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Abstract

We propose a thesis defending the following statement:

The logical notions of polarity and focusing provide a foundation for
dependently typed programming with domain-specific logics, with ap-
plications to certified software and mechanized metatheory.

1 Introduction

Type systems have proved to be effective and scalable formalmethods. Explicating the
type structure of a program has both short- and long-term benefits: In the short-term,
types help programmers write working code quickly; as ML andHaskell programmers
know, it is often the case that once you set up the types properly, the code writes it-
self. Of course, most of software development happens well after the first programmer
writes the first version of a piece of code: more time is spent evolving old code to meet
new circumstances, and combining programs into larger systems. Types help with the
long-term tasks of software reuse and evolution because they give a foundation for
modularity: a programmer can specify the interface of a component without revealing
its implementation. Interfaces limit the coupling of a a system’s components and pro-
vide formal guidance about how components can be composed and evolved. They also
serve as machine-checked documentation, helping new programmers understand the
pieces of a software system: types explain how and why a program works.

However, some of the effectiveness and scalability of type systems has been the
result of concentrating on relatively simple properties that admit automated verification
with little programmer input. One approach to lifting theselimitations has been to
design domain-specific type systems such as the following:

• Cryptol [29] is a language for implementing cryptographic protocols. These al-
gorithms typically involve complex operations on bit vectors of various lengths—
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e.g., concatenating four 8-bit words to make a 32-bit word. Cryptol’s type sys-
tem tracks the lengths of vectors statically, providing simple constraints on these
operations that rule out many programming errors.

• Many programs must manipulate sensitive resources (e.g., auser’s information
in a database) in a secure manner. Security-typed programming languages such
as Aura [38] and PCML5 [6] employ authorization logics to statically prevent
unauthorized access to controlled resources.

• Ynot [50], an implementation of Hoare Type Theory [48], provides a separation
logic for reasoning about imperative code.

These language’s type systems aredomain-specific logics(DSLs) for reasoning about
a particular programming style or application domain. Domain-specific logics extend
the class of properties that programmers can specify and verify. Moreover, they of-
fer a range of verification options, from simple logics for simple safety checks (as in
Cryptol), which often admit effective decision procedures, to sophisticated logics for
proving full correctness (as in Ynot), which require non-trivial proofs.

Despite these advantages, adopting new application-specific languages has costs,
such as the engineering effort required to build and maintain the infrastructure sup-
porting a new language—documentation, libraries, a fast compiler—and the time spent
training new programmers to use the language. Additionally, treating each domain-
specific logic in isolation makes it difficult for programs written using different domain-
specific type systems to be composed—e.g., if an application both implements a cryp-
tographic protocol and manipulates sensitive resources. These costs can be mitigated
by giving a singlehost languageinside of which various domain-specific logics can
be constructed: one engineering effort is shared by all DSLs; programmers need only
learn new libraries; and modules using different DSLs can becomposed.

The central contribution of this thesis will be a new host language for programming
with domain-specific logics. This language will make it easyfor programmers to define
logical systems, reason about them, and use them to reason about code. It will have
applications both tocertified software—using DSLs to reason about code—andmech-
anized metatheory—formalized reasoning about DSLs, combining the advantagesof
functional programming languages such as ML and Haskell with proof assistants such
as Twelf [53] and Coq [18].

To program with domain specific logics, we require a languagerich enough to rep-
resent and compute with logical systems. Our approach to representing logical systems
builds on LF [34], a logical framework providing two main ingredients: dependent
types, which are necessary to adequately represent the deductive apparatus of logical
systems, and a function space for representing binding and scope—bound variables,
α-conversion, and substitution at the level of syntax, and hypothetical judgements,
such as the consequence relation of a logic, at the level of proofs. While LF functions
are suitable for representing variable binding, they provide no account of computation
with logical systems, as is provided by the function space ofAgda and Coq or ML
and Haskell. Consequently, it is necessary to combine LF with some further mech-
anism for computation, such as the separate computational languages of Twelf [53],
Delphin [56], and Beluga [54].
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In previous work [42], we began to investigate an alternative approach, using the
logical notions of polarity [32] and focusing [4] to integrate representational and com-
putational functions as two types in a single, simply-typed, logical framework. Rep-
resentational functions adequately represent binding, whereas computational functions
allow computation by structural recursion on syntax and derivations. This integrated
approach provides a novel and rich logical framework, allowing inference rules that
mix iterated inductive definitions [44] (using computational functions) and hypotheti-
cal judgements (using representational functions).

Technically, our work exploits the Curry-Howard correspondence between focused
proofs and pattern-matching functional programs, following Zeilberger’s higher-order
formulation of focusing [72, 73]. This formalism has three key features: First, the syn-
tax of programs reflects the interplay offocus(choosing patterns) andinversion(pattern
matching), with individual types defined by their pattern typing rules. Second, the syn-
tax of types ispolarized, distinguishing positive data (introduced by focus, eliminated
by inversion) from negative computation (introduced by inversion, eliminated by fo-
cus). This provides a natural framework for integrating representations of logics (as
positive types) and computation with them (as negative types). Third, pattern matching
is represented abstractly bymeta-functions— functions in the ambient mathematical
system in which our type theory itself is defined—from patterns to expressions (hence
higher-order focusing), and the syntax and typing rules of our type theory are defined
by iterated inductive definitions [44]. This allows our typetheory to be computation-
ally open-ended (cf. Howe [37]) with respect to the meaning of pattern-matching—any
method of transforming every pattern forA into an expression of typeB counts as a
pattern-match fromA to B—and affords the freedom to use several different notations
for pattern matching in a single program, and to import functions from other languages
and systems.

While this previous work has shown promise, it requires a number of extensions to
make a practical language for programming with domain-specific logics.

Proposed Work

This thesis will support the following statement:

Thesis Statement:The logical notions of polarity and focusing provide a
foundation for dependently typed programming with domain-specific log-
ics, with applications to certified software and mechanizedmetatheory.

This statement has both a theoretical component and a practical component. To justify
that the logical notions of polarity and focusing provide a foundation for dependently
typed programming with domain-specific logics, we will define a type theory with full
support for programming with domain-specific logics, presented in the polarized style
described above. Relative to our previous work, this type theory will add the following
features:

• Dependent types.Our previous work considers only a simply-typed framework,
which is not expressive enough for representing deductive systems. A major
component of the proposed work is adding dependent types to this calculus.
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• Effects and Modules.Our previous work is a simple core calculus, which lacks
support for many common programming features, such as computational effects
and modules. We will investigate whether the polarized formalism offers any
new insights into the type theoretic accounts of these features.

To justify that this language has applications to certified software and mechanized
metatheory, we will build a prototype implementation and program several examples.
To do so, we must bridge the gap between the above type theory and a usable imple-
mentation:

• Syntax for meta-functions. Higher-order focusing leaves pattern matching ab-
stract, relying on an infinitary representation using meta-level functions. In prac-
tice, we must give a traditional, finitary account of these meta-functions as a basis
for an implementation.

• Type and term reconstruction. To make programming practical, we must con-
sider conveniences such as type and term reconstruction.

