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Goal:

Make it

harder to write incorrect programs

and
easier to understand correct ones




Method:

Make
type system & specification logic design
part of the programming process



Domain-specific logics

Method: /
Make

ype system & specification logit>design

part OrOgie g process




Domain-specific logics

Method: /
Make

ype system & specification logit>design

of:/gme SiIr'ogie g process
using
dependent types




Examples

* Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

* PCMLS5, Aura, Fine: verifying security properties
with authorization logic
[Chapter 3; Morgenstern & Licata, ICFP’10]

* Reed&Pierce’s type system for Differential Privacy
[Chapter 4]



Examples

* Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

* PCML5, Aura, Fine: verifying security properties
with authorization logic
[Chapter 3; Morgenstern & Licata, ICFP’10]

* Reed&Pierce’s type system for Differential Privacy
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Security- Typed Programming

ACM says Vv s:principal,
v I:principal, |
PR papers

(member(i) A i says student(s)) *CMU s @ memiber
> MayRead(s, p)

*Alice is a student

CMU says student(Alice) I I

(slide by Kumar Avijit)
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read : prin— file
— contents
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Dependent Types! [Agda]

read : prin— file = proof
— contents

v

read : (k : prin) (f : file) (p : proof(mayread(k,f))
— contents




Dependent Types! [Agda]

read : prin— file = proof
— contents

v

read : (k : prin) (f : file) (p : proof(mayread(k,f))
— contents

* typing system ensures p is a well-formed proof

* and that proofs of appropriate theorems are used
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Embed In Agda

* Indexed inductive definition to represent proofs

* Theorem prover to discharge proof obligations, run
at compile-time and run-time

* Indexed monad to manage stateful+dynamic
policies

44




Representing Logic
Seqguent as indexed inductive definition:

[ el

data _+—_: Ctx = Propo — Type




Representing Logic
Sequent as indexed inductive definition:

[ A= el

Classifying only well-formed derivations:

e me

data _+_: Ctx = Propo — Type




Representing Logic
Sequent as indexed inductive definition:

—

Classifying only well-formed derivations:
D |
FC A gD A

Inference rules as datatype constructors:

A =R >R : v {l AB}
[-A>B > Azl FB
= [ ~ (A > B)

[ - A

data _+_: Ctx = Propo — Type
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Representing Logic
Sequent as indexed inductive definition:

—

Classifying only well-formed derivations:
D |
FC A gD A

Inference rules as datatype constructors:

. dependent

F’A_"B_) oR:v il AB} ~ de Bruijn

[-A>B et e H R = indices
= [ ~ (A > B)

[ - A

data _+_: Ctx = Propo — Type

2




Theorem Prover

Implemented a certified theorem prover:

prove : (I : Ctx) (A : Propo) = Maybe (I - A)




Theorem Prover

Implemented a certified theorem prover:

prove : (I : Ctx) (A : Propo) = Maybe (I - A)

Important that Propos are inductive!

data Propo where
says . Principal = Propo — Propo
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Examples

* Ynot: verifying imperative programs with
separation logic [Morrisett et al.]

¥ PCMLS5, Aura, Fine: Security-Typed Programming
[Chapter 3; Morgenstern & Licata, ICFP’10]

* Reed&Pierce’s type system for Differential
Privacy [Chapter 4]
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Differential Privacy

* Ask questions about a database

NETERLAL X

Hospital

* Any answer almost exactly as likely if any one
person is omitted from the database

153




Reed&Plerce

* Type system based on affine logic
tracks the sensitivity of a function

* Ensure differential privacy by adding noise
proportional to sensitivity

16




Reed&Plerce

* Type system based on affine logic
tracks the sensitivity of a function

X1:A1[s1], X2:A2[s2], ... Xn:An[sn] — C

* Ensure differential privacy by adding noise
proportional to sensitivity

16




Reed&Plerce

* Type system based on affine logic can use a variable if
tracks the sensitivity of a function / s=1.0

X1:A1[s1], X2:A2[s2], ... Xn:An[sn] — C

* Ensure differential privacy by adding noise
proportional to sensitivity

16




Semantics

Each type A denotes a metric space:

