
Dependently Typed Programming
with Domain-Specific Logics

1

Dan Licata

Thesis Committee:
Robert Harper

Karl Crary
Frank Pfenning

Greg Morrisett, Harvard

2

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

Cryptol: cryptographic protocols

Ynot/HTT: imperative code

Aura and PCML5: access to controlled resources

3

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

Cryptol: cryptographic protocols

Ynot/HTT: imperative code

Aura and PCML5: access to controlled resources

4

Cryptol

swab : Word 32 → Word 32

swab [a b c d] = [b a c d]

Track length in type

Pattern-match as four Word 8’s

5

Cryptol

swab : Word 32 → Word 32

swab [a b c d] = [b c d]

5

Cryptol

swab : Word 32 → Word 32

swab [a b c d] = [b c d]

Type error!

6

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

Cryptol: cryptographic protocols

Ynot/HTT: imperative code

Aura and PCML5: access to controlled resources

7

Ynot

Start with lax modality for mutable state: OA

Index with pre/postconditions:

ST P A Q

Precondition:
heap → prop

Postconditon:
Π a:A, initial: heap, final:heap. prop

8

Ynot

9

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

Cryptol: cryptographic protocols

Ynot/HTT: imperative code

Aura and PCML5: access control

10

Security-typed PL

Resources (F): files, database entries, …

Principals (K): users, programs, …

Permissions: K mayread F, …

Statements by principals: K says A, …

Proofs

Authorization logic [Garg + Pfenning]:

11

Security-typed PL
Principals and resources:

sort : type.
princ : sort.
res : sort.

term : sort -> type.
admin : term princ.
dan : term princ.
bob : term princ.

12

Security-typed PL
Permissions:

aprop : type.

owns : term princ -> term res -> aprop.
mayrd : term princ -> term res -> aprop.
maywt : term princ -> term res -> aprop.

13

Security-typed PL
Propositions:

prop : type.

atom : aprop -> prop.
implies : prop -> prop -> prop.
says : term princ -> prop -> prop.
all : (term S -> prop) -> prop.

HOAS

14

Security-typed PL
Judgements:

conc : type.

true : prop -> conc.
affirms : term princ -> prop -> conc.

A true

K affirms A

Γ ⇒ (A true) and

Γ ⇒ (K affirms A)

15

Security-typed PL
Judgements: hyp : prop -> type.

|- : conc -> type.

Sequent A1 … An ⇒ C

represented by

A1 hyp -> … -> An hyp -> |- C

A true or K affirms A

16

Security-typed PL
Proofs:

saysr : |- (K says A) true
 <- |- K affirms A.

saysl : ((K says A) hyp -> |- K affirms C)
 <- (A hyp -> |- K affirms C).

17

Security-typed PL
Policy:

ownsplan :
 (atom (dan owns /home/dan/plan)) hyp.

danplan :
 (dan says (all [p] atom (p mayrd /home/dan/plan))) hyp.

18

Security-typed PL
Access controlled-primitives:

read : ∀r:term res.

 ∀D : |- (atom (self mayrd r)) true.

 string

need a proof of authorization to call read!

19

Security-typed PL
Compute with derivations:

Policy analysis

Auditing: log cut-full proofs;
eliminate cuts to see who to blame [Vaughn+08]

20

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

Cryptol: cryptographic protocols

Ynot/HTT: imperative code

Aura and PCML5: access control

21

Domain-specific logics

Cryptol: stand-alone

Ynot/HTT: extension of Coq

Aura and PCML5: stand-alone

How are they implemented?

22

Problems

Engineer compiler, libraries, documentation

Train/convince programmers

Hard to use multiple DSLs in one program

Programmer can’t pick the appropriate abstraction

23

This work

Represent domain-specific logics

Reason about them (mechanized metatheory)

Use them to reason about code
(certified software)

A host language that makes it easy to:

24

Ingredients

+

• binding and scope

• dependent types

• total programming

• functional programming

• effects: state, exceptions, ...

• polymorphism and modules

25

Thesis contributions

Previous work [LICS08]:

Integration of binding and computation
using higher-order focusing

26

Thesis contributions
Proposed work:

Theory

• Dependency

• Effects

• Modules

Practice

• Meta-functions

• Term reconstruction

Outline

Previous work

Proposed work

Related work

27

Outline

Previous work

Proposed work

Related work

28

29

Polarity [Girard ’93]

Sums A + B are positive:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

30

Focusing [Andreoli ’92]

Sums A + B are positive:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

30

Focusing [Andreoli ’92]

Sums A + B are positive:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

Focus =
make choices

31

Focusing [Andreoli ’92]

Sums A + B are positive:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

31

Focusing [Andreoli ’92]

Sums A + B are positive:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

Inversion =
respond to all

possible choices

32

Binding + computation

Specified by intro λu.V

Eliminated by pattern-matching

1. Computation: negative function space (A → B)

2. Binding: positive function space (P ⇒ A)

Arithmetic expressions
Arithmetic expressions with let-binding:

let x be (const 4) in (plus x x)

e ::= const n
 | let x be e1 in e2
 | plus e1 e2
 | times e1 e2
 | sub e1 e2
 | mod e1 e2
 | div e1 e2

33

Arithmetic expressions
Arithmetic expressions with let-binding:

let x be (const 4) in (plus x x)

e ::= const n
 | let x be e1 in e2
 | plus e1 e2
 | times e1 e2
 | sub e1 e2
 | mod e1 e2
 | div e1 e2

Suppose we want
to treat binops
uniformly…

33

Arithmetic expressions
Arithmetic expressions with let-binding

e ::= const n
 | let x be e1 in e2
 | binop e1 φ e2

where φ : (nat → nat → nat) is
the code for the binop.