In the remainder of this thesis proposal, we discuss the theoretical (Section 2) and
practical (Section 3) components of the proposed work in more detail.

2 Theory

2.1 Dependent types

Our previous work [42] considers only a simply-typed framework, which is not expres-
sive enough for representing deductive systems. This limitation can be addressed by
adding dependent types—types that contain programs. However, adding dependency
to a programming language is difficult, chiefly because type checking a dependently
typed language requires comparing programs for equality. This places constraints on
the run-time programming language: for example, it is much harder to reason about the
equality of programs that utilize storage effects than of purely functional programs. To
manage these difficulties, it is useful to consider restricted forms of dependency, rather
than choosinga priori to allow dependency on all run-time programs. We can consider
three levels of dependency:

1. Dependency on framework dataFirst, we may scale back from the integrated
approach to binding and computation described above, and take LF “off the
shelf” as a data-level representational framework, with anentirely separate com-
putational language. This approach, which is taken by Twelf, Delphin, and Bel-
uga, is simple, as it requires comparing only LF terms for equality. However, it
sacrifices the advantages of mixing binding and computationthat we have dis-
cussed in previous work. As a baseline, we show below how to account for this
form of dependency in our polarized calculus.

2. Dependency on purely positive dataIn the thesis, we will consider a simple
generalization, based on the observation that it should notbe too complicated to
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allow dependency on positivedata; it is only allowing dependency on negative
computationsthat creates complications. This approach will allow dependency
on any purely positive data (types with no negative subcomponents). It permits
inference rules that mix binding and computation, while restricting the subjects
of those rules in order to avoid the complications arising from full dependency
on computation.

3. Full dependencyMore ambitiously, we may consider a type theory that permits
full dependency on both data and computation. The primary advantage of full
dependency is that it allows after-the-fact verification ofcomputations, using
dependency to state properties of them.

To establish a baseline for the thesis work, and to introduceour polarized formalism,
we now consider the first form of dependency in detail. This type theory consists of:

• A representational language, the LF logical framework.

• A computational language based on polarized intuitionistic logic. The computa-
tional language is specified by:

– Defining its types (Figure 1) and patterns (Figure 3).

– A focusing framework (Figure 4) and its operational semantics (Figure 5)

We discuss LF in Section 2.1.1, types and patterns in Section2.1.2, and the focusing
framework in Section 2.1.5.

2.1.1 LF

We briefly review the LF methodology for representing languages and logics [34]: LF
generalizes the ML datatype mechanism with (1) dependent types and (2) support for
binding and scope. The judgements of a domain-specific logic(DSL) are represented
as LF types, where dependency is used to ensure adequacy. Derivations in a DSL are
represented as canonical (β-normal,η-long) LF terms. LF function types are used to
represent binding and scope, including the bound variablesof DSL syntax and the con-
texts of DSL hypothetical judgements. Structural induction over canonical LF terms
corresponds to induction over DSL syntax and derivations: inductive proofs about a
DSL can be recast as proofs by induction on the the LF representation.

We use a presentation of LF with with syntax for canonical forms only [68]:

LF kind K ::= type |Π u:A.K
LF type A ::= a M1 . . .Mn |Π u:A1 .A2

LF term M ::= u M1 . . .Mn |λ u.M
LF signature Σ ::= · |Σ, a :K |Σ, u :A
LF context Ψ ::= · |Ψ, u :A
LF world W ::= {Ψ1, . . .}

All LF judgements are tacitly parametrized by a fixed signature Σ. In the following,
we will make use of the judgements:
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• Ψ ⊢LF A type The typeA is a well-formed inΨ

• Ψ ⊢LF M : A The termM is a canonical form of typeA in Ψ

• Ψ ⊢ Ψ′ ∈ W The contextΨ′ is in the world (set of contexts)W. This
judgement also ensures that⊢LF Ψ,Ψ′ ctx, i.e., that the contextΨ,Ψ′ is well-
formed.

We refer the reader to the literature for the definitions of these judgements: Watkins
et al. [68] discuss type formation and typing; one possible definition of worldsW is
the regular worlds notation of Twelf [53].

2.1.2 Polarity and Focusing

Natural deduction is organized around introduction and elimination: For example, the
disjoint sum typeA ⊕ B is introduced by constructorsinl and inr and eliminated by
pattern-matching; the computational function typeA → B is introduced by pattern-
matching on the argumentA and eliminated by application. Polarized logic [4, 31,
39, 41, 72] partitions types into two classes, calledpositive(notatedA+) and nega-
tive (notatedA-). Positive types, such as⊕, are introduced by choice and eliminated
by pattern-matching, whereas negative types, such as→, are introduced by pattern-
matching and eliminated by choice. More specifically, positive types areconstructor-
oriented: they are introduced by choosing a constructor, and eliminated by pattern
matching against constructors, like datatypes in ML. Negative types aredestructor-
oriented: they are eliminated by choosing an an observation, and introduced by pattern-
matching against all possible observations (A → B is observed by supplying a value
of typeA, and therefore defined by matching against such values). Choice corresponds
to Andreoli’s notion offocus, and pattern-matching corresponds toinversion. These
distinctions can be summarized as follows:

introduceA eliminateA

A is positive by focus by inversion
A is negative by inversion by focus

In higher-order focusing [42, 72, 73], types are specified bypatterns, which are used
in both focus and inversion: focus phases choose a pattern, whereas inversion phases
pattern-match. In this section, we define the types and patterns of our language—
constructor patterns for positive types, and destructor patterns for negative types. Note
that patterns must be defined prior to the focusing frameworkpresented in Section 2.1.5,
which uses an iterated inductive definition quantifying over them to specify inversion.

2.1.3 Types

We present the rules for type formation in Figure 1. The judgements〈Ψ〉A+ type and
〈Ψ〉A- type define the well-formed types, which are considered relativeto an LF con-
text Ψ. The basic positive types of polarized type theory are products (A+ ⊗ B + and
1), sums (A+ ⊕ B + and 0), and shift (↓A-), the inclusion of negative types into positive
types. The formation rules for these types carry the LF context Ψ through unchanged.
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Pos. type A+ ::= ↓A- | 1 | A+ ⊗ B + | 0 | A+ ⊕ B +

| ∃A(τ +) | Ψ ⇒ A+ | @A+ | ∃W(ψ+)
whereτ + ::= { M 7→ A+ | . . .}

ψ+ ::= { Ψ 7→ A+ | . . .}
Neg. type A- ::= ↑A+ | A+ → B - | ⊤ | A-

NB -

| ∀A(τ -) | Ψ f A- | ⋄A- | ∀W(ψ-)
whereτ - ::= { M 7→ A- | . . .}

ψ- ::= { Ψ 7→ A- | . . .}
CPT C+ ::= 〈Ψ〉A+

CNT C- ::= 〈Ψ〉A-

〈Ψ〉A+ type

〈Ψ〉A- type

〈Ψ〉 ↓A- type 〈Ψ〉 1 type

〈Ψ〉A+ type 〈Ψ〉B + type

〈Ψ〉A+ ⊗ B + type

〈Ψ〉 0 type

〈Ψ〉A+ type 〈Ψ〉B + type

〈Ψ〉A+ ⊕ B + type

Ψ ⊢LF A type (Ψ ⊢LF M : A −→ 〈Ψ〉 τ +(M ) type)

