously, there are 4 mutually recursive datatype declara-
tions representing these judgements in Agda, with one datatype
constructor for each inference rule. We show the constructors ∀L
(for the left focus judgement), ∃L and saysL (for the left inversion
judgement), saysR (for the right focus judgement), and claimsL
(for the neutral sequent judgement). For the most part, the rules are
a straightforward transcription of the rules in Appendix A. In ∀L,
the function substlast substitutes a term for the last variable in a
proposition; we have implemented substitution for individual vari-
ables for each of the syntactic categories. In ∃L, it is necessary to
weaken the goal with the new variable, which is tacit in on-paper
presentations.
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record Ctx : Set where
field rΩ : ICtx

rΓ+ : List (Propo+ rΩ)
-- pairs written (k claims A)

r∆ : List (Term rΩ principal × Propo- rΩ)
rk : Term rΩ principal

addVar : (θ : Ctx) -> (A : Type) -> Ctx
addVar θ τ = record {rΩ = (τ :: Ctx.rΩ θ) ;

rΓ+ = (weakenT+ (Ctx.rΓ+ θ) iS) ;
r∆ = (weakenC (Ctx.r∆ θ) iS) ;
rk = (weakenTerm (Ctx.rk θ) iS)}

sayCtx : (θ : Ctx) ->
(k : Term (Ctx.rΩ θ) principal) -> Ctx

sayCtx θ k = (record {rΩ = Ctx.rΩ θ ;
rΓ+ = [] ; r∆ = Ctx.r∆ θ ; rk = k})

mutual
data _`L_>_ : (θ : Ctx)-> Propo- (ictx θ) -> Propo- (ictx θ)

-> Set where
∀L : ∀ {θ τ A C} -> (t : Term (ictx θ) τ) ->

θ `L (substlast A t) > C ->
θ `L ∀i_ {ictx θ}{τ} A > C

data _`I_>_ : (θ : Ctx) -> (Propo+ (ictx θ))
-> Propo- (ictx θ) -> Set where

∃L : ∀ {θ τ A C}
-> (addTrue (addVar θ τ) A) ` (weakenP C iS)
-> θ `I (∃e τ A) > C

saysL : ∀ {θ k s B}
-> addClaim θ (k claims s) ` C
-> θ `I (k says s) > C

data _`R_ : (θ : Ctx) -> Propo+ (ictx θ) -> Set where
saysR : ∀ {θ k0 A}

-> (sayCtx θ k0) ` A
-> θ `R (k0 says A)

data _`_ : (θ : Ctx) -> Propo- (ictx θ) -> Set where
claimsL : ∀ {θ k A C}

-> (k claims A) ∈ Ctx.r∆ θ
-> θ `L A > C -> k ≥ Ctx.rk θ
-> θ ` C

Figure 6. Agda representation of proofs (exceprt)

3.4 Proof Search
We have implemented a simple proof-producing theorem prover for
BL0:

prove : Nat -> (θ : Ctx) -> (A : Propo- (ictx θ))
-> Maybe (θ ` A)

prove takes a depth bound, a context, and a proposition, and
attempts to find a proof of θ ` A with at most the given depth.
The prover is certified: when it says a proof exists, it actually
returns the proof, which is guaranteed by type checking to be well-
formed. When the prover fails, it simply returns None. The prover
is implemented by around 200 lines of Agda code.

Our prover is quite naïve, but it suffices to prove the exam-
ples in this paper; the prover essentially backchains over the focus-
ing rules. However, whereas the above sequent calculus was only
weakly focused, the prover is fully focused, in that it eagerly ap-
plies invertible rules, which avoids backtracking over different ap-
plications of them. If the goal is right-invertible, the prover applies
right rules. Once the goal is not right-invertible (an atom or a shift
↑ A+), the prover fully left-inverts all of the assumptions in Γ. In-
verting a context Γ breaks up the positive propositions using left

rules, generating a list of non-invertible contexts Θ1, ...,Θk such
that, if for every i, Θi ` C, then Θ ` C. Once the sequent has
been fully inverted, the prover tries right-focusing (if the goal is a a
shift ↑ A+) and left-focusing on all assumptions in Γ and claims in
∆, until one of these choices succeeds. The focus phases involves
further backtracking over choices (e.g., which branch of a disjunc-
tion to take). The focus rules for quantifiers (∀E and ∃I) require
guessing an instantiation of the quantifier. Our current implemen-
tation is brute-force: it simply computes all terms of a given type in
a given context and tries each of them in turn—we have only con-
sidered individual types with finitely many inhabitants. We leave a
more sophisticated approach based on unification to future work.

