Security-Typed Programming
within
Dependently-Typed Programming

Dan Licata
Joint work with Jamie Morgenstern

Carnegie Mellon University

Security- Typed
Programming

% Access control: who gets access to what?
read a file
play a song
make an FFl call

* Information flow: what can they do with it?
post the file contents on a blog
copy the mp3
save the result in a database

Security-Typed Programming within DTP 2 Dan Licata and Jamie Morgenstern

Security-Typed
Programming

* Access control: who gets access to what?
read a file
play a song
make an FFl call

* Information flow: what do they do with it?
post the file contents on a blog
copy the mp3
save the result in a database

Security-Typed Programming within DTP 3 Dan Licata and Jamie Morgenstern

Access Control

Access control list (ACL)
for /alice/secret.txt

Read “/alice/secret.txt”
—)

e o

Alice

Desktop

(slide by Kumar Avijit)

Security-Typed Prparamming within DIP 4 Dan Licata and Jamie Morgenstern

Access Control

Access control list (ACL)
for /alice/secret.txt

Read “/alice/secret.txt”
—)

Admin: rlidwka

Alice

Desktop

Enforcement: Authentication + ACL lookup

(slide by Kumar Avijit)

Security-Typed Prparamming within DIP 4 Dan Licata and Jamie Morgenstern

Decentralized Access Control

*CMU is a member

Alice

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 5 Dan Licata and Jamie Morgenstern

Decentralized Access Control

ﬂ Read “paper.pdf” | I

*CMU is a member
Alice

*Alice is a student

Need a mechanism to [ST ey
specify and enforce K .
decentralized policies...

(slide by Kumar Avijit)

Security-Typed Programming within DTP 5 Dan Licata and Jamie Morgenstern

Authorization Logic

*Alice is a student
*Charlie is a student

ACM says V s:principal, CMU says student(Alice)
V I:principal,
vV p:paper,
(member(i) A | says student(s))
> MayRead(s, p)

Security-Typed Programming within DTP 6 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

[Appel+Felten]

Read “paper.pdf”

*CMU is a member

Alice

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 7 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

[Appel+Felten]

Read “paper.pdf”

papers
*CMU is a member
Alice

p : mayread(Alice,paper.pdf)

*Alice is a student
*Charlie is a student

(slide by Kumar Avijit)

Security-Typed Programming within DTP 7 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

Read “paper.pdf”

p : mayread(Alice,paper.pdf)

(Access granted) (Runtime error)

(slide by Kumar Avijit)

Security-Typed Programming within DTP 8 Dan Licata and Jamie Morgenstern

Proof Carrying Authorization

ﬂ Read “paper.pdf”
S 0 : mayread(Alice,paper.pdf) B

& Q

(Access granted) (Runtime error)

Can we ensure that runtime errors won’t happen?

(slide by Kumar Avijit)

Security-Typed Programming within DTP 8 Dan Licata and Jamie Morgenstern

An API| for PCA

read : file = prin = proof — contents

e.g. read(paper.pdf,Alice,p)

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

An API| for PCA

read : file = prin = proof — contents

e.g. read(paper.pdf,Alice,p)

* p might not be a well-formed proof

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

An API| for PCA

read : file = prin = proof — contents

e.g. read(paper.pdf,Alice,p)

* p might not be a well-formed proof

* p might not be a proof of the right theorem!

Security-Typed Programming within DTP 9 Dan Licata and Jamie Morgenstern

Dependent lypes!

read : (f : file) (k : prin)
(p : proof(mayread(k,f))
— contents

* p Is well-formed by typing

*theorem is explicit in p’s type

Security-Typed Programming within DTP 10 Dan Licata and Jamie Morgenstern

Dependent PCA

* PCML5 [Avijit+Harper]
* Aura [Jia,Vaughn,Zdancewik,et al.]

* Fine [Swamy et. al]

Security-Typed Programming within DTP 11 Dan Licata and Jamie Morgenstern

Dependent PCA

12,000 lines of Coqg
* PCML5 [Avijit+Harper]

* Aura [Jia,Vaughn,Zdancewik,et al.]