〈Ψ〉 ∃A(τ +) type

〈·〉A+ type

〈Ψ〉@A+ type

⊢LF Ψ,Ψ′ ctx

〈Ψ,Ψ′〉A+ type

〈Ψ〉Ψ ⇒ A+ type

(Ψ ⊢ Ψ′ ∈ W −→ 〈Ψ〉ψ+(Ψ′) type)

〈Ψ〉 ∃W(ψ+) type

〈Ψ〉A- type

〈Ψ〉A+ type

〈Ψ〉 ↑A+ type

〈Ψ〉A+ type 〈Ψ〉B - type

〈Ψ〉A+ → B - type

〈Ψ〉⊤ type

〈Ψ〉A- type 〈Ψ〉B - type

〈Ψ〉A-
NB - type

Ψ ⊢LF A type (Ψ ⊢LF M : A −→ 〈Ψ〉 τ -(M ) type)

〈Ψ〉 ∀A(τ -) type

〈·〉A- type

〈Ψ〉 ⋄A- type

⊢LF Ψ,Ψ′ ctx

〈Ψ,Ψ′〉A- type

〈Ψ〉Ψ′
f A- type

(Ψ ⊢ Ψ′ ∈ W −→ 〈Ψ〉ψ-(Ψ′) type)

〈Ψ〉 ∀W(ψ-) type

We write〈Ψ〉A+ ok iff ⊢LF Ψ ctx and〈Ψ〉A+ type, and similarly for〈Ψ〉A- ok. We write∆ ok

iff 〈Ψ〉A- ok for all x : 〈Ψ〉A- in ∆.

Figure 1: Type formation
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Con. pattern p ::= x | () | (p1 , p2 ) | inl p | inr p

| (M , p) |λΨ.p | box p | (Ψ, p)
Dest. pattern n ::= ǫ | p ;n | fst; n | snd;n

| M ;n | unpackΨ.n | undia;n | Ψ;n

Context. con. pat. c ::= Ψ.p

Context. dest. pat. d ::= Ψ.n
Context ∆ ::= · | ∆, x :C -

Figure 2: Constructor and destructor pattern syntax

The remaining positive types are for programming with LF terms. The most basic
of these is existential quantification of an LF term, written∃A(τ +), whereA is an LF
type, andτ + is a meta-function from LF termsM of typeA to positive types. We notate
meta-functionsτ + by their graphs—i.e., by a possibly infinite set of non-overlapping
pattern branches of the formM 7→ A+. The formation rule for〈Ψ〉 ∃A(τ +) requires
thatA be an LF type inΨ, and thatτ + deliver a positive type inΨ for every LF term
in Ψ: we notate iterated inductive definitions by inference rulepremises of the form
(J1 −→ J2). By convention, we tacitly universally quantify over meta-variables that
appear first in the premise of an iterated inductive definition, so the second premise of
the rule means “for allm, if Ψ ⊢LF M : A then〈Ψ〉 τ +(M ) type”.

The body of the existential type∃A(τ +) may be computed from the existentially-
quantified LF term in interesting ways. For example, if we define an LF typenat of
natural numbers with constructorszero andsucc, then we can define a positive type of
lists as follows (we may also define it in more traditional ways):

list (A+) = ∃nat(τlist)
where
τlist zero = 1
τlist (succ zero) = A+

τlist (succ (succ zero)) = A+ ⊗ A+

τlist (succ (succ (succ zero))) = A+ ⊗ (A+ ⊗ A+)
...

That is, for everynat n, τlist(n) is the tuple type(A+)n . An implementation of our
type theory would provide a traditional finitary notation for presenting meta-functions
τ +, e.g., allowingτlist to be defined by recursion.

There are three additional positive types for programming with LF. The typesΨ ⇒
A+ and@A+ allow for computational language values that manipulate the LF context;
their formation rules manipulate the LF context in the same way as their patterns do
(see below). Finally, the type∃W(ψ) allows existential quantification over the LF
contexts in a worldW. As with ∃A(τ +), the body of the existential is specified by an
abstract pattern-match, this time on LF contexts. This allows types to be defined by
computation with LF contexts.

The type formation rules for negative types are analogous. We sometimes abbrevi-
ate〈Ψ〉A+ by writingC+ and similarly forC-.

Operationally, the type formation rules are syntax-directed and well-moded (none
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∆ ; Ψ  p :: A+

x : 〈Ψ〉A- ; Ψ  x :: ↓A-

· ; Ψ  () :: 1

∆1 ; Ψ  p1 :: A+ ∆2 ; Ψ  p2 :: B+

∆1,∆2 ; Ψ  (p1 , p2 ) :: A+ ⊗ B +

(no rule for 0)

∆ ; Ψ  p :: A+

∆ ; Ψ  inl p :: A+ ⊕ B +

∆ ; Ψ  p :: B+

∆ ; Ψ  inr p :: A+ ⊕ B +

Ψ ⊢LF M : A ∆ ; Ψ  p :: τ +(M)

∆ ; Ψ  (M , p) :: ∃A(τ +)

∆ ; ·  p :: A+

∆ ; Ψ  box p :: @A+

∆ ; Ψ,Ψ′
 p :: A+

∆ ; Ψ  λΨ′.p :: Ψ′ ⇒ A+

Ψ ⊢ Ψ′ ∈ W ∆ ; Ψ  p :: ψ+(Ψ′)

∆ ; Ψ  (Ψ′, p) :: ∃W(ψ+)

∆ ; Ψ  n :: A- > C+

· ; Ψ  ǫ :: ↑A+ > 〈Ψ〉A+

∆1 ; Ψ  p :: A+ ∆2 ; Ψ  n :: B- > C+

∆1,∆2 ; Ψ  p ;n :: A+ → B - > C+

(no rule for⊤)

∆ ; Ψ  n :: A- > C+

∆ ; Ψ  fst; n :: A-
NB - > C+

∆ ; Ψ  n :: B- > C+

∆ ; Ψ  snd;n :: A-
NB - > C+

Ψ ⊢LF M : A ∆ ; Ψ  n :: τ -(M) > C+

∆ ; Ψ  M ;n :: ∀A(τ -) > C+

∆ ; Ψ,Ψ′
 n :: A- > C+

∆ ; Ψ  unpackΨ′.n :: Ψ′
f A- > C+

∆ ; ·  n :: A- > C+

∆ ; Ψ  undia;n :: ⋄A- > C+

Ψ ⊢ Ψ′ ∈ W ∆ ; Ψ  n :: ψ-(Ψ′) > C+

∆ ; Ψ  Ψ′;n :: ∀W(ψ-) > C+

∆  c :: 〈Ψ〉A+ and ∆  d :: 〈Ψ〉A- > C+

∆ ; Ψ  p :: A+

∆  Ψ.p :: 〈Ψ〉A+

∆; Ψ  n :: A- > C+

∆  Ψ.n :: 〈Ψ〉A- > C+

Figure 3: Constructor and destructor patterns
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of the meta-variables appearing in the judgements need to beguessed), with bothΨ
andA as inputs. The rules for〈Ψ〉A assume and maintain the invariant that⊢LF Ψ ctx.

