
Security-Typed Programming
within

Dependently-Typed Programming

Dan Licata
Joint work with Jamie Morgenstern

Carnegie Mellon University

Security-Typed
Programming

Access control: who gets access to what?
 read a file
 play a song
 make an FFI call

Information flow: what can they do with it?
 post the file contents on a blog
 copy the mp3
 save the result in a database

2Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Security-Typed
Programming

Access control: who gets access to what?
 read a file
 play a song
 make an FFI call

Information flow: what do they do with it?
 post the file contents on a blog
 copy the mp3
 save the result in a database

3Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Access Control

4

Read “/alice/secret.txt”

Access control list (ACL)
 for /alice/secret.txt

Alice

Desktop

 Alice: rwad
 Bob: rw

 Admin: rlidwka

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTPSecurity-Typed Programming within DTP

Access Control

4

Read “/alice/secret.txt”

Access control list (ACL)
 for /alice/secret.txt

Alice

Desktop

Enforcement: Authentication + ACL lookup

 Alice: rwad
 Bob: rw

 Admin: rlidwka

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTPSecurity-Typed Programming within DTP

5

Decentralized Access Control

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

5

Decentralized Access Control

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

Need a mechanism to
specify and enforce
decentralized policies...

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

6

Authorization Logic

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU
Digital library

ACM says ∀ s:principal,
 ∀ i:principal,
 ∀ p:paper,
 (member(i) ⋀ i says student(s))
 ⊃ MayRead(s, p)

CMU says student(Alice)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

7

Proof Carrying Authorization

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

[Appel+Felten]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

7

Proof Carrying Authorization

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

[Appel+Felten]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

8

Proof Carrying Authorization

Alice

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Evidence OK?

(Access granted) (Runtime error)

Digital library

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

8

Proof Carrying Authorization

Alice

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Evidence OK?

(Access granted) (Runtime error)

Digital library

Can we ensure that runtime errors won’t happen?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

An API for PCA
read : file → prin → proof → contents

9

e.g. read(paper.pdf,Alice,p)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

An API for PCA
read : file → prin → proof → contents

9

p might not be a well-formed proof

e.g. read(paper.pdf,Alice,p)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

An API for PCA
read : file → prin → proof → contents

9

p might not be a well-formed proof

p might not be a proof of the right theorem!

e.g. read(paper.pdf,Alice,p)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Dependent Types!

read : (f : file) (k : prin)
 (p : proof(mayread(k,f))
 → contents

10

p is well-formed by typing

theorem is explicit in p’s type

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.]

Fine [Swamy et. al]

11Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.]

Fine [Swamy et. al]

11

12,000 lines of Coq

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.]

Fine [Swamy et. al]

11

12,000 lines of Coq

20,000 lines of F#

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

12

Can we do

security-typed programming
within an existing

dependently-typed language

?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Security-typed
Programming in Agda

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

13Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

14

Security-typed
Programming in Agda

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

 BL0

15

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

 BL0

15

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

 BL0

15

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

 BL0

15

[Garg+Pfenning]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

16Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

read(paper.pdf,Alice,p)

17

can be big and
difficult to write out

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

read(paper.pdf,Alice,p)

17

We implemented a theorem prover:

prove : (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

can be big and
difficult to write out

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

read(paper.pdf,Alice,p)

17

We implemented a theorem prover:

prove : (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

can be big and
difficult to write out

(n : nat)

search depth

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Run-time Proving

18

tryRead : (Γ : Ctx) (p : prin)(f : file) → Maybe(string)
tryRead Γ p f = case (prove 15 Γ Mayread(f,p)) of
 None => None
 Some proof => Some (read p f proof)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Run-time Proving

18

tryRead : (Γ : Ctx) (p : prin)(f : file) → Maybe(string)
tryRead Γ p f = case (prove 15 Γ Mayread(f,p)) of
 None => None
 Some proof => Some (read p f proof)

prove is fancy version of “look up in ACL”

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Run-time Proving

18

tryRead : (Γ : Ctx) (p : prin)(f : file) → Maybe(string)
tryRead Γ p f = case (prove 15 Γ Mayread(f,p)) of
 None => None
 Some proof => Some (read p f proof)

prove is fancy version of “look up in ACL”

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Compile-time Proving

19

Γpol a static (known at compile-time) policy:

Γpol = CMU says student(Alice) ::

 ACM says ∀ s:principal,
 ∀ i:principal,
 ∀ p:paper,
 (member(i) ⋀ i says student(s))
 ⊃ MayRead(s, p) ::
 ...

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

20

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

20

Computes (defintional equality) to either None or Some(p)

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

20

Computes (defintional equality) to either None or Some(p)

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf))

20

Computes (defintional equality) to either None or Some(p)

Checks at compile-time that the
theorem prover returned a proof

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

21

Checks at compile-time that the
theorem prover returned a proof

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

22Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

23Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

23

Currently pretty slow: Agda’s fault or ours?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

 stuck : (reader : Principal) →

 (MayRead reader paper.pdf :: [])
 ⊢ MayRead reader paper.pdf

 stuck reader = getSome (prove 10)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

 stuck : (reader : Principal) →

 (MayRead reader paper.pdf :: [])
 ⊢ MayRead reader paper.pdf

 stuck reader = getSome (prove 10)

gets stuck at termEq(reader,reader)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Theorem Prover

24

 stuck : (reader : Principal) →

 (MayRead reader paper.pdf :: [])
 ⊢ MayRead reader paper.pdf

 stuck reader = getSome (prove 10)

gets stuck at termEq(reader,reader)

Solution: reflection?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

25Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

26Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

26

◯

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

26

◯

represents the policy; where does it come from?

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → string

26

◯

represents the policy; where does it come from?

dynamic: not known until run-time

stateful: can change during execution (chown)

Want policies to be:

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

27

Represent computations with a type

◯ Γ A Γ’
policy before policy after

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

27

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→ ◯ Γ string Γ

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

27

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→ ◯ Γ string Γ

chown : (f : file) (k1 k2 : prin)
 (p : (Γ,owns(k1,f)) ⊢ maychown(k1,f))
 → ◯ (Γ,owns(k1,f)) string (Γ,owns(k2,f))

[cf. HTT]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

28

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → ◯ Γ string Γ

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

28

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f))
 → ◯ Γ string Γ

supposed to be running as k

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

29

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f) & as(k))
 → ◯ Γ string Γ

running as k

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Indexed Monad

29

read : (f : file) (k : prin)
 (p : Γ ⊢ mayread(k,f) & as(k))
 → ◯ Γ string Γ

running as k

sudo : (f : file) (k1 k2 : prin)
 → Γ,as(k1) ⊢ maysu(k1,k2)
 → ◯ (Γ,as(k2)) C (Γ’,as(k2))

 → ◯ (Γ,as(k1)) C (Γ’,as(k1))

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

More examples

file access control (more details)

located computation

combination with information flow

conference management server with several
phases (submission, reviewing, notification, …)

30

[ICFP’10, to appear]

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Sliding scale

31

Guess the policy

Prove consequences statically

Failures only at edges

Do all proving at run-time

Type system ensures
you make the right
run-time checks and
handle failures

static dynamic

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Summary

Can do security-typed programming within a DTPL

32

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run
at compile-time (getSome) and run-time

Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Feature Requests

How could a DTPL better support this application?

33

Speed (theorem prover)

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

Thanks for listening!

34

paper + code at http://www.cs.cmu.edu/~drl

Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

http://www.cs.cmu.edu/~drl
http://www.cs.cmu.edu/~drl

