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Security-Typed 
Programming

Access control: who gets access to what?
  read a file
  play a song
  make an FFI call

Information flow: what can they do with it?
  post the file contents on a blog
  copy the mp3
  save the result in a database
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Access Control

4

Read “/alice/secret.txt”

Access control list (ACL)
 for /alice/secret.txt

Alice

Desktop

  Alice: rwad
 Bob: rw

     Admin: rlidwka

(slide by Kumar Avijit)
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Access Control

4

Read “/alice/secret.txt”

Access control list (ACL)
 for /alice/secret.txt

Alice

Desktop

Enforcement: Authentication + ACL lookup

  Alice: rwad
 Bob: rw

     Admin: rlidwka

(slide by Kumar Avijit)
Dan Licata and Jamie MorgensternSecurity-Typed Programming within DTPSecurity-Typed Programming within DTP



5

Decentralized Access Control

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”
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Decentralized Access Control

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

Need a mechanism to 
specify and enforce 
decentralized policies...
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Authorization Logic

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU
Digital library

ACM says ∀ s:principal, 
                 ∀ i:principal, 
                 ∀ p:paper, 
  (member(i) ⋀ i says student(s)) 
  ⊃ MayRead(s, p)

CMU says student(Alice)
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Proof Carrying Authorization

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

[Appel+Felten]
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Proof Carrying Authorization

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

Alice

CMU

Digital library

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

[Appel+Felten]
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Proof Carrying Authorization

Alice

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Evidence OK?

(Access granted) (Runtime error)

Digital library
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Proof Carrying Authorization

Alice

(slide by Kumar Avijit)

Read “paper.pdf”

p : mayread(Alice,paper.pdf)
Evidence OK?

(Access granted) (Runtime error)

Digital library

Can we ensure that runtime errors won’t happen?
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An API for PCA
read : file → prin → proof → contents

9

e.g. read(paper.pdf,Alice,p)
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An API for PCA
read : file → prin → proof → contents

9

p might not be a well-formed proof

e.g. read(paper.pdf,Alice,p)
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An API for PCA
read : file → prin → proof → contents

9

p might not be a well-formed proof

p might not be a proof of the right theorem!

e.g. read(paper.pdf,Alice,p)
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Dependent Types!

read : (f : file) (k : prin) 
          (p : proof(mayread(k,f))
     → contents

10

p is well-formed by typing

theorem is explicit in p’s type
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Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.] 

Fine [Swamy et. al]
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Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.] 

Fine [Swamy et. al]

11

12,000 lines of Coq
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Dependent PCA

PCML5 [Avijit+Harper]

Aura [Jia,Vaughn,Zdancewik,et al.] 

Fine [Swamy et. al]

11

12,000 lines of Coq

20,000 lines of F#
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Can we do

security-typed programming 
within an existing 

dependently-typed language

?
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Security-typed 
Programming in Agda

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Security-typed 
Programming in Agda
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 BL0

15

[Garg+Pfenning]
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[Garg+Pfenning]
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Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Theorem Prover

read(paper.pdf,Alice,p)

17

can be big and 
difficult to write out
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Theorem Prover

read(paper.pdf,Alice,p)

17

We implemented a theorem prover:

prove :              (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

can be big and 
difficult to write out
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Theorem Prover

read(paper.pdf,Alice,p)

17

We implemented a theorem prover:

prove :              (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)

can be big and 
difficult to write out

(n : nat) 

search depth
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Run-time Proving

18

tryRead : (Γ : Ctx) (p : prin)(f : file) → Maybe(string)
tryRead Γ p f = case (prove 15 Γ Mayread(f,p)) of
                            None => None
                            Some proof => Some (read p f proof)
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Run-time Proving

18

tryRead : (Γ : Ctx) (p : prin)(f : file) → Maybe(string)
tryRead Γ p f = case (prove 15 Γ Mayread(f,p)) of
                            None => None
                            Some proof => Some (read p f proof)

prove is fancy version of “look up in ACL”

prove : (n:nat) (Θ : Ctx) (A : Prop) → Maybe (Θ ⊢ A)
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Compile-time Proving

19

Γpol a static (known at compile-time) policy:

Γpol = CMU says student(Alice) ::