* Fine [Swamy et. al]

Security-Typed Programming within DTP 11 Dan Licata and Jamie Morgenstern

Dependent PCA

12,000 lines of Coqg
* PCML5 [Avijit+Harper]

* Aura [Jia,Vaughn,Zdancewik,et al.]

* Fine [Swamy et. al]

e

20,000 lines of F#

Security-Typed Programming within DTP 11 Dan Licata and Jamie Morgenstern

Can we do

security-typed programming
within an existing
dependently-typed language

?

Security-Typed Programming within DTP 12 Dan Licata and Jamie Morgenstern

Security-typed
Programming In Agda

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 13 Dan Licata and Jamie Morgenstern

Security-typed
Programming In Agda

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 14 Dan Licata and Jamie Morgenstern

B LO [Garg+Pfenning]

Q-A[]iA

QAI‘

k says A

SAYSR

Security-Typed Programming within DTP

153

Dan Licata and Jamie Morgenstern

B LO [Garg+Pfenning]

Q-A-[]LA
QAI‘ ksaysA

v

data _FR_ : (@ : Ctx) -> Propo+ (ictx 0) -> Set where
saysR : V {0 k A}
-> (sayCtx 6 k) + A
-> 0 FR (k says A)

SAYSR

Security-Typed Programming within DTP 15 Dan Licata and Jamie Morgenstern

B |_O [Garg+Pfenning]

LA S A
<0 k says A

;AT —
s

data _FR_ : (J: Ctx) -> Propo+ (ictx f) -> Set where
saysR : V {0 k A}
-> (sayCtx 6 k) + A
-> 0 FR (k says A)

SAYSR

Security-Typed Programming within DTP 15 Dan Licata and Jamie Morgenstern

B LO [Garg+Pfenning]

QA S A
- AYSR
@; I k says A
* V

!

data _FR_ : (dr: Ctx) -> Propo+ (ictx f) -> Set where
saysR : V {0 k A}
-> (sayCtx 6 k) F A
-> 0 FR (k says A)

Security-Typed Programming within DTP 15 Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 16 Dan Licata and Jamie Morgenstern

Theorem Prover

can be big and
read(paper.pdf Alice, o} difficult to write out

Security-Typed Programming within DTP 17 Dan Licata and Jamie Morgenstern

Theorem Prover

can be big and
read(paper.pdf,AIice,p)/difficult to write out

We implemented a theorem prover:

prove : (© : Ctx) (A : Prop) — Maybe (O ~ A)

Security-Typed Programming within DTP 17 Dan Licata and Jamie Morgenstern

Theorem Prover

can be big and
read(paper.pdf Alice, o} difficult to write out

We implemented a theorem prover:

prove : (n : nat) (O : Ctx) (A : Prop) = Maybe (O - A)

T

search depth

Security-Typed Programming within DTP 17 Dan Licata and Jamie Morgenstern

Run-time Proving

tryRead : (I : Ctx) (p : prin)(f : file) = Maybe(string)
tryRead I p f = case (prove 15 [Mayread(f,p)) of

None => None

Some proof => Some (read p f proof)

Security-Typed Programming within DTP 18 Dan Licata and Jamie Morgenstern

Run-time Proving

tryRead : (I : Ctx) (p : prin)(f : file) = Maybe(string)
tryRead I p f = case (prove 15 [Mayread(f,p)) of

None => None

Some proof => Some (read p f proof)

prove is fancy version of “look up in ACL”

Security-Typed Programming within DTP 18 Dan Licata and Jamie Morgenstern

Run-time Proving

prove : (n:nat) (O : Ctx) (A : Prop) = Maybe (O +— A)

tryRead : (I : Ctx) (p : prin)(f : file) = Maybe(string)
tryRead I p f = case (prove 15 [Mayread(f,p)) of

None => None

Some proof => Some (read p f proof)

prove is fancy version of “look up in ACL”

Security-Typed Programming within DTP 18 Dan Licata and Jamie Morgenstern

Compile-time Proving

[pol a static (known at compile-time) policy:
[pol = CMU says student(Alice) ::

ACM says V s:principal,
v l:principal,
V p:paper,
(member(i) A | says student(s))
> MayRead(s, p) ::

Security-Typed Programming within DTP 19 Dan Licata and Jamie Morgenstern

Compile-time Proving

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Compile-time Proving

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

Computes (defintional equality) to either None or Some(p)

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Compile-time Proving

proof? : Maybe (I pol - Mayread(Alice, paper.pdf))
proof? = prove 15 ['pol (Mayread(Alice, paper.pdf))

Computes (defintional equality) to either None or Some(p)

theProof : I'pol = Mayread(Alice, paper.pdf)
theProof = getSome proof?