2.1.4 Patterns

We present the syntax of patterns in Figure 3 and the rules forpattern formation in
Figure 3.

Constructor Patterns Positive types are specified by the judgement∆;Ψ  p ::
A+, which typesconstructor patterns. This judgement means thatp is a constructor
pattern forA+, using the LF variables inΨ, and binding negative contextual variables
x : 〈Ψ0〉A

-
0 in ∆ for all subterms of negative types. The LF variables inΨ are free

in p andA+ but not∆: negative assumptions in∆ have no free LF variables, because
the free variables ofA- are bound by the contextΨ. Like datatype constructors in
ML, constructor patterns are used both to build values and topattern match. Logically,
constructor patterns correspond to usinglinear right-rulesto showA+ from ∆; linearity
ensures that a pattern binds a variable exactly once.

The patterns for products and sums are standard. The only pattern for ↓A- is a
variablex bound in∆: one may not pattern-match on negative types such as compu-
tational functions. Note thatx is bound with a contextual type〈Ψ〉A- capturing the
current contextΨ: this contextual type binds the free LF variables ofA+, and ensures
that the free LF variables of a term are properly tracked by its type. Moreover,↓A- is
theonly type at which pattern variables are allowed: patterns may not bind variables at
positive types.

Next, we consider the patterns for computing with LF terms. The pattern for∃A(τ +)
is a pair whose first component is an LF termM of typeA, and whose second com-
ponent is a pattern for the positive typeτ +(M )—the type of the second component is
computed by applying the meta-functionτ + to M . For example, returning to the above
example of lists defined as∃nat(τlist), we have the pattern(zero, ()) representing “nil”,
becauseτlist(zero) = 1. The patterns forΨ ⇒ A+ and@A+ manipulate the LF context:
λΨ.p binds LF variables (we writeΨ for the bare variables ofΨ, without any types),
whereasbox p wraps a pattern that is independent of the LF context. The pattern for
∃W(ψ+) pairs an LF contextΨ with a pattern for the typeψ(Ψ), analogously to∃A(τ +).

Destructor Patterns Negative connectives are specified by the judgement∆;Ψ 

n :: A- > C+, which typesdestructor patterns. A destructor pattern describes the shape
of an observation that one can make about a negative type: thejudgement means that
n observes the negative typeA- to reach the positive conclusionC +, using the LF vari-
ables inΨ and binding the pattern variables in∆. The contextΨ scopes overn andA-

but not∆ andC +—like assumptions, the conclusionC+, which abbreviates〈Ψ0〉A
+
0 ,

is modally encapsulated, potentially in a different context thanΨ. Logically, destructor
patterns correspond to usinglinear left-rulesto decomposeA- to C+. Because we are
defining an intuitionistic, rather than classical, type theory, destructor patterns are not
quite dual to constructor patterns: constructor patterns have no conclusions, whereas
destructor patterns have exactly one.
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The destructor patterns for the basic types are explained asfollows: a negative pair
A-

NB - can be observed by observing its first component or its secondcomponent;
negative pairs are lazy pairs whose components are expressions, whereas positive pairs
A+ ⊗ B + are eager pairs of values. A functionA+ → B - can be observed by applying it
to an argument, represented here by the constructor patternp, and then observing the
result. As a base case, we have shifted positive types↑A+, which represent suspended
expressions computing values of typeA+. A suspension can be observed by forcing it,
written ǫ, which runs the suspended expression down to a value; the LF contextΨ is
encapsulated in the conclusion of the force. The destructorpatterns for the remaining
types are analogous to their positive counterparts: universal quantification over LF
terms∀A(τ -) is eliminated by choosing an LF termM to apply to, and observing the
result; and similarly for universal context quantification. Finally, Ψ f A- and ⋄A-

manipulate the LF context of a negative type.

Contextual Patterns In the focusing framework below, we will require contextually
encapsulated patterns with no free LF variables. Contextual constructor patternsc have
the formΨ.p; they are well-typed whenp is well-typed inΨ. Contextual destructor
patterns are similar. In contextual patternsΨ.p and contextual types〈Ψ〉A, the context
Ψ is considered a binding occurrence for all its variables, which may be freelyα-
converted.

Mode and Regularity The pattern typing rules in Figure 3 are syntax-directed and
well-moded: the assumptions∆ and conclusionC + of destructor pattern typing, and
the assumptions∆ of constructor pattern typing, are outputs (synthesized),whereas
all other components of the judgements are inputs. The judgements assume that their
inputs are well-formed and guarantee that their outputs arewell-formed:

Proposition 1 (Pattern Regularity).

• If C+ ok and∆  c :: C+ then∆ ok.

• If C-
0 ok and∆  d :: C-

0 > C+ thenC+ ok and∆ ok.

2.1.5 Focusing Framework

We present our focusing framework for polarized intuitionistic type theory in Figure 4,
which is essentially unchanged from our previous work [42]:the extension with de-
pendent types is localized to the types and their constructor and destructor patterns.
In these rules,Γ stands for a sequence of pattern contexts∆, butΓ itself is treated in
an unrestricted manner (i.e., variables are bound once in a pattern, but may be used
any number of times within the pattern’s scope). As a matter of notation, we regard the
diacritic marks on metavariables such asC+ andC- as part of the name of the metavari-
able, not as a modifier, soC+ andC- are two unrelated types. The focusing rules are
syntax-directed and well-moded, with all pieces of the judgement as inputs.
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Context Γ ::= · | Γ,∆

Pos. Value v + ::= c [σ]
Pos. Cont. k + ::= ǫ | cont+(φ+) | ǫ | k +

1 thenC+ k +
2

whereφ+ ::= {c 7→ e | · · · }
Expression e ::= v + | x • k - | v - •C- k - | casevC+ v + of k + | caseC+ e of k +

Neg. Cont. k - ::= d [σ]; k + | k - thenC+ k +

Neg. Value v - ::= x | val-(φ-) | x | fix(x .v -)
whereφ- ::= {d 7→ e | · · · }

Substitution σ ::= · | σ, v -/x | id | σ1, σ2

Γ ⊢ v + :: C +

∆  c :: C+ Γ ⊢ σ : ∆
Γ ⊢ c [σ] :: C +

Γ ⊢ k + : C +
0 > C +

(∆  c :: C+
0 −→ Γ,∆ ⊢ φ+(c) : C +)

Γ ⊢ cont+(φ+) : C +
0 > C +

C +
0 = C +

Γ ⊢ ǫ : C +
0 > C +

C+
1 ok Γ ⊢ k +

0 : C +
0 > C +

1 Γ ⊢ k +
1 : C +

1 > C +

Γ ⊢ k +
0 thenC+

1
k +
1 : C +

0 > C +

Γ ⊢ k - :: C - > C +

∆  d :: C- > C+
0 Γ ⊢ σ : ∆ Γ ⊢ k + : C +

0 > C +

Γ ⊢ d [σ]; k + :: C - > C +

C+
0 ok Γ ⊢ k - :: C - > C +

0 Γ ⊢ k + : C +
0 > C +

Γ ⊢ k - thenC+
0
k + :: C - > C +

Γ ⊢ v - : C -

(∆  d :: C- > C+ −→ Γ,∆ ⊢ φ-(d) : C +)

