Dependently Typed Programming with Domain-Specific Logics

Daniel R. Licata

Thesis Committee: Robert Harper, Chair Karl Crary Frank Pfenning Greg Morrisett, Harvard University

Supported by NSF CCF-0702381 CNS-0716469 and the Pradeep Sindhu Fellowship

J IT IS EASIER TO WRITE AN INCORRECT PROGRAM THAN UNDERSTAND & CORRECT ONE.

- I ONE MANYS CONSTANT IS AMOTSIER MANYS VARIABLE.
- U IF A LISTERIER NODS HIS HEAD WHEN YOURD EXPLAINING YOUR PROGRAM, WARE HIM UP.
- DONET HAVE GOOD IDEAS IF YOU ARENT WILLING TO BE RESPONSIBLE FOR THEM.
- IN SOFTWARE SYSTEMS IT IS OFTEN THE EARLY BIRD THAT MAKES THE WORM.
- BYERY PROCRAM HAS (AT LEAST) TWO PURPOSES: THE ONE FOR WHICH IT WAS WRITTEN AND AMOTHER FOR WHICH IT WASN'T.
- IT IS EASIER TO WRITE AN INCORRECT PROGRAM THAN UNDERSTAND A CORRECT ONE.

ALAN J. PERLIS (1922-1990) A FOUNDER OF THE COMPUTER SCIENCE DEPARTMENT CARNEGIE MELLON UNIVERSITY FIRST DEPARTMENT HEAD 1965-1971

- YOU PROBABLY MISSED SOME.
- IN A 5 YEAR PERIOD WE GET ONE SUPERB PROGRAMMING LANGUAGE - ONLY WE CAN'T CONTROL WHEN THE 5 YEAR PERIOD WILL BEGIN

Goal:

Make it harder to write incorrect programs and easier to understand correct ones

Method:

Make type system & specification logic design part of the programming process

Examples

* Ynot: verifying imperative programs with separation logic [Morrisett et al.]

- * PCML5, Aura, Fine: verifying security properties with authorization logic [Chapter 3; Morgenstern & Licata, ICFP'10]
- * Reed&Pierce's type system for Differential Privacy [Chapter 4]

Examples

* Ynot: verifying imperative programs with separation logic [Morrisett et al.]

* PCML5, Aura, Fine: verifying security properties with authorization logic [Chapter 3; Morgenstern & Licata, ICFP'10]

* Reed&Pierce's type system for Differential Privacy [Chapter 4]

Security-Typed Programming

ACM **says** ∀ s:principal, ∀ i:principal, ∀ p:paper, (member(i) ∧ i **says** student(s)) ⊃ MayRead(s, p)

CMU says student(Alice)

read : prin→ file → contents

read : prin→ file → proof → contents

read : prin→ file → proof → contents

read : (k : prin) (f : file) (p : proof(mayread(k,f)) → contents

read : prin→ file → proof → contents

read : (k : prin) (f : file) (p : proof(mayread(k,f)) → contents

* typing system ensures p is a well-formed proof

* and that proofs of appropriate theorems are used

Embed in Agda

* Indexed inductive definition to represent proofs

* Theorem prover to discharge proof obligations, run at compile-time and run-time

Indexed monad to manage stateful+dynamic policies

Sequent as indexed inductive definition:

 $\Gamma \vdash A$ \longrightarrow data $_\vdash_: Ctx \rightarrow Propo \rightarrow Type$

Sequent as indexed inductive definition:

 $\Gamma \vdash A$ \longrightarrow data $_\vdash_: Ctx \rightarrow Propo \rightarrow Type$

Classifying only well-formed derivations:

Sequent as indexed inductive definition:

 $\Gamma \vdash A$ \longrightarrow data $_\vdash_: Ctx \rightarrow Propo \rightarrow Type$

Classifying only well-formed derivations:

 $\mathcal{D}_{\Gamma \vdash A} \longleftrightarrow \mathcal{D}: \Gamma \vdash A$

Inference rules as datatype constructors:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \longrightarrow \begin{array}{c} \supset R : \forall \{\Gamma A B\} \\ \rightarrow (A :: \Gamma) \vdash B \\ \rightarrow \Gamma \vdash (A \supset B) \end{array}$$

Sequent as indexed inductive definition:

 $\Gamma \vdash A$ \longrightarrow data $_\vdash_: Ctx \rightarrow Propo \rightarrow Type$