34

Arithmetic expressions
const : nat ⇒ exp

let : exp ⇒ (exp ⇒ exp) ⇒ exp

binop : exp ⇒ (nat → nat → nat) ⇒ exp ⇒ exp

let x be (const 4) in (x + x)

represented by

let (const 4) (λx.binop x add x)

where add:(nat → nat → nat) is the code for addition
35

Structural properties

Identity, weakening, exchange, contraction,
substitution, subordination-based strengthening

Free in LF

May fail when rules use computation

36

Weakening
Can’t necessarily go from

 f : nat → nat

to

 (weaken f) : nat ⇒ (nat → nat)

37

proof by induction

extends nat with new
datatype constructor

doesn’t have a case for the new variable!

Structural properties

λx.V eliminated by pattern-matching:
Nothing forces ⇒ to be structural

But structural props may be implemented
generically for a wide class of rule systems

Our solution:

38

Structural properties

Can’t weaken exp with nat:
could need new case for → in a binop

Can weaken exp with exp:
doesn’t appear to left of →

const : nat ⇒ exp

let : exp ⇒ (exp ⇒ exp) ⇒ exp

binop : exp ⇒ (nat → nat → nat) ⇒ exp ⇒ exp

39

40

Higher-order focusing
Zeilberger’s higher-order focusing:

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

41

Higher-order focusing
Zeilberger’s higher-order focusing:

Inversion = pattern-matching is open-ended

Represented by meta-level functions
from patterns to expressions

Use datatype-generic programming
to implement structural properties!

42

Higher-order focusing

Pattern-bound
variables

Inference rule context:

let : exp ⇒ (exp ⇒ exp) ⇒ exp,

...

43

Higher-order focusing

44

Higher-order focusing

45

Higher-order focusing

Inversion = pattern-matching:

 (case (e : < Ψ > A) of φ) : C

φ : Function from (Δ ; Ψ ⊩ p :: A) to

 expressions of type C in Δ

Infinitary: when A is nat,
one case for each numeral

Outline

Previous work

Proposed work

Related work

46

47

Proposed work

Theory

• Dependency

• Effects

• Modules

Practice

• Meta-functions

• Term reconstruction

48

Proposed work

Theory

• Dependency

• Effects

• Modules

Practice

• Meta-functions

• Term reconstruction

49

Dependency
Three levels of ambitiousness

Dependency on LF

Dependency on positive data

Dependency on negative computation, too

50

Dependency on LF
First-order quantifiers over LF terms:

Pattern-bound
variables

LF context Meta-function
mapping LF terms
to positive types

51

Dependency on LF

Derived elimination form is infinitary, with one case
for each LF term M of appropriate type

pres: ∀ E E’:exp, T:tp.

 ∀ D1 : of E T. ∀ D2 : step E E’.

 ∃ D’ : of E’ T. unit

52

Dependency on LF
Meta-function τ used for logical relations:

HT (arr T2 T) E =
 ∀ E2:exp. HT T2 E2 → HT T (app E E2)

Defined by recursion on T

53

Positively dependent

Integrate ⇒ and → as in LICS paper

Allow dependency on patterns for positive types:
subsumes LF

No need to compare negative computations for
equality

54

Negatively dependent

After-the-fact verification

Predicates on higher-order store in HTT

Judgements about computationally higher-order
syntax

55

Proposed work

Theory

• Dependency

• Effects

• Modules

Practice

• Meta-functions

• Term reconstruction

56

Effects
See proposal document for refs

Open question:

Controlling effects and
programmer-defined indexed modalities
(ST P A Q)

Defined in LF

57

Proposed work

Theory

• Dependency

• Effects

• Modules

Practice

• Meta-functions

• Term reconstruction

58

Practice

Finitary syntax for meta-functions:

1. positive (unification) variables

2. structural properties

Term reconstruction: steal from Twelf/Agda

Outline

Previous work

Proposed work

Related work

59

60

Related work

NuPRL, Coq, Epigram, Agda, Omega, ATS, ...

Twelf, LF/ML, Delphin, Beluga

Nominal logic/FreshML

Why is our language is better for programming with
DSLs than…

61

Conclusion

Thesis statement:

The logical notions of polarity and focusing provide
a foundation for dependently typed programming
with domain-specific logics, with applications to
certified software and mechanized metatheory.

62

Conclusion

Proof:

Theory: polarized type theory with support for
binding, dependency, effects, modules

Practice: meta-functions, reconstruction,
implementation, examples

Thanks for listening!