   ACM says ∀ s:principal, 
                    ∀ i:principal, 
                    ∀ p:paper, 
     (member(i) ⋀ i says student(s)) 
     ⊃ MayRead(s, p) ::
   ...
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proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

20

Compile-time Proving
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proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

20

Computes (defintional equality) to either None or Some(p)

Compile-time Proving
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proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

20

Computes (defintional equality) to either None or Some(p)

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving
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proof? : Maybe (Γpol ⊢ Mayread(Alice, paper.pdf))
proof? = prove 15 Γpol (Mayread(Alice, paper.pdf)) 

20

Computes (defintional equality) to either None or Some(p)

Checks at compile-time that the 
theorem prover returned a proof

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving
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Checks at compile-time that the 
theorem prover returned a proof

theProof : Γpol ⊢ Mayread(Alice, paper.pdf)
theProof = getSome proof?

Compile-time Proving
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Theorem Prover
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Theorem Prover
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Theorem Prover

23

Currently pretty slow: Agda’s fault or ours?
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Theorem Prover

24

    stuck : (reader : Principal) → 

                (MayRead reader paper.pdf :: []) 
                  ⊢ MayRead reader paper.pdf 

    stuck reader = getSome (prove 10)
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Theorem Prover

24

    stuck : (reader : Principal) → 

                (MayRead reader paper.pdf :: []) 
                  ⊢ MayRead reader paper.pdf 

    stuck reader = getSome (prove 10)

gets stuck at termEq(reader,reader)
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Theorem Prover

24

    stuck : (reader : Principal) → 

                (MayRead reader paper.pdf :: []) 
                  ⊢ MayRead reader paper.pdf 

    stuck reader = getSome (prove 10)

gets stuck at termEq(reader,reader)

Solution: reflection?
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Outline

1.Representing an authorization logic

2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies
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Read with policy

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
     →     string
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◯
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◯

represents the policy; where does it come from?
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Read with policy

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
     →     string

26

◯

represents the policy; where does it come from?

dynamic: not known until run-time

stateful: can change during execution (chown)

Want policies to be:
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Indexed Monad

27

Represent computations with a type

◯ Γ A Γ’
policy before policy after

[cf. HTT]
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Indexed Monad

27

Represent computations with a type

◯ Γ A Γ’
policy before policy after

read : (f : file) (k : prin) (p : Γ ⊢ mayread(k,f))→  ◯ Γ string Γ

chown : (f : file) (k1 k2 : prin) 
             (p : (Γ,owns(k1,f)) ⊢ maychown(k1,f))
       →  ◯ (Γ,owns(k1,f)) string (Γ,owns(k2,f)) 

[cf. HTT]
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Indexed Monad

28

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
    →  ◯ Γ string Γ
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Indexed Monad

28

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f))
    →  ◯ Γ string Γ

supposed to be running as k
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Indexed Monad

29

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f) & as(k))
    →  ◯ Γ string Γ

running as k
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Indexed Monad

29

read : (f : file) (k : prin) 
          (p : Γ ⊢ mayread(k,f) & as(k))
    →  ◯ Γ string Γ

running as k

sudo : (f : file) (k1 k2 : prin) 
       →  Γ,as(k1) ⊢ maysu(k1,k2)
       →  ◯ (Γ,as(k2)) C (Γ’,as(k2))

       →  ◯ (Γ,as(k1)) C (Γ’,as(k1)) 
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More examples

file access control (more details)

located computation

combination with information flow

conference management server with several 
phases (submission, reviewing, notification, …)

30

[ICFP’10, to appear]
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Sliding scale

31

Guess the policy

Prove consequences statically

Failures only at edges

Do all proving at run-time

Type system ensures 
you make the right 
run-time checks and 
handle failures

static dynamic
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Summary

Can do security-typed programming within a DTPL

32

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run 
at compile-time (getSome) and run-time 

Indexed monad to manage stateful+dynamic 
policies
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Feature Requests

How could a DTPL better support this application?

33

Speed (theorem prover)

Reflection (prover works well at extremes
but not in the middle)

Binding+scope (logic)
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Thanks for listening!

34

paper + code at http://www.cs.cmu.edu/~drl
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