Classifying only well-formed derivations:

 $\mathcal{D}_{\Gamma \vdash A} \longleftrightarrow \mathcal{D}: \Gamma \vdash A$

Inference rules as datatype constructors:

Theorem Prover

Implemented a certified theorem prover:

prove : (Γ : Ctx) (A : Propo) \rightarrow Maybe ($\Gamma \vdash A$)

Theorem Prover

Implemented a *certified* theorem prover:

. . .

prove : (Γ : Ctx) (A : Propo) \rightarrow Maybe ($\Gamma \vdash A$)

Important that Propos are inductive! data Propo where says : Principal → Propo → Propo

Examples

* Ynot: verifying imperative programs with separation logic [Morrisett et al.]

* PCML5, Aura, Fine: Security-Typed Programming [Chapter 3; Morgenstern & Licata, ICFP'10]

* Reed&Pierce's type system for Differential Privacy [Chapter 4]

Differential Privacy

* Ask questions about a database

* Any answer almost exactly as likely if any one person is omitted from the database

Reed&Pierce

* Type system based on affine logic tracks the sensitivity of a function

* Ensure differential privacy by adding noise proportional to sensitivity

Reed&Pierce

* Type system based on affine logic tracks the sensitivity of a function

 $x_1:A_1[s_1], x_2:A_2[s_2], \dots x_n:A_n[s_n] \vdash C$

* Ensure differential privacy by adding noise proportional to sensitivity

Reed&Pierce

★ Type system based on affine logic can use a variable if tracks the sensitivity of a function

can use a variable if

 $x_1:A_1[s_1], x_2:A_2[s_2], \dots x_n:A_n[s_n] \vdash C$

* Ensure differential privacy by adding noise proportional to sensitivity

Semantics

Each type A denotes a metric space:

* Set of values |A|, equipped with notion of distance

Primitives

Affine logic rules are sound but lots of primitives are justified semantically:

cmpswp : real -o real -o real \otimes real rsplit : real -o real \otimes real

Primitives

Affine logic rules are sound but lots of primitives are justified semantically:

cmpswp : real -o real -o real \otimes real rsplit : real -o real \otimes real

> need to be baked into the language

Extensible Diff. Priv. [Chap 4]

* Implement the semantics using dependent types (Πx,y,r. dist_A(x,y) ≤ r → dist_B(f x, f y) ≤ r)

* Primitives implemented and proved sound in the semantics

* Build affine type system on top

Part 1:

It is possible to define, study, automate, and use domain-specific logics within a dependently typed programming language

But how can we make it easier?

Outline

1.New examples of programming with domainspecific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]

Outline

1.New examples of programming with domainspecific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]
A Tale of Two Consequence Relations

A Tale of Two Consequence Relations

$J_1\,\ldots\,J_n\,\longrightarrow\,J$

A Tale of Two Consequence Relations

Derivability (⊢)

Polynomials over the reals:

$f(x) = x^2 + 2x + 1$

Substitution: plug in for the variable

 $* f(3) = 3^2 + 2^*3 + 1$

 $* f(y+5) = (y+5)^2 + 2(y+5) + 1$

Derivability (⊢)

real ⊢ real

Polynomials over the reals:

Substitution: plug in for the variable

 $* f(3) = 3^2 + 2^*3 + 1$

 $* f(y+5) = (y+5)^2 + 2(y+5) + 1$

 $f(x) = x^2 + 2x + 1$

Derivability (⊢)

If (A implies B) and A then B

Derivability $J_1 \vdash J_2$:

syntactic variables given meaning by subst.

Admissibility (⊨)

Function from reals to reals specified by:

* set of ordered pairs

* every number appears exactly once on the LHS

{ (0, 1),
(1, 4),
$$(\sqrt{2}, 3 + 2\sqrt{2})$$

... }

$$\begin{array}{l} \textbf{Admissibility}(\models) \\ \texttt{prove}: (\Gamma: Ctx) (A: Propo) \\ \rightarrow Maybe (\Gamma \vdash A) \end{array} \\ \end{array}$$

$$\begin{array}{l} f: |A| \rightarrow |B| \text{ such that} \\ dist_A(x,y) \leq r \ \rightarrow dist_B(f \ x, \ f \ y) \leq r \end{array}$$