Γ ⊢ val-(φ-) : C -
x :C -

0 ∈ Γ C - = C -
0

Γ ⊢ x : C -
Γ, x :C - ⊢ v - : C -

Γ ⊢ fix(x .v -) : C -

Γ ⊢ e : C +

Γ ⊢ v + :: C +

Γ ⊢ v + : C +

x :C - ∈ Γ Γ ⊢ k - :: C - > C +

Γ ⊢ x • k - : C +

C- ok Γ ⊢ v - : C - Γ ⊢ k - :: C - > C +

Γ ⊢ v - •C- k - : C +

C+
0 ok Γ ⊢ v + :: C +

0 Γ ⊢ k + : C +
0 > C +

Γ ⊢ casevC+
0
v + of k + : C +

C+
0 ok Γ ⊢ e : C +

0 Γ ⊢ k + : C +
0 > C +

Γ ⊢ caseC+
0
e of k + : C +

Γ ⊢ σ : ∆

Γ ⊢ · : ·
Γ ⊢ σ : ∆ Γ ⊢ v - : C -

Γ ⊢ σ, v -/x : ∆, x :C -
∆ ⊆ Γ

Γ ⊢ id : ∆

Γ ⊢ σ1 : ∆1 Γ ⊢ σ2 : ∆2

Γ ⊢ σ1 , σ2 : ∆1,∆2

identity principles cut principles convenient principles

Figure 4: Focusing Rules
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Canonical Terms First, we discuss canonical terms, which are typed by the unboxed
rules in Figure 4. The first two judgements define focusing andinversion for positive
types. The judgementΓ ⊢ v + :: C + defines positive values (right focus): a positive
value is a constructor pattern under a substitution for its free variables. The judgement
Γ ⊢ k + : C +

0 > C + defines positive continuations (left inversion): a positive continu-
ation is a case-analysis, specified by a meta-functionφ+ from patterns to expressions.
The premise of the rule asserts that for all constructor patternsc for C0 , φ+(c) is an
expression of the appropriate type using the variables bound by c (by our above con-
vention about iterated inductive definitions,∆ andc are universally quantified here).

The next two judgements define focusing and inversion for thenegative types. The
judgementΓ ⊢ k - :: C - > C + defines negative continuations (left focus): a negative
continuation is a destructor pattern under a substitution for its free variables followed
by a positive continuation consuming the result of the destructor. The destructor pat-
tern, filled in by the substitution, decomposesC - to some positive typeC+

0. The posi-
tive continuation reflects the fact that it may take further case-analysis ofC+

0 to reach
the desired conclusionC+. The judgementΓ ⊢ v - : C - defines negative values (right
inversion): a negative value is specified by a meta-functionthat gives an expression
responding to every possible destructor.

The judgementΓ ⊢ e : C +, types expressions, which are neutral states: from an
expression, one can right-focus and introduce a value, or left-focus on an assumption
in Γ and apply a negative continuation to it. Finally, a substitution Γ ⊢ σ : ∆ provides
a negative value for each hypothesis.

At this point, the reader may wish to work through some instances of these rules
(using the above pattern rules) to see that they give the expected typings for familiar
types. First, the type(↑A+

1 )N(↑A+
2 ) is inhabited by a lazy pair of expressions:

Γ ⊢ e1 : 〈Ψ〉A+
1 Γ ⊢ e2 : 〈Ψ〉A+

2

Γ ⊢ val-((Ψ.(fst; ǫ)) 7→ e1 | (Ψ.(snd; ǫ)) 7→ e2 ) : 〈Ψ〉 (↑A+
1 )N(↑A+

2 )

Second, a function(↓A-
1 ) ⊕ (↓A-

2 ) → ↑B + is defined by two cases:

Γ, x : 〈Ψ〉A-
1 ⊢ e1 : 〈Ψ〉B + Γ, y : 〈Ψ〉A-

2 ⊢ e2 : 〈Ψ〉B +

Γ ⊢ val-((Ψ.inl x ) 7→ e1 | (Ψ.inr y) 7→ e2 ) : 〈Ψ〉 (↓A-
1 ) ⊕ (↓A-

2 ) → ↑B +

In both of these examples, the bindingsΨ in the contextual patterns are unused,
because there are no LF types mentioned before shifts. As an example where the con-
textual bindings are relevant, consider an LF typeexp representing terms of the untyped
λ-calculus. A function fromexp to exp is represented by the following negative value:

Γ ⊢ e1 : 〈Ψ〉 ∃exp( 7→ 1) . . .

Γ ⊢ val-((Ψ.M1 ; ǫ) 7→ e1 , . . .) : 〈Ψ〉 ∀exp( 7→ ↑(∃exp( 7→ 1)))

In a more familiar notation, the type of this term is written∀ : exp.∃ : exp.1; we as-
sume the meta-functionsτ allow constant functions, notated by a catch-all case. A
negative value of this type is given by a meta-function whosedomain is destructor pat-
terns for〈Ψ〉 ∀exp( 7→ ↑(∃exp( 7→ 1))). All destructor patterns for this type have the
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form Ψ.(Mi ; ǫ) whereΨ ⊢LF M : exp because the only destructor pattern for∀ is
application to an LF term, and the only destructor pattern for ↑ is ǫ. Thus, a negative
value of this type is specified by anω-rule with one case for eachλ-term inΨ, and the
termM in each pattern is in the scope of the variables bound byΨ.

Non-canonical Terms To make a convenient programming language, we add non-
canonical forms and general recursion in the boxed rules in Figure 4. The first class of
non-canonical forms are internalizations of the cut principles for this presentation of in-
tuitionistic logic; these terms create opportunities for reduction. The most fundamental
cuts,v - •C - k - andcasevC+ v + of k +, put a value up against a continuation. The three
remaining cut principles,caseC+ e of k + andk - thenC+ k + andk +

0 thenC+ k +
1 , allow con-

tinuations to be composed: the first composes a continuationwith an expression, the
second composes a negative continuation with a positive one, and the third composes
two positive continuations. The second class of non-canonical forms are internaliza-
tions of the identity principles, which say that terms need not be fully η-expanded.
Negative identity (x ) allows a variable to be used as a value, whereas positive identity
(ǫ) is the identity case-analysis. The identity substitution(id) maps negative identity
across each assumption in∆. Finally, we allow substitutions to be appended (σ1, σ2)
so that the identity substitution can be combined with othersubstitutions, and we allow
general-recursive negative values (fix(x .v -)).

Operational Semantics The operational semantics of our language, defined by the
judgemente ; e ′ in Figure 5, are quite simple and essentially unchanged fromour
previous work [42]. Reduction happens when a focus term is put up against the corre-
sponding inversion term. E.g., in the rulepr, a positive valuec [σ] is being scrutinized
by a positive continuationcont+(φ+); this is reduced by applying the meta-function
φ+(c), which performs the pattern matching, and then applying thesubstitutionσ to
the result. Though the types of terms are computationally irrelevant, the operational
semantics maintain the annotations on cuts in the interest of a simple type safety result.
We elide the definition of substitution (e [σ : ∆], and similarly for the other syntactic
categories), which is standard, except that it carries the types of the substituted terms
so that the substitution intox • k - can be defined to bev - •C - k - whenv -/x ∈ σ and
x :C - ∈ ∆.