4. Implementation Details
Our Agda implementation consists of about 1400 lines of code. We
have also written about 1800 lines of example code in the embed-
ded language, including policies, monadic interfaces to primitives,
and example programs. The monadic interfaces presented in Sec-
tion 2 are implemented by foreign function calls to Haskell’s IO
monad.

The theorem prover is fairly slow, but it suffices to get tolerable
compile times on the small examples we have considered so far:

Example Policy clauses Prover calls TC time
FlowReadWrite 9 5 13s

Broker 5 1 3s
ReadDelegate 11 7 13s
Continue Loop 0 (dynamic) 0 6s

The table lists the number of clauses in the policy, the number of
compile-time calls to the theorem prover, and the type checking
time on a 2GHz Macbook with 3GB RAM, running Agda 2.2.7.

As a larger example, we are in the process of reformulating
Continue’s authorization policy in our language, along the lines
described above. We anticipate that running the prover at run-time
in this example will require some optimization, due to the size of
the policy. We plan to implement unification, which will eliminate
much of the branching from quantifiers, and to do a better job of
clause selection. Another possibility would be to interface with
Garg’s ML theorem prover for BL0, which is quite fast, by writing a
type checker for the certificates it produces [22]. A final possibility
would be to optimize Agda itself—we could improve the speed of
compile-time calls to the theorem prover by fixing some known
inefficiencies in Agda’s compile-time evaluation, such as a lack of
sharing in the term representation.

5. Related Work
The languages most closely related to ours are the security-typed
programming languages Aura [27], PCML5 [9], Fine [39], and pre-
vious work by Avijit and Harper [8] (henceforth AH), which inte-
grate authorization logics into functional/imperative programming
languages. Our main contribution relative to these languages is to
show how to support security-typed programming within an ex-
isting dependently-typed language. There are also some technical
differences between these languages and ours: First, Aura, PCML5,
and AH interpret says as a lax modality, whereas BL0 interprets it
as a necessitation modality to support exclusive delegation; Fine
uses first-order classical logic and does not directly support the
says modality. Necessitation, which manipulates the context, makes
BL0 a more challenging logic to represent than lax logic. Second,
unlike these four languages, our language treats propositions and
proofs as inductively defined data, which has several applications:
In Aura, all proof-carrying primitives log the supplied proofs for
later audit; the programmer could implement logged operations on
top of our existing interface by writing a function toString :
∀ A. Proof A -> String by recursion over proofs. Recursion
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over propositions is also essential for writing our theorem prover
inside of Agda. Third, our indexed monad of computations sub-
sumes the notion of computation on behalf of a principal in AH. In
Aura, all computation proceeds on behalf of a single distinguished
principal self. In PCML5, a program can authenticate as differ-
ent principals, but the indexed monad permits more precise cre-
dentials: rather than acquiring the credentials to be k, one acquires
only the ability to su from a given k′ to k. Fourth, in Aura, the
authorization policy must be encoded statically as constants in the
program, except for statements by the principal self, which can
be proved dynamically by a command say. In Fine, a policy can
refer to dynamic data, but the policy itself must be given statically.
Our language follows AH and PCML5 in only requiring the au-
thorization policy to be known at run-time, providing a function
acquire for querying the policy. Fifth, in PCML5, acquire uses
theorem proving to deduce consequences of the policy, whereas in
our language acquire only tests whether a fact is literally in the
policy, and a separate theorem prover deduces consequences from
the policy. We take this approach so that we may also use the same
theorem prover at compile-time to statically discharge proof obli-
gations; PCML5 and AH make use of a theorem prover only at
run-time. Sixth, PCML5 is a language for spatially distributed au-
thorization, where resources and policies are located at different
sites on a network. We have shown how to support ML5-style spa-
tial distribution using our indexed monad but we leave spatial dis-
tribution of policies to future work. The operational semantics of
both PCML5 and AH include a proof-checking reference monitor;
we have not yet considered such an implementation.