Admissibility $J1 \models J2$:

inductive proofs and functional programs

$$\begin{split} & \text{Structural Properties} \\ & \\ & \\ \hline \Gamma, u: J, \Gamma' \vdash J \ u \quad \frac{\Gamma, \Gamma' \vdash J_1 \quad \Gamma, u: J_1, \Gamma' \vdash J_2}{\Gamma, \Gamma' \vdash J_2} \text{ subst} \\ & \\ & \\ & \\ & \\ \hline \frac{\Gamma, \Gamma' \vdash J'}{\Gamma, u: J, \Gamma' \vdash J'} \text{ weakening} \quad \frac{\Gamma, u_2: J_2, u_1: J_1, \Gamma' \vdash J'}{\Gamma, u_1: J_1, u_2: J_2, \Gamma' \vdash J'} \text{ exchange} \\ & \\ & \\ & \\ & \\ \hline \frac{\Gamma, u_1: J, u_2: J, \Gamma' \vdash J'}{\Gamma, u_1: J, \Gamma' \vdash J'} \text{ contraction} \end{split}$$

In Existing Frameworks

MLTT: admissibility as functions have to code up derivability yourself

LF: derivability as functions admissibility in separate layer (Twelf, Delphin)

In Existing Frameworks

MLTT: admissibility as functions have to code up derivability yourself

LF: derivability as functions admissibility in separate layer (Twelf, Delphin)

> inherently unequal!

Admissibility premises

Negated premises:

$$\frac{l_1 = l_2 \vDash \mathsf{false} \quad \mathsf{lookup}(M, l_1) = v}{\mathsf{lookup}(M[l_2 \mapsto _], l_1) = v}$$

ω-rule:

$$\frac{t:\mathsf{nat} \quad n:\mathsf{nat} \vDash P(n)}{P(t) \; \mathsf{true}}$$

Admissibility premises

Negated premises:

$$\frac{l_1 = l_2 \vDash \mathsf{false} \quad \mathsf{lookup}(M, l_1) = v}{\mathsf{lookup}(M[l_2 \mapsto _], l_1) = v}$$

ω-rule:

$$\frac{t:\mathsf{nat} \quad n:\mathsf{nat} \vDash P(n)}{P(t) \; \mathsf{true}}$$

concise representations of pattern matching [Zeilberger]

Problem

can no longer weaken with equality deriv. assumptions

 $\frac{l_1 = l_2 \vDash \mathsf{false} \quad \mathsf{lookup}(M, l_1) = v}{\mathsf{lookup}(M[l_2 \mapsto _], l_1) = v}$

 $J1 \vdash (J2 \vDash J3)$ doesn't necessarily follow from $(J2 \vDash J3)$

Part II

It is possible to implement, within a dependently typed programming language, a simply typed logical framework that allows derivability and admissibility to be mixed in novel and interesting ways.

> [Licata and Harper, ICFP'09; Licata, Zeilberger, Harper; LICS'08]

Embedded Logical Framework

- * Define a datatype representing framework types, including derivability (Ψ ⊢ A) and admissibility functions (A ⊨ B)
- * Define framework programs by interpretation into Agda
- * Automatically equip framework types with the structural properties using generic programming
- * Do fun examples using mixing (NBE)

Structural Properties

***** Weakening: A ⊨ (D ⊢ A) if [...graph algorithm...] ***** Substitution: (D ⇒ A) ⊃ (D ⊃ A) if ...

***** Exchange: $(D_1 \Rightarrow D_2 \Rightarrow A) \supset (D_2 \Rightarrow D_1 \Rightarrow A)$ if ...

***** Contraction: $(D \Rightarrow D \Rightarrow A) \supset (D \Rightarrow A)$ if ...

***** Strengthening: $(D \Rightarrow A) \supset A$ if ...

Questions

* When do structural properties exist?

* Dependent types?

* subst. into derivation yields subst. into judgement

$$\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]} \text{ subst}$$

* requires composition

$$A[t/x][s/y] = A[s/y][t[s/y]/x]$$

Outline

1.New examples of programming with domainspecific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and admissibility [Chapter 5, 6, 7]

3.[REDACTED]

Directed Types

Each type has notion of transformation on elements:

 $M_1 \lesssim_A M_2$

Every type family x:A ⊢ B type respects trans.:

 $\frac{\Gamma, x:A \vdash B \text{ type } \Gamma \vdash \alpha: M_1 \lesssim_A M_2 \quad \Gamma \vdash M: B[M_1/x]}{\Gamma \vdash \mathsf{map}_{x:A \ .B} \ \alpha \ M: B[M_2/x]}$

