
Dependently Typed Programming
with Domain-Specific Logics

Daniel R. Licata

Thesis Committee:
Robert Harper, Chair

Karl Crary
Frank Pfenning

Greg Morrisett, Harvard University

Supported by NSF CCF-0702381/CNS-0716469 and the Pradeep Sindhu Fellowship

2Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

WEAN

3

LOUNGE

4Security-Typed Programming within DTP Dan Licata and Jamie Morgenstern

WALL

5

5

Goal:

Make it
harder to write incorrect programs

and
easier to understand correct ones

6

Method:

Make
type system & specification logic design

part of the programming process

6

Method:

Make
type system & specification logic design

part of the programming process

Domain-specific logics

6

Method:

Make
type system & specification logic design

part of the programming process

Domain-specific logics

using
dependent types

Examples

7

Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

PCML5, Aura, Fine: verifying security properties
with authorization logic
[Chapter 3; Morgenstern & Licata, ICFP’10]

Reed&Pierce’s type system for Differential Privacy
[Chapter 4]

Examples

8

Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

PCML5, Aura, Fine: verifying security properties
with authorization logic
[Chapter 3; Morgenstern & Licata, ICFP’10]

Reed&Pierce’s type system for Differential Privacy
[Chapter 4]

9

Security-Typed Programming

•All students of
members can read
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU

Digital library

(slide by Kumar Avijit)

ACM says ∀ s:principal,
 ∀ i:principal,
 ∀ p:paper,
 (member(i) ⋀ i says student(s))
 ⊃ MayRead(s, p)
...

CMU says student(Alice)
...

Dependent Types! [Agda]

10

read : prin→ file
 → contents

Dependent Types! [Agda]

10

read : prin→ file
 → contents
read : prin→ file → proof
 → contents

Dependent Types! [Agda]

read : (k : prin) (f : file) (p : proof(mayread(k,f))
 → contents

10

read : prin→ file
 → contents
read : prin→ file → proof
 → contents

Dependent Types! [Agda]

read : (k : prin) (f : file) (p : proof(mayread(k,f))
 → contents

10

typing system ensures p is a well-formed proof

and that proofs of appropriate theorems are used

read : prin→ file
 → contents
read : prin→ file → proof
 → contents

Embed in Agda

11

Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run
at compile-time and run-time

Indexed monad to manage stateful+dynamic
policies

12

Representing Logic
Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

12

Representing Logic
Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

12

Representing Logic
Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B}
 → (A :: Γ) ⊢ B
 → Γ ⊢ (A ⊃ B)

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

12

Representing Logic
Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B}
 → (A :: Γ) ⊢ B
 → Γ ⊢ (A ⊃ B)

dependent
de Bruijn
indices

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A

Theorem Prover

13

Implemented a certified theorem prover:

prove : (Γ : Ctx) (A : Propo) → Maybe (Γ ⊢ A)

Theorem Prover

13

Implemented a certified theorem prover:

prove : (Γ : Ctx) (A : Propo) → Maybe (Γ ⊢ A)

data Propo where
 says : Principal → Propo → Propo
 ...

Important that Propos are inductive!

Examples

14

Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

PCML5, Aura, Fine: Security-Typed Programming
[Chapter 3; Morgenstern & Licata, ICFP’10]

Reed&Pierce’s type system for Differential
Privacy [Chapter 4]

Differential Privacy

15

Ask questions about a database

Any answer almost exactly as likely if any one
person is omitted from the database

Reed&Pierce

16

Type system based on affine logic
tracks the sensitivity of a function

Ensure differential privacy by adding noise
proportional to sensitivity

Reed&Pierce

16

Type system based on affine logic
tracks the sensitivity of a function

Ensure differential privacy by adding noise
proportional to sensitivity

x1:A1[s1], x2:A2[s2], … xn:An[sn] ⊢ C

Reed&Pierce

16

Type system based on affine logic
tracks the sensitivity of a function

Ensure differential privacy by adding noise
proportional to sensitivity

x1:A1[s1], x2:A2[s2], … xn:An[sn] ⊢ C

can use a variable if
s ≥ 1.0

Semantics

17

Set of values |A|, equipped with notion of distance

A ⊢ B means
 f : |A| → |B|
 such that
 if distA(x,y) ≤ r then distB(f x, f y) ≤ r

Each type A denotes a metric space:

Primitives

18

Affine logic rules are sound
but lots of primitives are justified semantically:

 cmpswp : real -o real -o real ⊗ real
 rsplit : real -o real ⊗ real

Primitives

18

Affine logic rules are sound
but lots of primitives are justified semantically:

 cmpswp : real -o real -o real ⊗ real
 rsplit : real -o real ⊗ real

need to be baked into
the language

Extensible Diff. Priv.
[Chap 4]

19

Implement the semantics using dependent types
(Πx,y,r. distA(x,y) ≤ r → distB(f x, f y) ≤ r)

Primitives implemented and proved sound
in the semantics

Build affine type system on top

Part 1:

20

It is possible to define, study,
automate, and use domain-specific
logics within a dependently typed
programming language

21

But how can we make it easier?