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Compile-time Proving

proof? : Maybe (I'pol - Mayread(Alice, paper.pdf))
proof? = prove 15 [pol (Mayread(Alice, paper.pdf))

Computes (defintional equality) to either None or Some(p)

theProof : I'pol = Mayread(Alice, paper.pdf)
theProof = getSome proof?

Checks at compile-time that the
theorem prover returned a proof

Security-Typed Programming within DTP 20 Dan Licata and Jamie Morgenstern

Compile-time Proving

isSome : {A : Set} -> Maybe A -> Bool
isSome (Some) = True
isSome None = False

getSome : {A : Set} (s : Maybe A) -> { : Check (isSome s)} -> A
getSome (Some X) = X
getSome None {()}

theProof : I'pol = Mayread(Alice, paper.pdf)
theProof = getSome proof?

Checks at compile-time that the
theorem prover returned a proof

Security-Typed Programming within DTP 21 Dan Licata and Jamie Morgenstern

Theorem Prover

proveRight : Nat -> (0 : Ctx) -> (A : Propo Pos (ictx 0)) -> Maybe (0 FR A)
proveRight Z = = None
proveRight (S n) 8 (k0 says A) =
proveNeutral n (sayCtx 0 k0) A >>= A y » Some (saysR y)
proveRight (S n) O (3i {.(ictx 0)}{T} A) = or tryterms where
terms = allTermsGen extraStrings (ictx 0) (» T)
tryterms = ListM.map (A t » map (3R t) (proveRight n O (substlast A t)))
terms
proveRight (S n) B0 (< A) = map (A x » blurR x) (proveNeutral n 6 A)
proveRight (S n) 6 (A vV B) = (map VRl (proveRight n 6 A)) ||
(map VR2 (proveRight n O B))
proveRight n 8 A >>= A x »
map (A y » AR x y) (proveRight n 6 B)
proveRight (S n) 6 T = Some TR

proveRight (S n) 6 (A A B)

Security-Typed Programming within DTP 22 Dan Licata and Jamie Morgenstern

Theorem Prover

e

proveLeft (S n) 6 (A > B) C = (proveLeft n 6 B C) >>= Ay »
map (A z » DL z y) (proveRight n O A)

proveLeft (S n) 6 (a- A) (a- A') with atomEq A A'

proveLeft (S n) O (a- A) (a- .A) | Some Refl = Some (init-)

... | None = None

proveLeft (S n) O (a-) = None

Security-Typed Programming within DTP 23 Dan Licata and Jamie Morgenstern

Theorem Prover

=&

proveLeft (S n) 6 (A > B) C = (proveLeft n 6 B C) >>= Ay »
map (A z » DL z y) (proveRight n O A)

proveLeft (S n) 6 (a- A) (a- A') with atomEq A A'

proveLeft (S n) O (a- A) (a- .A) | Some Refl = Some (init-)

... | None = None

proveLeft (S n) O (a-) = None

Currently pretty slow: Agda’s fault or ours?

Security-Typed Programming within DTP 23 Dan Licata and Jamie Morgenstern

Theorem Prover

stuck : (reader : Principal) —

(MayRead reader paper.pdf :: [])
— MayRead reader paper.pdf

stuck reader = getSome (prove 10)

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Theorem Prover

stuck : (reader : Principal) —

(MayRead reader paper.pdf :: [])
— MayRead reader paper.pdf

stuck reader = getSome (prove 10)

z

gets stuck at termEq(reader,reader)

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Theorem Prover

stuck : (reader : Principal) —

(MayRead reader paper.pdf :: [])
— MayRead reader paper.pdf

stuck reader = getSome (prove 10)

z

gets stuck at termEq(reader,reader)

Solution: reflection?