% Set of values |A|, equipped with notion of distance

* A - B means
f:]Al = |B
such that

if dista(x,y) <r then dists(f X, fy)<r

17



Primitives

Affine logic rules are sound
but lots of primitives are justified semantically:

cmpswp : real -o real -o real ® real
rsplit . real -o real ® real

18




Primitives

Affine logic rules are sound
but lots of primitives are justified semantically:

cmpswp : real -o real -o real ® real
rsplit . real -o real ® real

\ need to be baked into

the language

18




Extensible Ditt. Priv.
Chap 4]

* Implement the semantics using dependent types
(MNx,y,r. dista(x,y) < r — dists(f X, fy) <r)

* Primitives implemented and proved sound
iIn the semantics

* Build affine type system on top

19




Part 1:

It is possible to define, study,
automate, and use domain-specific
logics within a dependently typed
programming language



But how can we make it easier?

2+




Outline

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]
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Outline

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

3.[REDACTED]
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A lale of Iwo
Consequence Relations




A lale of Iwo
Consequence Relations

J1 Jn—>J




A Tale of Two

Consequence Relations

entailment

/

J1 Jn—>J

K Sor

assumptions

conclusion




Derivability (-)
Polynomials over the reals:
|-
f(x) = X + 2x + 1
Substitution: plug in for the variable
* f(8) =32+ 2"3 + 1
¥ f(y+5) = (y+5)? + 2(y+5) + 1




Derivabllity () S

Polynomials over the reals: /
N\

f(x) = X + 2x + 1
Substitution: plug in for the variable

* f(8) =32+ 2"3 + 1
¥ f(y+5) = (y+5)? + 2(y+5) + 1

245}




Derivabllity (+)

If (A implies B) and A then B

b 4
V v v

(A implies B)




Derivabllity (+)

If (A implies B) and A then B

(A implies B)




Derivabillity ()

15R: v {TAB)
-+ A:N+-B | x1:Ad[s1], ... Xn:An[sn] = C

= [~ (A > B)

Derivability J1 -+ Jo:
syntactic variables given meaning by subst.




Admissibillity (=)

Function from reals to reals specified by:
* set of ordered pairs

* every number appears exactly once on the LHS

{0, 1),
(1,4),

(V2, 3 + 2v2),
e




Admissibility (=)

{ prove : (I : Ctx) (A : Propo)

K — Maybe (I -~ A)

f: |[Al = [B| such that
dista(x,y) <r — diste(f x, fy) <r

Admissibility J1 = J2:
inductive proofs and functional programs

29




Structural Properties

F,F’}_Jl F,U1J1,F’}_J2

Tu:J T FJ" T T F Jp subst
F,F, - J’ weakenin F, Us . Jg,’U,I . JI,F, - J’ exch
w:J,IVEJ & Iug:Jy,ue: Jo, IV EJ Change

Coug:J,ug: J, TV E J
u - J, TV EJ

contraction

30




N EXISting Frameworks

MLTT: admissibility as functions
have to code up derivability yourself

LF: derivability as functions
admissibility in separate layer (Twelf, Delphin)

31




N EXISting Frameworks

MLTT: admissibility as functions
have to code up derivability yourself

LF: derivabllity as functions
admissibility in separate layer (Twelf, Delphin)

\

inherently
unequal!

31




Admissibility premises

[{ = Iy F false lookup

(M,ll) — U
[{1) =v

Negated premises:

t:nat mn:nat

lookup(M|ly — _|, 11)

= P(n)

w-rule:

P(t) true




Admissibility premises

1 =l F false lookup(M, ;) = v
[ v

Negated premises: lookup(M |ly — _],11) =

t:nat n:natF P(n)
w-rule:
/ P(t) true

concise representations of pattern matching [Zeilberger]




FProblem

b = o

can no longer weaken with

/ equality deriv. assumptions

U

= false lookup(M, ;) =
[

lookup(M [l — _|,l1) = v

J1 - (J2

doesn’t necessarily follow from

= J3)

(J2 = J3)

33




Part |

It is possible to implement, within a
dependently typed programming
language, a simply typed logical
framework that allows derivability and
admissibility to be mixed in novel and
Interesting ways.

[Licata and Harper, ICFP’09;
Licata, Zeilberger, Harper; LICS’08]



Embedded Logical
Framework

% Define a datatype representing framework types,
including derivability (Y — A) and admissibility
functions (A= B)

% Define framework programs by
interpretation into Agda

% Automatically equip framework types with the
structural properties using generic programming

% Do fun examples using mixing (NBE)

35



Structural Properties

* Weakening: A= (D ~ A) if [...graph algorithm...]
* Substitution: (D = A) > (D > A) if ...