Type safety is proved by the usual simple structural induction:

Theorem 1(Type safety).
Progress: If C+ ok and· ⊢ e : C + thene = v+ or e ; e ′.
Preserv.: If C+ ok and· ⊢ e : C + ande ; e ′ then· ⊢ e ′ : C + .

2.1.6 Proposed work

Next, we discuss some aspects of this calculus that we will explore further in the thesis.

Type Equality Canonical terms (the unboxed rules in Figure 4) contain no type an-
notations, and can be checked against a single type annotation provided at the outside.
However, non-canonical terms have either too little type information or too much. Cuts

14



e ; e ′

∆  c :: C+ φ+(c) defined

casevC+ c [σ] of cont+(φ+) ; φ+(c) [σ : ∆]
pr

casevC+
0
v + of (k +

0 thenC+
1
k +
1 ) ; caseC+

1
(casevC+

0
v + of k +

0 ) of k +
1

casevC+ v + of ǫ ; v + idk+

∆  d :: C-
0 > C+ φ-(d) defined

val-(φ-) •C-
0

(d [σ]; k +) ; caseC+ (φ-(d) [σ : ∆]) of k +
nr

v - •C-
0

(k -
0 thenC+

1
k +
1 ) ; caseC+

1
(v - •C-

0
k -) of k + k-k+

fix(x .v -) •C-
0

k -
; v - [(fix(x .v -)/x ) : (x :C -

0 )] •C-
0

k - fix

e ; e ′

caseC+ e of k +
; caseC+ e ′ of k + k+ee

caseC+ v + of k +
; casevC+ v + of k + k+ev

Figure 5: Operational Semantics
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have too little type information because they do not obey thesubformula property, so
we annotate them with the mediating type. On the other hand, identities have too much
type information: for example, whenx is used as a value, both the type in the con-
text and a type to check against are given. Consequently, type checking identity terms
requires comparing two types for equality. Moreover, the identity termsx andǫ are
the only terms that force two arbitrary types to be compared for equality, becauseη-
expansion pushes the type equality check down to base type. (For other instances of
this phenomenon, see LFR [43], where subtyping at higher types is characterized by
an identity coercion, and OTT [2], where anη-expanded identity coercion is induced
by proofs of type equality).

In the rules, we writeC1 = C2 for “syntactic” equality of types, which is a congru-
ence with meta-functions compared extensionally—i.e., twometa-functions are equal
if they agree on all inputs. However, this notion of equalitycan lead to undecidability
of type checking: extensional equality of the meta-functions appearing in types (τ, ψ)
will not in general be decidable. Decidability may be restored in various ways: One
option is to restrictτ andψ to a class of meta-functions whose equality is decidable.
For example, if only finite branching without recursion, andnot arbitrary type-level
computation, is allowed, then equality may be decidable. Alternatively, we may imple-
ment a sound but conservative approximation to type equality C0 = C for use in type
checking. When this tactic fails to prove a true equality, theprogrammer can prove
the equality by manuallyη-expanding the identity coercion (the identity rules are ad-
missible given the other rules of the system). As a practicalmatter, it may be more
convenient to prove equalities explicitly, rather than byη-expanded identity coercions,
in which case we could permit explicit equality proofs as part of the identity terms,
perhaps by internalizing proofs of type equality as a type inthe language. We plan to
explore these options in the thesis.

Dependent Pattern Matching Our rules for pattern-matching decompose LF terms
and contexts with an infinitary rule, giving one case for eachLF term of the appropriate
type (e.g.,nat is pattern-matched with theω-rule). For example, we illustrate how
meta-functions give an abstract account of dependent pattern matching. Consider the
nat type defined byzero andsucc, with an identity type defined in LF as follows:

id : nat -> nat -> type.
refl : {n : nat } id n n.

What are the patterns of type∃nat(n 7→ ∃nat(m 7→ id n m))? In Twelf, one would
write (X , (X , refl X)) , where the unification variableX must be used non-
linearly for the pattern to be well-typed. In our formalism,one is required to enumerate
all closed instances of this pattern:

(zero, (zero, refl zero))
(succ zero, (succ zero, refl (succ zero)))
...

Because of the use of meta-functions, the patterns presented above do not include
a number of features found in other pattern languages for LF [53, 54, 56]: unification
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variables for LF terms, non-linear patterns, unification variables over LF variables,
and context variables. These features may play a role in the implementation of meta-
functionsφ, ψ, andτ , which we will explore in the thesis.

Richer Forms of Dependency In the thesis, we will also explore the richer forms of
dependency discussed above.

2.2 Effects

A realistic programming language must account for programming with computational
effects; in the thesis, we plan to treat computational effects within the focusing formal-
ism described above. As an example, we consider mutable references in this section.

In Figure 6, we present the revised focusing rules.Σ stands for a store typing, with
assumptionsl : loc[C +] . There are three new forms of expression: First, one can allo-
cate a new reference cell (new l : loc[C +] := v +.e), which binds a variablel standing
for the cell, initialized tov +. Next, one can set the value of a cell (l := v +; e). Finally,
one can get (!l ; k +) the contents of a cell, pattern-matching the value held there with the
positive continuationk +. In many presentations of mutable references, locations occur
only behind-the-scenes in the operational semantics. In this presentation, we do expect
programmers to explicitly mention in-scope location variablesl in get/set expressions.

In the focus rules (c [σ] andd [σ]; k +), the store typing is carried into the pattern
judgements. In Figure 2.2, we add one new type,ref A+, whose pattern packs a location
variable as a value of reference type. The inversion rules (cont+(φ+) and val-(φ-))
quantify over all extensions of the current store typing. This ensures that inversions
continue to work after new reference cells have been generated. It also accounts for
pointer equality: A value of typeref A+ is eliminated by a pattern-match that uncovers
the underlying location. A programmer may give cases for each locationli in scope,
testing pointer equality with those known locations. However, because the inversion
must work in any future location typing, he must also give a catch-all case for unknown
locations. In the remaining rules, the store typing is carried through in the same manner
asΓ.

The operational semantics (Figure 8) and type safety proof are straightforward:

Lemma 1 (Store Typing Weakening).