Directed Types

Each type has notion of transformation on elements:

 $M_1 \lesssim_A M_2$

judgement, not type

Every type family x:A ⊢ B type respects trans.:

 $\begin{array}{c|c} \Gamma, x:A & \vdash B \text{ type } & \Gamma \vdash \alpha : M_1 \lesssim_A M_2 & \Gamma \vdash M : B[M_1/x] \\ & \\ & \\ \Gamma \vdash \mathsf{map}_{x:A \ .B} \ \alpha \ M : B[M_2/x] \end{array}$

map for Pairs

Action of map given by each type constructor:

map_{x:A.B × C} (α : $M_1 ≤_A M_2$) (e, e') = (map_{x:A.B} α e, map_{x:A.C} α e')

map for Pairs

Action of map given by each type constructor:

B[M₁] x C[M₁]

 $map_{x:A,B \times C} (\alpha : M_1 \leq_A M_2) (e, e') = (map_{x:A,B} \alpha e, map_{x:A,C} \alpha e')$

map for Pairs

Action of map given by each type constructor:

 $\begin{aligned} & \text{map}_{x:A,B} \times C \left(\alpha : M_1 \leq_A M_2 \right) (e, e') = \\ & (\text{map}_{x:A,B} \alpha e, \text{map}_{x:A,C} \alpha e') \end{aligned}$

Goal: B[M₂] x C[M₂]

B[M₁] x C[M₁]

map for Functions

Action of map given by each type constructor:

 $\begin{array}{l} map_{x:A,B} \rightarrow c \left(\alpha : M_{1} \lesssim_{A} M_{2} \right) f = \\ \lambda x:B[M_{2}]. \ map_{x:A,C} \alpha \left(f \left(map_{x:A,B} \alpha x \right) \right) \end{array}$

map for Functions

Action of map given by each type constructor:

 $\mathbf{B}[\mathbf{M}_1] \rightarrow \mathbf{C}[\mathbf{M}_1]$

 $\begin{aligned} & \text{map}_{x:A,B} \rightarrow c \left(\alpha : M_1 \leq_A M_2 \right) f = \\ & \lambda x:B[M_2]. \ & \text{map}_{x:A,C} \alpha \left(f \left(\text{map}_{x:A,B} \alpha x \right) \right) \end{aligned}$

map for Functions

Action of map given by each type constructor:

 $\mathbf{B}[\mathbf{M}_1] \rightarrow \mathbf{C}[\mathbf{M}_1]$

$$\begin{split} map_{x:A,B} \rightarrow c \left(\alpha : M_1 \lesssim_A M_2 \right) f = \\ \lambda x:B[M_2]. \ map_{x:A,C} \alpha \left(f \left(map_{x:A,B} \alpha x \right) \right) \quad \textbf{Goal: B[M_2]} \rightarrow \textbf{C[M_2]} \end{split}$$

Variances

ContravariantCovariant $\Gamma^{op} \vdash A$ type $\Gamma \vdash B$ type $\Gamma \vdash A \rightarrow B$ type

Functorial Syntax [FPT'99,AR'99,H'99]

Type Formula[Ψ : Ctx] representing formulas of DSL Type Ctx:

elements: representations of DSL contexts Ψ transformations $\Psi \leq \Psi$ ': DSL substitutions $\Psi' \vdash \sigma : \Psi$
Functorial Syntax

Datatype definition in DTT:

formula	:	$ctx \rightarrow set$
formula ψ	≅	v of (formula $\in \psi$) says of principal $\psi imes$ formula ψ

action of **formula** on transformations = the structural properties!

 $map_{x.Formula[x]} (\sigma : \Psi \leq \Psi') : Formula[\Psi] \rightarrow Formula [\Psi']$

Generalizations

I show that this extends to * admissibility premises * dependent types

$$\frac{t:\mathsf{nat} \quad n:\mathsf{nat} \vDash P(n)}{P(t) \ \mathsf{true}}$$

Generalizations

I show that this extends to * admissibility premises

* dependent types

, represented by \rightarrow or \prod

$$\frac{t:\mathsf{nat}\quad n:\mathsf{nat}\vDash P(n)}{P(t) \mathsf{ true}}$$

* When do structural properties exist?

* Dependent types?