Abadi [1] discusses some examples of security-typed program-
ming within DCC. Whereas Abadi [1] uses the same λ-calculus
both as the programming language and as the proof terms for the
authorization logic, we separate a programming language (Agda)
from an embedded authorization logic (BL0), which provides the
freedom to use, e.g., a modal or linear authorization logic within an
unrestricted programming language.

Several other languages provide support for verifying security
properties by type checking. For example, Fournet et al. [19] de-
velop a type system for a process calculus, and Bengtson et al. [12]
for F#, both of which can be used to verify authorization policies
and cryptographic protocols. In their work, proofs are kept behind
the scenes (e.g., in F7, propositions are proved by the Z3 theorem
prover). In contrast, our language makes the proof theory directly
available to the programmer, so that propositions and proofs can
be computed with (for logging or run-time theorem proving) and
so that proofs can be constructed manually when a theorem prover
fails. Another example of a language that does not give the pro-
grammer direct access to the proof theory is PCAL [13], an ex-
tension of BASH that constructs the proofs required by a proof-
carrying file system [25]; proof construction is entirely automated,
but sometimes inserts run-time checks.

Many security-typed languages address the problem of enforc-
ing information flow policies (see Abadi et al. [4], Chothia et al.
[14] for but a couple of examples). We follow Russo et al. [36],
Swamy et al. [39] in representing information flow using an ab-
stract type constructor (e.g., a monad or an applicative functor).
Fable [37] takes a different approach to verifying access-control,
information flow, and integrity properties, by providing a type of
labelled data that is treated abstractly outside of certain policy por-
tions of the program. This mechanism facilitates checking security
properties (by choosing the labels appropriately and implement-
ing policy functions) and proving bi-simulation properties of the
programs that adhere to these policies. In this work, our correct-
ness criterion is the more modest goal of simply ensuring that all
accesses to a protected resources are accompanied by a proof of

authorization, which can be accomplished simply using dependent
types to represent proofs.

DeYoung and Pfenning [15] describe a technique for represent-
ing access control policies and stateful operations in a linear autho-
rization logic. Our approach to verifying context invariants, as in
Section 2.1.4, is inspired by their work.

The literature describes a growing body of authorization log-
ics [1, 3, 4, 7, 8, 16, 20, 21]. We chose BL0 [21], a simple logic that
supports the expression of decentralized policies and whose says
connective permits exclusive delegation.

Appel and Felten [7] pioneered the use of proof-carrying autho-
rization, in which a system checks authorization proofs at run-time.
Several systems have been built using PCA [11, 25, 40]. Security-
typed languages instead check authorization proofs at compile-time
through type checking, and thus can be used to write code that will
definitely pass the reference monitor of a PCA system.

6. Conclusion
In this paper, we have embedded a security-typed programming
language in a dependently-typed programming language. Our lan-
guage accounts for the major features of existing security-typed
programming languages such as decentralized access control, in-
formation flow, spatially distributed and principaled computation,
stateful and dynamic policies, and compile-time and run-time the-
orem proving. Our embedding consists of: a representation of the
authorization logic BL0, which permits decentralized access con-
trol policies, using dependent types, so that Agda’s type checker
can be reused to statically check the correctness of proofs; a proof-
producing theorem prover, which can be used to discharge proof
obligations both at compile-time and at run-time; and an indexed
monad of computations, used to type effectful, proof-carrying op-
erations that may modify stateful policies.