1. If Σ ; ∆  J andΣ′ ≥ Σ thenΣ′ ; ∆  J .

2. If Σ ; Γ ⊢ J andΣ′ ≥ Σ thenΣ′ ; Γ ⊢ J .

3. If Σ0 ⊢ M : Σ andΣ′
0 ≥ Σ0 thenΣ′

0 ⊢ M : Σ and

Theorem 2(Type safety).
Progress: If Σ ; · ⊢ e : C + andΣ ⊢ M : Σ thene = v+ or there exist(M ′, e′) such
that (M , e) ; (M ′ , e ′).
Preservation: If Σ ; · ⊢ e : C + andΣ ⊢ M : Σ and (M , e) ; (M ′ , e ′) then there
existsΣ′ such thatΣ′ ≥ Σ andΣ′ ⊢ M ′ : Σ′ andΣ′ ; · ⊢ e ′ : C + .
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Linear context ∆ ::= · | ∆, x :C -

Unrestricted context Γ ::= · | Γ,∆
Store typing Σ ::= · | Σ, l : loc[C +]

Σ ; Γ ⊢ v + :: C +

Σ ; ∆  c :: C+ Σ ; Γ ⊢ σ : ∆

Σ ; Γ ⊢ c [σ] :: C +

Σ ; Γ ⊢ k + : C +
0 > C +

(Σ′ ≥ Σ −→ (Σ′ ; ∆  c :: C+
0 −→ Σ′ ; Γ,∆ ⊢ φ+(c) : C +))

Σ ; Γ ⊢ cont+(φ+) : C +
0 > C +

C +
0 = C +

Σ ; Γ ⊢ ǫ : C +
0 > C +

Σ ; Γ ⊢ k +
0 : C +

0 > C +
1 Σ ; Γ ⊢ k +

1 : C +
1 > C +

Σ ; Γ ⊢ k +
0 thenC+

1
k +
1 : C +

0 > C +

Σ ; Γ ⊢ k - :: C - > C +

Σ ; ∆  d :: C- > C+
0 Σ ; Γ ⊢ σ : ∆ Σ ; Γ ⊢ k + : C +

0 > C +

Σ ; Γ ⊢ d [σ]; k + :: C - > C +

Σ ; Γ ⊢ k - :: C - > C +
0 Σ ; Γ ⊢ k + : C +

0 > C +

Σ ; Γ ⊢ k - thenC+
0
k + :: C - > C +

Σ ; Γ ⊢ v - : C -

(Σ′ ≥ Σ −→ (Σ′ ; ∆  d :: C- > C+ −→ Σ′ ; Γ,∆ ⊢ φ-(d) : C +))

Σ ; Γ ⊢ val-(φ-) : C -
x :C -

0 ∈ Γ C - = C -
0

Σ ; Γ ⊢ x : C -
Σ ; Γ, x :C - ⊢ v - : C -

Σ ; Γ ⊢ fix(x .v -) : C -

Σ ; Γ ⊢ e : C +

Σ ; Γ ⊢ v + :: C +

Σ ; Γ ⊢ v + : C +

x :C - ∈ Γ Σ ; Γ ⊢ k - :: C - > C +

Σ ; Γ ⊢ x • k - : C +

Σ ; Γ ⊢ v + :: C +
0 Σ, l : loc[C +

0 ] ; Γ ⊢ e : C +

Σ ; Γ ⊢ new l : loc[C +
0 ] := v +.e : C +

l : loc[C +
0 ] ∈ Σ Σ ; Γ ⊢ v + :: C +

0 Σ ; Γ ⊢ e : C +

Σ ; Γ ⊢ l := v +; e : C +

l : loc[C +
0 ] ∈ Σ Σ ; Γ ⊢ k + : C +

0 > C +

Σ ; Γ ⊢ !l ; k + : C +

Σ ; Γ ⊢ v - : C - Σ ; Γ ⊢ k - :: C - > C +

Σ ; Γ ⊢ v - •C- k - : C +

Σ ; Γ ⊢ v + :: C +
0 Σ ; Γ ⊢ k + : C +

0 > C +

Σ ; Γ ⊢ casevC+
0
v + of k + : C +

Σ ; Γ ⊢ e : C +
0 Σ ; Γ ⊢ k + : C +

0 > C +

Σ ; Γ ⊢ caseC+
0
e of k + : C +

Σ ; Γ ⊢ σ : ∆

Σ ; Γ ⊢ · : ·

Σ ; Γ ⊢ σ : ∆ Σ ; Γ ⊢ v - : C -

Σ ; Γ ⊢ σ, v -/x : ∆, x :C -
∆ ⊆ Γ

Σ ; Γ ⊢ id : ∆

Σ ; Γ ⊢ σ1 : ∆1 Σ ; Γ ⊢ σ2 : ∆2

Σ ; Γ ⊢ σ1 , σ2 : ∆1,∆2

identity principles cut principles convenient principles

Figure 6: Focusing rules with state
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l : loc[A+] ∈ Σ

Σ ; ·  l :: ref A+

Σ flows through the remaining pattern rules as an unrestrictedcontext.

Figure 7: Pattern rules for references

Σ0 ⊢ M : Σ

Σ0 ⊢ · : ·

Σ0 ⊢ M : Σ Σ0 ⊢ v + :: C +

Σ0 ⊢ M [l :=C+ v +] : Σ, l : loc[C +]

(M , e) ; (M ′ , e ′)

∆  c :: C+ φ+(c) defined

(M , casevC+ c [σ] of cont+(φ+)) ; (M , φ+(c) [σ : ∆])
pr

(M , casevC+
0
v + of (k +

0 thenC+
1
k +
1 )) ; (M , caseC+

1
(casevC+

0
v + of k +

0 ) of k +
1 )

(M , casevC+ v + of ǫ) ; (M , v +)
idk+

∆  d :: C-
0 > C+ φ-(d) defined

(M , val-(φ-) •C-
0

(d [σ]; k +)) ; (M , caseC+ (φ-(d) [σ : ∆]) of k +)
nr

(M , v - •C-
0

(k -
0 thenC+

1
k +
1 )) ; (M , caseC+

1
(v - •C-

0
k -) of k +)

k-k+

(M , fix(x .v -) •C-
0

k -) ; (M , v - [(fix(x .v -)/x ) : (x :C -
0 )] •C-

0
k -)

fix

(M , e) ; (M ′ , e ′)

(M , caseC+ e of k +) ; (M ′ , caseC+ e ′ of k +)
k+ee

(M , caseC+ v + of k +) ; (M , casevC+ v + of k +)
k+ev

l #M

(M , new l : loc[C +] := v +.e) ; (M [l :=C+ v +] , e)
new

(M [l :=C+ ] , l := v +; e) ; (M [l :=C+ v +] , e)
set

[l :=C+ v +] ∈M

(M , !l ; k +) ; (M , casevC+ v + of k +)
get

Figure 8: Operational Semantics with references
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2.2.1 Proposed Work: Controlling Effects

In the above calculus, storage effects are pervasive, in that any expression of typeA+

may perform storage effects. To integrate effects with dependency, it is useful to make
a type distinction between pure and impure computations. Inthe thesis, we will explore
an approach to controlling effects based on indexed polarities—e.g. distinguishing be-
tween↑impure A+, which may have effects, and↑pure A+, which may not. We conjecture
that the Hoare triple type in HTT [48] can be seen as a particularly precise indexed
polarity, where the index describes the pre- and post-conditions of the computation.
Allowing programmers to define indexed polarities may thus allow HTT to be recov-
ered as a domain-specific logic.