Security-Typed Programming within DTP 24 Dan Licata and Jamie Morgenstern

Outline

1.Representing an authorization logic
2.Compile-time and run-time theorem proving

3.Stateful and dynamic policies

Security-Typed Programming within DTP 25 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I = mayread(k,f))
=+ =slEng

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I - mayread(k,f))

— () string

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I mayread(k,f))

— () string

represents the policy; where does it come from?

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

Read with policy

read : (f : file) (k : prin)
(p : I mayread(k,f))

— () string

represents the policy; where does it come from?

Want policies to be:

* dynamic: not known until run-time
% stateful: can change during execution (chown)

Security-Typed Programming within DTP 26 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

./ [cf. HTT]
policy before policy after

Security-Typed Programming within DTP 27 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

./ [cf. HTT]
policy before policy after

read : (f : file) (k : prin) (p : [— mayread(k,f))—= (O T string I

Security-Typed Programming within DTP 27 Dan Licata and Jamie Morgenstern

INndexed Monad

Represent computations with a type

S AR

./ [cf. HTT]
policy before policy after

read : (f : file) (k : prin) (p : [— mayread(k,f))—= (O T string I

chown : (f : file) (k1 k2 : prin)
(p : (I',owns(k1,f)) — maychown(k1,f))
— (O (I,owns(k1,f) string (I,owns(k2,)

Security-Typed Programming within DTP 27 Dan Licata and Jamie Morgenstern

INndexed Monad

read : (f : file) (k : prin)
(p : I - mayread(k,f))
— (O Tl string T

Security-Typed Programming within DTP 28 Dan Licata and Jamie Morgenstern

INndexed Monad

supposed to be running as k
read : (f : file) (k : prin)
(p : I - mayread(k,f))
— (O Tl string T

Security-Typed Programming within DTP 28 Dan Licata and Jamie Morgenstern

INndexed Monad

read : (f : file) (k : prin)

— (O Tl string T

running as k

>

(p : I - mayread(k,f) & as(k))

Security-Typed Programming within DTP 29

Dan Licata and Jamie Morgenstern

INndexed Monad

running as k
read : (f : file) (k : prin) \
(p : I - mayread(k,f) & as(k))
— (O Tl string T

sudo : (f : file) (k1 k2 : prin)
— [,as(k1) - maysu(k1,k2)
— (O (T,as(k2)) C (’,as(k2))

— (O (T,as(k1)) C (I,as(k1))

Security-Typed Programming within DTP 29 Dan Licata and Jamie Morgenstern

\Viore examples

[ICFP’10, to appear]

* file access control (more details)
* located computation
* combination with information flow

% conference management server with several
phases (submission, reviewing, notification, ...)

Security-Typed Programming within DTP 30 Dan Licata and Jamie Morgenstern

Sliding scale

static dynamic

% Guess the policy * Do all proving at run-time
* Prove consequences statically * Type system ensures

you make the right
* Failures only at edges run-time checks and

handle failures

Security-Typed Programming within DTP 31 Dan Licata and Jamie Morgenstern

Summary

Can do security-typed programming within a DTPL

* Indexed inductive definition to represent proofs

% Theorem prover to discharge proof obligations, run
at compile-time (getSome) and run-time

* Indexed monad to manage stateful+dynamic
policies

Security-Typed Programming within DTP 32 Dan Licata and Jamie Morgenstern

-eature Reqguests

How could a DTPL better support this application?

* Speed (theorem prover)

% Reflection (prover works well at extremes <=
but not in the middle)

* Binding+scope (logic)

Security-Typed Programming within DTP 33 Dan Licata and Jamie Morgenstern

[hanks for listening!

paper + code at http://www.cs.cmu.edu/~drl

Security-Typed Programming within DTP 34 Dan Licata and Jamie Morgenstern

http://www.cs.cmu.edu/~drl
http://www.cs.cmu.edu/~drl

