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Goal:

Make it 
harder to write incorrect programs

and 
easier to understand correct ones
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Method:

Make
type system & specification logic design

part of the programming process

Domain-specific logics

using 
dependent types
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Ynot: verifying imperative programs with 
separation logic [Morrisett et al.]

PCML5, Aura, Fine: verifying security properties 
with authorization logic
[Chapter 3; Morgenstern & Licata, ICFP’10] 

Reed&Pierce’s type system for Differential Privacy
[Chapter 4] 
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Security-Typed Programming

•All students of 
members can read 
papers
•CMU is a member

•Alice is a student
•Charlie is a student
• …

CMU

Digital library

(slide by Kumar Avijit)

ACM says ∀ s:principal, 
                 ∀ i:principal, 
                 ∀ p:paper, 
  (member(i) ⋀ i says student(s)) 
  ⊃ MayRead(s, p)
...

CMU says student(Alice)
...
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Dependent Types! [Agda]

read : (k : prin) (f : file) (p : proof(mayread(k,f))
        → contents

10

typing system ensures p is a well-formed proof

and that proofs of appropriate theorems are used

read : prin→ file 
        → contents
read : prin→ file → proof 
        → contents



Embed in Agda
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Indexed inductive definition to represent proofs

Theorem prover to discharge proof obligations, run 
at compile-time and run-time 

Indexed monad to manage stateful+dynamic 
policies
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Representing Logic
Sequent as indexed inductive definition:

Γ ⊢ A data _⊢_ : Ctx → Propo → Type 

Inference rules as datatype constructors:

Γ, A ⊢ B
Γ ⊢ A ⊃ B

⊃R : ∀ {Γ A B} 
     → (A :: Γ) ⊢ B 
     → Γ ⊢ (A ⊃ B)

dependent
de Bruijn
indices

Classifying only well-formed derivations:

Γ ⊢ A
D D : Γ ⊢ A
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Implemented a certified theorem prover:

prove : (Γ : Ctx) (A : Propo) → Maybe (Γ ⊢ A)
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Implemented a certified theorem prover:

prove : (Γ : Ctx) (A : Propo) → Maybe (Γ ⊢ A)

data Propo where
   says : Principal → Propo → Propo
   ...

Important that Propos are inductive!



Examples

14

Ynot: verifying imperative programs with 
separation logic [Morrisett et al.]

PCML5, Aura, Fine: Security-Typed Programming
[Chapter 3; Morgenstern & Licata, ICFP’10] 

Reed&Pierce’s type system for Differential 
Privacy [Chapter 4] 



Differential Privacy
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Ask questions about a database 

Any answer almost exactly as likely if any one 
person is omitted from the database
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Type system based on affine logic
tracks the sensitivity of a function

Ensure differential privacy by adding noise
proportional to sensitivity

x1:A1[s1], x2:A2[s2], … xn:An[sn] ⊢ C

can use a variable if 
s ≥ 1.0



Semantics
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Set of values |A|, equipped with notion of distance

A ⊢ B means
    f : |A| → |B|
      such that 
    if distA(x,y) ≤ r  then  distB(f x, f y) ≤ r  

Each type A denotes a metric space:
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Affine logic rules are sound
but lots of primitives are justified semantically:

   cmpswp : real -o real -o real ⊗ real
   rsplit       : real -o real ⊗ real
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Affine logic rules are sound
but lots of primitives are justified semantically:

   cmpswp : real -o real -o real ⊗ real
   rsplit       : real -o real ⊗ real

need to be baked into 
the language



Extensible Diff. Priv. 
[Chap 4]
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Implement the semantics using dependent types
(Πx,y,r. distA(x,y) ≤ r  → distB(f x, f y) ≤ r)

Primitives implemented and proved sound
in the semantics

Build affine type system on top



Part 1:
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It is possible to define, study, 
automate, and use domain-specific 
logics within a dependently typed 
programming language
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But how can we make it easier?
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1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and 
admissibility [Chapter 5, 6, 7, 8] 

3.[REDACTED]
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1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and 
admissibility [Chapter 5, 6, 7, 8] 

3.[REDACTED]
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Consequence Relations
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J1 … Jn ⟶ J{
assumptions conclusion

entailment
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real ⊢ real
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Derivability (⊢)
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A true ⊢ B true
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⊃R : ∀ {Γ A B} 
     → (A :: Γ) ⊢ B 
     → Γ ⊢ (A ⊃ B)

x1:A1[s1], … xn:An[sn] ⊢ C

Derivability J1 ⊢ J2:

syntactic variables given meaning by subst.
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Admissibility J1 ⊨ J2:
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Admissibility J1 ⊨ J2:

inductive proofs and functional programs

prove : (Γ : Ctx) (A : Propo)
     → Maybe (Γ ⊢ A)

f : |A| → |B| such that 
   distA(x,y) ≤ r  → distB(f x, f y) ≤ r  
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MLTT: admissibility as functions
           have to code up derivability yourself 

LF: derivability as functions
      admissibility in separate layer (Twelf, Delphin)

inherently 
unequal!
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Negated premises:

ω-rule:
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Negated premises:

ω-rule:

concise representations of pattern matching [Zeilberger]



Problem
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can no longer weaken with 
equality deriv. assumptions

J1 ⊢ (J2 ⊨ J3) 
doesn’t necessarily follow from

(J2 ⊨ J3)  



Part II
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It is possible to implement, within a 
dependently typed programming 
language, a simply typed logical 
framework that allows derivability and 
admissibility to be mixed in novel and 
interesting ways.