Outline

22

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]

Outline

23

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]

A Tale of Two
Consequence Relations

24

A Tale of Two
Consequence Relations

24

J1 … Jn ⟶ J

A Tale of Two
Consequence Relations

24

J1 … Jn ⟶ J{
assumptions conclusion

entailment

Derivability (⊢)

25

Derivability (⊢)

25

real ⊢ real

Derivability (⊢)

26

Derivability (⊢)

26

A true ⊢ B true

Derivability (⊢)

27

⊃R : ∀ {Γ A B}
 → (A :: Γ) ⊢ B
 → Γ ⊢ (A ⊃ B)

x1:A1[s1], … xn:An[sn] ⊢ C

Derivability J1 ⊢ J2:

syntactic variables given meaning by subst.

Admissibility (⊨)

28

Admissibility J1 ⊨ J2:

Admissibility (⊨)

29

Admissibility J1 ⊨ J2:

inductive proofs and functional programs

prove : (Γ : Ctx) (A : Propo)
 → Maybe (Γ ⊢ A)

f : |A| → |B| such that
 distA(x,y) ≤ r → distB(f x, f y) ≤ r

Structural Properties

30

In Existing Frameworks

31

MLTT: admissibility as functions
 have to code up derivability yourself

LF: derivability as functions
 admissibility in separate layer (Twelf, Delphin)

In Existing Frameworks

31

MLTT: admissibility as functions
 have to code up derivability yourself

LF: derivability as functions
 admissibility in separate layer (Twelf, Delphin)

inherently
unequal!

Admissibility premises

32

Negated premises:

ω-rule:

Admissibility premises

32

Negated premises:

ω-rule:

concise representations of pattern matching [Zeilberger]

Problem

33

can no longer weaken with
equality deriv. assumptions

J1 ⊢ (J2 ⊨ J3)
doesn’t necessarily follow from

(J2 ⊨ J3)

Part II

34

It is possible to implement, within a
dependently typed programming
language, a simply typed logical
framework that allows derivability and
admissibility to be mixed in novel and
interesting ways.

[Licata and Harper, ICFP’09;
Licata, Zeilberger, Harper; LICS’08]

35

Embedded Logical
Framework

Define a datatype representing framework types,
including derivability (Ψ ⊢ A) and admissibility
functions (A ⊨ B)

Define framework programs by
interpretation into Agda

Automatically equip framework types with the
structural properties using generic programming

Do fun examples using mixing (NBE)

36

Structural Properties

Weakening: A ⊨ (D ⊢ A) if […graph algorithm…]

Substitution: (D ⇒ A) ⊃ (D ⊃ A) if …

Exchange: (D1 ⇒ D2 ⇒ A) ⊃ (D2 ⇒ D1 ⇒ A) if ..

Contraction: (D ⇒ D ⇒ A) ⊃ (D ⇒ A) if …

Strengthening: (D ⇒ A) ⊃ A if …

37

Questions
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

Outline

38

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7]

3.[REDACTED]

39

Directed Type Theory

39

Directed Type Theory

[logo by RJS]

Directed Types

40

Each type has notion of transformation on elements:

 M1 ≲A M2

Every type family x:A ⊢ B type respects trans.:

Directed Types

40

Each type has notion of transformation on elements:

 M1 ≲A M2

Every type family x:A ⊢ B type respects trans.:

judgement, not type

map for Pairs

41

Action of map given by each type constructor:

mapx:A.B x C (α : M1 ≲A M2) (e , e’) =
 (mapx:A.B α e , mapx:A.C α e’)

map for Pairs

41

Action of map given by each type constructor:

mapx:A.B x C (α : M1 ≲A M2) (e , e’) =
 (mapx:A.B α e , mapx:A.C α e’)

B[M1] x C[M1]

map for Pairs

41

Action of map given by each type constructor:

mapx:A.B x C (α : M1 ≲A M2) (e , e’) =
 (mapx:A.B α e , mapx:A.C α e’)

B[M1] x C[M1]

Goal: B[M2] x C[M2]

map for Pairs

41

Action of map given by each type constructor:

mapx:A.B x C (α : M1 ≲A M2) (e , e’) =
 (mapx:A.B α e , mapx:A.C α e’)

B[M2] C[M2]

B[M1] x C[M1]

Goal: B[M2] x C[M2]

map for Functions

42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f =
 λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

map for Functions

42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f =
 λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

B[M1] →C[M1]

map for Functions

42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f =
 λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

B[M1] →C[M1]

Goal: B[M2] → C[M2]

map for Functions

42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f =
 λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

B[M1] →C[M1]

Goal: B[M2] → C[M2]

Contravariant:
B[M2] → B[M1]

map for Functions

42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f =
 λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

B[M1] →C[M1]

Goal: B[M2] → C[M2]