* subst. into derivation yields subst. into judgement

$$\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}$$

* requires composition

$$A[t/x][s/y] = A[s/y][t[s/y]/x]$$

When do structural properties exist? track variances
Dependent types?

* subst. into derivation yields subst. into judgement

$$\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}$$

* requires composition

$$A[t/x][s/y] = A[s/y][t[s/y]/x]$$

When do structural properties exist? track variances
Dependent types?

* subst. into derivation yields subst. into judgement

$$\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}$$

action on transform. at Σ

* requires composition

$$A[t/x][s/y] = A[s/y][t[s/y]/x]$$

When do structural properties exist? track variances
Dependent types?

subst. into derivation yields subst. into judgement

$$\frac{\Gamma \vdash e : \tau \quad \Gamma, x : \tau, \Gamma' \vdash J}{\Gamma, \Gamma'[e/x] \vdash J[e/x]}$$

action on transform. at Σ

* requires composition

$$A[t/x][s/y] = A[s/y][t[s/y]/x]$$

compos. law for map

Natural deductions $\Psi \vdash F$ where F can depend on Ψ represented by nd : ($\Sigma(\Psi : Ctx)$). Formula[Ψ]) \rightarrow type

Natural deductions $\Psi \vdash F$ where F can depend on Ψ represented by nd : $(\Sigma(\Psi : Ctx), Formula[\Psi]) \rightarrow type$ Transformation (Ψ , F) \leq (Ψ ', F') is exactly * substitution $\Psi' \vdash \sigma : \Psi$ * such that F' = map σ F

Natural deductions $\Psi \vdash F$ where F can depend on Ψ represented by nd : $(\Sigma(\Psi : Ctx), Formula[\Psi]) \rightarrow type$ Transformation (Ψ , F) \leq (Ψ ', F') is exactly * substitution $\Psi' \vdash \sigma : \Psi$ * such that F' = map σ F so mapp.ndp σ : nd Ψ F \rightarrow nd Ψ ' F[σ]

Part III

A language with directed types provides a useful framework for describing the structural properties of a dependently typed logical framework

Higher-Dimensional Directed Type Theory

Higher-Dimensional Symmetric Type Theory

justifies working up to (higher) isomoprhism

justifies working up to transformation

Semantics of DTT

* Context Γ denotes a category
* Type Γ ⊢ A type denotes a functor Γ → Cat
* Term Γ ⊢ M : A denotes

a "dependently typed functor" Γ → A

* Transformation M ≤ N denotes

a natural transformation

this is the 2-dimensional case in a hierarchy!

Contributions

* New examples of programming with domainspecific logics [Chapters 3 and 4]

* An investigation into mixing derivability and admissibility [Chapter 5, 6, 7, 8]

* A new notion of Directed Type Theory, corresponding to higher-dimensional category theory and homotopy theory [Chapters 7,8]

Part I

It is possible to define, study, automate, and use domain-specific logics within a dependently typed programming language

Part II

It is possible to implement, within a dependently typed programming language, a simply typed logical framework that allows derivability and admissibility to be mixed in novel and interesting ways.

Part III

A language with directed types provides a useful framework for describing the structural properties of a dependently typed logical framework

Future Work

* DTT, theory: inductive types, directed hom-types, opposite types, covariant Π

* DTT, practice: implementation, decidable definitional equality

* More examples of domain-specific logics, and bigger programs verified using them

* My advisor, Robert Harper

* My advisor, Robert Harper

* My committee, Karl Crary, Frank Pfenning, and Greg Morrisett

* My advisor, Robert Harper

* My committee, Karl Crary, Frank Pfenning, and Greg Morrisett

* My coauthors, Noam Zeilberger and Jamie Morgenstern

* My advisor, Robert Harper

* My committee, Karl Crary, Frank Pfenning, and Greg Morrisett

* My coauthors, Noam Zeilberger and Jamie Morgenstern

* Friends in the PoP group and philosophy dept.

* My advisor, Robert Harper

* My committee, Karl Crary, Frank Pfenning, and Greg Morrisett

* My coauthors, Noam Zeilberger and Jamie Morgenstern

* Friends in the PoP group and philosophy dept.

* My parents

Contributions

* New examples of programming with domainspecific logics [Chapters 3 and 4]

* An investigation into mixing derivability and admissibility [Chapters 5, 6, 7, 8]

* A new notion of Directed Type Theory, corresponding to higher-dimensional category theory and homotopy theory [Chapters 7 and 8]