% Exchange: (D1 = D2 = A) > (D2 = D1 = A) if ..
* Contraction: (D=D=A)> (D= A)Iif ...

% Strengthening: (D = A) > Alif ...

36




Questions

* When do structural properties exist?
% Dependent types?

% subst. into derivation yields subst. into judgement

'te:m Tyz:m, IVEJ
I TVe/x| - Jle/x]

subst

* requires composition

Alt/z][s/y] = Als/yl[t[s/y]/ ]

37



Outline

1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7]

3.[REDACTED]
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Directed lype [heory




Directed lype [heory

[logo by RJS]



Directed lypes

Each type has notion of transformation on elements:

M1 sa Mo

Every type family x:A — B type respects trans.:

[z:A FBtype TFa:M; Spa My, T +M:B[M;/z]

' Wmap,.4 pa M:B[Ms/z]

40




Directed lypes

Each type has notion of transformation on elements:

M1 sa Mo

judgement, not type

Every type family x:A — B type respects trans.:

[z:A FBtype TFa:M; Spa My, T +M:B[M;/z]

' WFmap,.4. pa M:B[Mg/z]

40




map for Pairs

Action of map given by each type constructor:

mapxasxc (X : M1 sa M2) (e, €’) =
(Mmapxap & €, mapxac & €’)

41




map for Pairs

Action of map given by each type constructor:

B[M1] x G[Mi]

P

mapxasxc (X : M1 sa M2) (e, €’) =

(Mmapxap & €, mapxac & €’)

41




map for Pairs

Action of map given by each type constructor:
B[M1] x G[M1]

P

mapxasxc (X : M1 saMy) (e, €’) =
(mapxas & €, mapxac & €’) Goal: B[M2] x C[M_]
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map for Pairs

Action of map given by each type constructor:
B[M1] x G[M1]

P

mapxasxc (X : M1 saMy) (e, €’) =
(mapxas & €, mapxac & €’) Goal: B[M2] x C[M_]

B[M:] C[M_]

41




map for Functions

Action of map given by each type constructor:

mapxaB - c (X : M1 sa Mo) f =
A X:B[Mz2]. mapxa.c & (f (mapxas & X))

42




map for Functions

Action of map given by each type constructor:
B[Mi] —C[M]

mapxaAB - c (X : M1 sa Mp) f =
A X:B[M2]. mapxa.c & (f (mapxa.s & X))
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map for Functions

Action of map given by each type constructor:

B[M:] —C[M]

mapxaAB - c (X : M1 sa Mp) f =
A X:B[M2]. mapxa.c & (f (mapxa.s & X))

Goal: B[Mz] — C[Mz]

42




map for Functions

Action of map given by each type constructor:

B[M:] —C[M]

mapxaAB - c (X : M1 sa Mp) f =
A X:B[M2]. mapxa.c & (f (mapxa.s & X))

Goal: B[Mz] — C[Mz]

Contravariant:
B[M:] — B[M1]

42




map for Functions

Action of map given by each type constructor:
B[Mi] —C[M]

mapxaAB - c (X : M1 sa Mp) f =
A x:B[Mz]. mapxac & (f (mapxas & X))  Goal: B[Mz] — C[M;]

=

Covariant: Contravariant:
C[M1] — C[M:] B[M2] — B[M:]

42




Variances

I ctx
[°P ctx

Contravariant Covariant
[°P - A type [ + B type
[ - A — Btype




Functorial Syntax
FPT’99,AR’99,H’99]

Type Formulal¥ : Ctx] representing formulas of DSL
Type Ctx:

elements: representations of DSL contexts ¥
transformations ¥ = V’:

DSL substitutions W'~ o: V¥




Functorial Syntax

Datatype definition in DTT:

formula :  Cctx — set
formula 7 v of (formula € v) | says of principal ¢/ x formula %

112

action of formula on transformations =
the structural properties!