There are many interesting avenues for future work: First,
we may consider embedding an authorization logic such as full
BL [20] that accounts for resources that change over time. Second,
we have currently implemented the monadic computation interface
on top of unguarded Haskell IO commands, which provides secu-
rity guarantees for well-typed programs. To maintain security in
the presence of ill-typed attackers, we may instead implement our
interface using a proof-carrying run time system such as PCFS[25],
in which case our type system would ensure the reference monitor
would never reject a proof. Third, we have shown a few small ex-
amples of using Agda to reason about the class of contexts that is
possible given a particular monadic interface. In future work, we
would like to explore ways of systematizing this reasoning (e.g.,
by using linear logic to describe transformations between contexts,
as in DeYoung and Pfenning [15]). We would also like to use Agda
to analyze global properties of a particular monadic interface (such
as proving a principal can never access a resource). Once we have
circumscribed the contexts generated by a particular interface, we
can prove such properties by induction on BL0 proofs. On the
more practical side, we are currently in the process of implement-
ing a more significant portion of the Continue access policy and
server. In order to utilize the larger policy, we plan to improve the
efficiency of the theorem prover, as described above.
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A. Appendix: Weakly focused sequent calculus
for BL0

Ω; ∆; Γ;P + k−→ [P +]
INIT+

Ω; ∆; Γ, [P -] k−→ P -
INIT-

Ω; ∆; Γ
k−→ [>]

>
Ω; ∆; Γ

k−→ C

Ω; ∆; Γ
k−→ > >I C

>L
Ω; ∆; Γ,

k−→ ⊥ >I C
⊥

Ω; ∆; Γ
k−→ [A] Ω; ∆; Γ

k−→ [B]

Ω; ∆; Γ
k−→ [A ∧B]

∧R
Ω; ∆; Γ, A,B

k−→ C

Ω; ∆; Γ
k−→ (A ∧B) >I C

∧L

Ω; ∆; Γ
k−→ [A]

Ω; ∆; Γ
k−→ [A ∨B]

∨R1
Ω; ∆; Γ

k−→ [B]

Ω; ∆; Γ
k−→ [A ∨B]

∨R2
Ω; ∆; Γ, A,

k−→ C Ω; ∆; Γ, B,
k−→ C

Ω; ∆; Γ
k−→ (A ∨B) >I C

∨L

Ω ` t : τ Ω; ∆; Γ
k−→ [[t/x]A]

Ω; ∆; Γ
k−→ [∃x : τ.A]

∃R
Ω, x : τ ; ∆; Γ, A

k−→ C

Ω; ∆; Γ
k−→ (∃x : τ.A) >I C

∃L

Ω; ∆; Γ
k−→ A-

Ω; ∆; Γ
k−→ [↓ A-]

BLURR
Ω; ∆; Γ, ↓ A- k−→ [A-] > C

Ω; ∆; Γ, ↓ A- k−→ C
LFOC

Ω; ∆; []
k−→ A-

Ω; ∆; Γ
k0−−→ [k saysA-]

SAYSR
Ω; ∆, (k claimsA-); Γ

k0−−→ C

Ω; ∆; Γ
k0−−→ (k saysA-) >I C

SAYSL

Ω; ∆; Γ, A
k−→ B

Ω; ∆; Γ
k−→ A ⊃ B

⊃R
Ω; ∆; Γ

k−→ [A] Ω; ∆; Γ
k−→ [B] > C

Ω; ∆; Γ
k−→ [A ⊃ B] > C

⊃L

Ω; ∆; Γ
k−→ [t/x]A

Ω; ∆; Γ
k−→ ∀x : τ.A

∀R
Ω; ∆; Γ

k−→ [[t/x]A] > C

Ω; ∆; Γ
k−→ [∀x : τ.A] > C

∀L

Ω; ∆; Γ
k−→ [A+]

Ω; ∆; Γ
k−→↑ A+

RFOC
Ω; ∆; Γ, A+ k−→ C

Ω; ∆; Γ
k−→ [↑ A+] > C

BLURL

Ω; ∆; (Γ, A+)
k−→ [A+] >I C

Ω; ∆; (Γ, A+)
k−→ C

LINV
Ω; (∆, k claimsA-); Γ

k0−−→ [A-] > C k0 ≥ k

Ω; (∆, k claimsA-); Γ
k0−−→ C

CLAIMSL
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