[Licata and Harper, ICFP’09;
Licata, Zeilberger, Harper; LICS’08]
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Embedded Logical 
Framework

Define a datatype representing framework types, 
including derivability (Ψ ⊢ A) and admissibility 
functions (A ⊨ B)

Define framework programs by 
interpretation into Agda

Automatically equip framework types with the 
structural properties using generic programming

Do fun examples using mixing (NBE)
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Structural Properties

Weakening: A ⊨ (D ⊢ A) if […graph algorithm…]

Substitution: (D ⇒ A) ⊃ (D ⊃ A) if … 

Exchange: (D1 ⇒ D2 ⇒ A) ⊃ (D2 ⇒ D1 ⇒ A) if ..

Contraction: (D ⇒ D ⇒ A) ⊃ (D ⇒ A) if … 

Strengthening: (D ⇒ A) ⊃ A if … 
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Questions
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition



Outline
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1.New examples of programming with domain-
specific logics [Chapters 3 and 4]

2.An investigation into mixing derivability and 
admissibility [Chapter 5, 6, 7] 

3.[REDACTED]
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Directed Type Theory
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Directed Type Theory

[logo by RJS]
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Every type family x:A ⊢ B type respects trans.:



Directed Types
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Each type has notion of transformation on elements:

                                     M1 ≲A M2

Every type family x:A ⊢ B type respects trans.:

judgement, not type
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mapx:A.B x C (α : M1 ≲A M2) (e , e’) = 
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42

Action of map given by each type constructor:

mapx:A.B → C (α : M1 ≲A M2) f = 
    λ x:B[M2]. mapx:A.C α (f (mapx:A.B α x))

B[M1] →C[M1]

Goal: B[M2] → C[M2]

Contravariant:
B[M2] → B[M1]

Covariant:
C[M1] → C[M2]



Variances
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Γop ⊢ A type   Γ ⊢ B type
       Γ ⊢ A → B type

CovariantContravariant



Functorial Syntax 
[FPT’99,AR’99,H’99]
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Type Formula[Ψ : Ctx] representing formulas of DSL

Type Ctx:

    elements: representations of DSL contexts Ψ
    transformations Ψ ≲ Ψ’: 
                             DSL substitutions Ψ’ ⊢ σ : Ψ



Functorial Syntax
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Datatype definition in DTT:

action of formula on transformations = 
the structural properties!

mapx.Formula[x] (σ : Ψ ≲ Ψ’) : Formula[Ψ] → Formula [Ψ’]
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admissibility premises

dependent types 

I show that this extends to

represented by → or ∏
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Answers
When do structural properties exist?

Dependent types?

subst. into derivation yields subst. into judgement

requires composition

action on 
transform. at ∑

compos. law
for map

track variances
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Natural deductions Ψ ⊢ F where F can depend on Ψ
     represented by

nd : (Σ(Ψ : Ctx). Formula[Ψ] ) → type

Answers

substitution Ψ’ ⊢ σ : Ψ 

such that F’ = map σ F

{
Transformation (Ψ , F) ≲ (Ψ’ , F’) is exactly

so mapp.nd p σ : nd Ψ F → nd Ψ’ F[σ]
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A language with directed types 
provides a useful framework for 
describing the structural properties of 
a dependently typed logical framework
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Higher-Dimensional 
Directed Type Theory
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types in
intensional type theory

higher-dimensional
groupoids

in category theory

higher
homotopy types

in homotopy theory

Higher-Dimensional 
Symmetric Type Theory

justifies working up to (higher) isomoprhism



52

types in
directed type theory

higher-dimensional
categories

in category theory

higher
homotopy types

in directed homotopy theory

Higher-Dimensional 
Directed Type Theory

justifies working up to transformation
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Semantics of DTT

Context Γ denotes a category

Type Γ ⊢ A type denotes a functor Γ → Cat

Term Γ ⊢ M : A denotes 
a “dependently typed functor” Γ → A

Transformation M ≲ N denotes 
a natural transformation

this is the 2-dimensional case in a hierarchy!



Contributions
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New examples of programming with domain-
specific logics [Chapters 3 and 4]

An investigation into mixing derivability and 
admissibility [Chapter 5, 6, 7, 8] 

A new notion of Directed Type Theory, 
corresponding to higher-dimensional category 
theory and homotopy theory [Chapters 7,8]
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It is possible to define, study, 
automate, and use domain-specific 
logics within a dependently typed 
programming language



Part II
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It is possible to implement, within a 
dependently typed programming 
language, a simply typed logical 
framework that allows derivability and 
admissibility to be mixed in novel and 
interesting ways.
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A language with directed types 
provides a useful framework for 
describing the structural properties of 
a dependently typed logical framework



Future Work
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DTT, theory: inductive types, directed hom-types, 
opposite types, covariant Π

DTT, practice: implementation, decidable 
definitional equality

More examples of domain-specific logics,
and bigger programs verified using them
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New examples of programming with domain-
specific logics [Chapters 3 and 4]

An investigation into mixing derivability and 
admissibility [Chapters 5, 6, 7, 8] 

A new notion of Directed Type Theory, 
corresponding to higher-dimensional category 
theory and homotopy theory [Chapters 7 and 8]