Mapx.Formulalx] (0 : ¥ = ¥’) : Formula[¥] = Formula [V’]

45



(Generalizations

| show that this extends to
* admissibility premises

* dependent types

t:nat n:natF

P(t) true




(Generalizations

| show that this extends to
* admissibility premises

* dependent types

represented by — or []

t:nat n:nat F P(n)

P(t) true




ANsSwers

* When do structural properties exist?
% Dependent types?

* subst. into derivation yields subst. into judgement

'te:r Tyz:7,I"EJ
[, TVe/x| - Jle/x]

* requires composition

Alt/z|[s/y] = Als/yl[t[s/y]/ ]

47



ANsSwers

% When do structural properties exist? track variances
% Dependent types?

* subst. into derivation yields subst. into judgement

'te:r Tyz:7,I"EJ
[, TVe/x| - Jle/x]

* requires composition

Alt/z|[s/y] = Als/yl[t[s/y]/ ]

47



ANsSwers

% When do structural properties exist? track variances
% Dependent types?

* subst. into derivation yields subst. into judgement

I'Fe:T F,:IIZT,F"_J action on
I'I"le/x| F Jle/z] transform. at )

* requires composition

Alt/z|[s/y] = Als/yl[t[s/y]/ ]

47




ANsSwers

% When do structural properties exist? track variances
% Dependent types?

* subst. into derivation yields subst. into judgement

I'Fe:T F,LIJZT,F"_J action on
I'I"le/x| F Jle/z] transform. at )

* requires composition

Alt/zl[s/y] = Als/y|[t[s/y]/z]  “OTPos: law

for map

47




ANsSwers

Natural deductions ¥ ~ F where F can depend on ¥

represented by
nd : (2(Y : Ctx). Formula[Y¥]) — type

48




ANsSwers

Natural deductions ¥ ~ F where F can depend on ¥

represented by
nd : (2(V : Ctx). Formula[Y¥Y]) — type

Tlagat

Transformation (Y, F) s (Y’ , F’) is exactly
% substitution V' - o : Y
¥suchthat F =map o F

48




ANsSwers

Natural deductions ¥ ~ F where F can depend on ¥

represented by
nd : (2(V : Ctx). Formula[Y¥Y]) — type

Tlagat

Transformation (Y, F) s (Y’ , F’) is exactly
* substitution V'~ o : ¥
¥suchthat F =map o F

SO MapPp.ndp O:NAd Y F = nd ¥ F[O]

48



Part |l

A language with

provides a useful framework for
describing the structural properties of
a dependently typed logical framework



Higher-Dimensional
Directed lype Theory




Higher-Dimensional
Symmetric Type Theory

types in
intensional type theory

higher-dimensional higher
groupoids homotopy types
In category theory iIn homotopy theory

justifies working up to (higher) isomoprhism




Higher-Dimensional
Directed lype [ heory

types In
directed type theory
higher-dimensional higher
categories homotopy types
in category theory In directed homotopy theory

justifies working up to transformation




Semantics of DTT

* Context I denotes a category
* Type I — A type denotes a functor I — Cat

*Term [ — M : A denotes
a “dependently typed functor” [ = A

* Transformation M = N denotes
a hatural transformation

this is the 2-dimensional case in a hierarchy!

53



Contributions

* New examples of programming with domain-
specific logics [Chapters 3 and 4]

* An investigation into mixing derivability and
admissibility [Chapter 5, 6, 7, 8]

* A new notion of Directed Type Theory,
corresponding to higher-dimensional category
theory and homotopy theory [Chapters 7,8]

54



Part |

It is possible to define, study,
automate, and use domain-specific
logics within a dependently typed
programming language



Part |

It is possible to implement, within a
dependently typed programming
language, a simply typed logical
framework that allows derivability and
admissibility to be mixed in novel and
Interesting ways.



Part |l

A language with

provides a useful framework for
describing the structural properties of
a dependently typed logical framework



Future VWork

* DTT, theory: inductive types, directed hom-types,
opposite types, covariant Il

* DTT, practice: implementation, decidable
definitional equality

* More examples of domain-specific logics,
and bigger programs verified using them

58
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Contributions

* New examples of programming with domain-
specific logics [Chapters 3 and 4]

* An investigation into mixing derivability and
admissibility [Chapters 5, 6, 7, 8]

* A new notion of Directed Type Theory,
corresponding to higher-dimensional category
theory and homotopy theory [Chapters 7 and 8]
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