Contravariant:
B[M2] → B[M1]

Covariant:
C[M1] → C[M2]

Variances

43

Γop ⊢ A type Γ ⊢ B type
 Γ ⊢ A → B type

CovariantContravariant

Functorial Syntax
[FPT’99,AR’99,H’99]

44

Type Formula[Ψ : Ctx] representing formulas of DSL

Type Ctx:

 elements: representations of DSL contexts Ψ
 transformations Ψ ≲ Ψ’:
 DSL substitutions Ψ’ ⊢ σ : Ψ

Functorial Syntax

45

Datatype definition in DTT:

action of formula on transformations =
the structural properties!

mapx.Formula[x] (σ : Ψ ≲ Ψ’) : Formula[Ψ] → Formula [Ψ’]

Generalizations

46

admissibility premises

dependent types

I show that this extends to

Generalizations

46

admissibility premises

dependent types

I show that this extends to

represented by → or ∏

47

Answers
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

47

Answers
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

track variances

47

Answers
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

action on
transform. at ∑

track variances

47

Answers
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

action on
transform. at ∑

compos. law
for map

track variances

48

Natural deductions Ψ ⊢ F where F can depend on Ψ
 represented by

nd : (Σ(Ψ : Ctx). Formula[Ψ]) → type

Answers

48

Natural deductions Ψ ⊢ F where F can depend on Ψ
 represented by

nd : (Σ(Ψ : Ctx). Formula[Ψ]) → type

Answers

substitution Ψ’ ⊢ σ : Ψ

such that F’ = map σ F

{
Transformation (Ψ , F) ≲ (Ψ’ , F’) is exactly

48

Natural deductions Ψ ⊢ F where F can depend on Ψ
 represented by

nd : (Σ(Ψ : Ctx). Formula[Ψ]) → type

Answers

substitution Ψ’ ⊢ σ : Ψ

such that F’ = map σ F

{
Transformation (Ψ , F) ≲ (Ψ’ , F’) is exactly

so mapp.nd p σ : nd Ψ F → nd Ψ’ F[σ]

Part III

49

A language with directed types
provides a useful framework for
describing the structural properties of
a dependently typed logical framework

50

Higher-Dimensional
Directed Type Theory

51

types in
intensional type theory

higher-dimensional
groupoids

in category theory

higher
homotopy types

in homotopy theory

Higher-Dimensional
Symmetric Type Theory

justifies working up to (higher) isomoprhism

52

types in
directed type theory

higher-dimensional
categories

in category theory

higher
homotopy types

in directed homotopy theory

Higher-Dimensional
Directed Type Theory

justifies working up to transformation

53

Semantics of DTT

Context Γ denotes a category

Type Γ ⊢ A type denotes a functor Γ → Cat

Term Γ ⊢ M : A denotes
a “dependently typed functor” Γ → A

Transformation M ≲ N denotes
a natural transformation

this is the 2-dimensional case in a hierarchy!

Contributions

54

New examples of programming with domain-
specific logics [Chapters 3 and 4]

An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

A new notion of Directed Type Theory,
corresponding to higher-dimensional category
theory and homotopy theory [Chapters 7,8]

Part I

55

It is possible to define, study,
automate, and use domain-specific
logics within a dependently typed
programming language

Part II

56

It is possible to implement, within a
dependently typed programming
language, a simply typed logical
framework that allows derivability and
admissibility to be mixed in novel and
interesting ways.

Part III

57

A language with directed types
provides a useful framework for
describing the structural properties of
a dependently typed logical framework

Future Work

58

DTT, theory: inductive types, directed hom-types,
opposite types, covariant Π

DTT, practice: implementation, decidable
definitional equality

More examples of domain-specific logics,
and bigger programs verified using them

Thanks to

59

Thanks to

59

My advisor, Robert Harper

Thanks to

59

My advisor, Robert Harper

My committee, Karl Crary, Frank Pfenning,
and Greg Morrisett

Thanks to

59

My advisor, Robert Harper

My committee, Karl Crary, Frank Pfenning,
and Greg Morrisett

My coauthors, Noam Zeilberger
and Jamie Morgenstern

Thanks to

59

My advisor, Robert Harper

My committee, Karl Crary, Frank Pfenning,
and Greg Morrisett

My coauthors, Noam Zeilberger
and Jamie Morgenstern

Friends in the PoP group and philosophy dept.

Thanks to

59

My advisor, Robert Harper

My committee, Karl Crary, Frank Pfenning,
and Greg Morrisett

My coauthors, Noam Zeilberger
and Jamie Morgenstern

Friends in the PoP group and philosophy dept.

My parents

Contributions

60

New examples of programming with domain-
specific logics [Chapters 3 and 4]

An investigation into mixing derivability and
admissibility [Chapters 5, 6, 7, 8]

A new notion of Directed Type Theory,
corresponding to higher-dimensional category
theory and homotopy theory [Chapters 7 and 8]