2.3 Proposed Work: Polymorphism and Modularity

Our language for programming with domain-specific logics requires strong support for
modularity, both to manage the construction of DSLs themselves and to exploit DSLs
in giving rich interfaces to components. In the thesis, we plan to reconsider the type
theoretic foundations of modularity (e.g., [21]) from the polarized perspective. There
are many interesting issues to address in the design of module systems for dependently
typed programming languages, and in particular for languages with LF-like support
for variable binding. For example, full dependently typed programming raises issues
of information hiding: through dependency, the well-typedness of a piece of code can
depend on theimplementationof a value, not just its type. Consequently, one may
not freely replace one implementation of an interface with another. A module sys-
tem should allow programmers to decide when implementations are are revealed to a
module’s clients, and to replace one module with another that has equivalent behavior.
Another issue is that LF notoriously lacks polymorphism, sodatatypes like lists must
be replicated for each element type. A treatment of polymorphism and modularity in
our setting would address this shortcoming.

3 Practice

The goal of the practical portion of this thesis is to build animplementation that is
good enough for testing the type theory by programming with some domain-specific
logics. Thus, we expect to produce a basic prototype, not an implementation that is
well-engineered enough to be a competitor to, say, SML and Twelf (though we hope
this thesis will eventually lead to such an implementation!). In particular, the speed of
the type checker and operational semantics will be given only enough attention as is
necessary to support some reasonable examples.

There are two main gaps between the above type theory and a practical implemen-
tation:

3.1 Proposed Work: Syntax for Meta-functions

The above type theory does not commit to a syntax for meta-functionsτ, ψ, φ. This has
its benefits—we are now free to consider different implementations of meta-functions
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without disturbing the meta-theoretic properties of our language—but an implemen-
tation must actually provide at least one such syntax. A simple language of meta-
functions could consist of two ingredients: First, we may give a syntax of meta-
patterns, extending the grammar for constructor patternsc with meta-variables rang-
ing over patterns. A meta-function can then be specified by a finite list of meta-
pattern/expression pairs, where the expression is allowedto use meta-variables bound
by the pattern to construct values. Type checking these meta-functions will require de-
termining exhaustiveness of patterns (Dunfield and Pientka[23] describe some recent
work addressing this problem). Second, we may give a fixed collection of datatype-
generic programs witnessing the structural properties of LF (weakening, exchange,
contraction, substitution, subordination-based strengthening). This language of meta-
functions would allow pattern matching up to a finite depth, which is sufficient for the
value level, because we have general recursion in the language. For expressive type-
level computation, we may also include recursively defined meta-functions with named
auxiliary functions (unless we have already investigated full dependency, in which case
the value-level functions could serve this role). More ambitiously, we may investigate
ways of making datatype-generic programming available to the programmer.

3.2 Proposed Work: Term Reconstruction

Because dependent types are so precise, they create many opportunities for omitting
type and term arguments to functions and using unification toreconstruct them. Indeed,
programming without such term reconstruction is usually too tedious to be practical.
To achieve a usable implementation with compelling examples, we must implement
some form of type and term reconstruction. However, inasmuch as possible, we hope
to rely on existing technology [51, 53].

3.3 Examples

Finally, we sketch two simple examples of programming with domain-specific logics.
These examples are programmable in the baseline calculus described above. In the
thesis, we will consider extensions and more-sophisticated examples that illustrate the
additional technology for dependency, effects, and modularity that we develop.

3.3.1 Certified Software: Security-Typed Programming

Security-typed languages, such as Aura [38] and PCML5 [6], use an authorization logic
to control access to resources. The basic ingredients of an authorization logic are:

• Resources, such as files and database entries, and principals such as users and
programs.

• Atomic propositions describing permissions—e.g., a proposition K mayread
F for a principalK and file resourceF.

• A modalityK says A meaning that principalK affirms the truth of proposition
A. Thesays modality permits access control policies to be specified as the ag-
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gregation of statements by many different principals, which is important when
different principals have jurisdiction over different resources.

Beyond these simple ingredients, there are many choices: Isthe logic first-order or
higher-order, intuitionistic or classical? What laws should thesays modality satisfy?
How are principals and resources represented? How are principals’ statements au-
thenticated? Unlike Aura [38] and PCML5 [6], which provide fixed answers to these
questions, our type theory allows programmers to program many different authoriza-
tion logics, and to combine code written using different logics in a single program.

An Authorization Logic In this section, we define a first-order, intuitionistic autho-
rization logic, wheresays is an indexed lax modality (indexed monad), following
Garg and Pfenning [30]. For simplicity, we consider only a fixed collection of prin-
cipals and resources, represented in LF, and a fixed access control policy. We present
an LF encoding of this logic in Figure 9. There are two sorts ofterms,princ ipals
andres ources, with a distinguished principalself on behalf of whom the programs
runs. Propositions include atomic propositions (classified by LF typeaprop ), implica-
tion, universal quantification over terms, and thesaysmodalityK says A . The logic
is defined as a sequent calculus with one kind of hypothesis (A hyp ) and two kinds
of conclusions:A true , andK affirms A —the judgement on which thesays
modality is based. We mix prefix, infix, and postfix notation tomatch the standard syn-
tax for these judgements; note that|- binds more loosely thantrue andaffirms ,
so |- A true is |- (A true) . The rules for atomic propositions, implication,
and universal quantification are standard, and the rulesaff , saysr , andsaysl give
the return and bind operations for the lax modality. We includecut as an explicit rule,
for reasons discussed below. This LF encoding uses higher-order abstract syntax to
represent the syntax of propositions (e.g.,all ) and to manage the assumptions of the
sequent calculus (e.g., all left rules as well asallr andimpr add assumptions to the
context; thealll rule uses LF function application to perform substitution). Using LF
to define logics saves programmers the bureaucracy of implementing variable binding
concretely.

In Figure 10, we define principals and resources specific to anapplication, along
with an access control policy for them. As a very simple example, we may control
reads to files on a file system. To do so, we define principals forfile owners (in this
case,dan ), resources for files (/home/dan/plan ) and two atomic propositions,
stating that a principal owns a resource (writtenK owns R) and that a principal may
read a resource (K mayrd R). The access-control policy is defined by loading the
LF context with certain initial hypotheses; in this case, that Dan owns his plan file
(ownsplan ), that Dan says that all principals may read his plan (danplan ), and
that if the owner of a resource says that some principal can read it, then that princi-
pal can read it (grantrd ). This last axiom provides a controlled way of escaping
from the affirmation monad back to truth. Programmers can prove propositions in
the logic by constructing LF terms representing derivations; for example, it is simple
to show thatself may read the file/home/dan/plan by constructing a derivation
of |- (atom (self mayrd /home/dan/plan)) true . The derivation uses
danplan , ownsplan , andgrantrd , as well as logical rules.
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sort : type.
princ : sort.
res : sort.

term : sort -> type.
self : term princ.

aprop : type.
prop : type.
atom : aprop -> prop.
implies : prop -> prop -> prop.
says : term princ -> prop -> prop. %infix says.
all : (term S -> prop) -> prop.

hyp : prop -> type. %postfix hyp.
conc : type.
true : prop -> conc. %postfix true.
affirms : term princ -> prop -> conc. %infix affirms.

|- : conc -> type.
init : (atom X) hyp -> |- (atom X) true.
aff : |- K affirms A

<- |- A true.
impr : |- (implies A B) true

<- (A hyp -> |- B true).
impl : ((implies A B) hyp -> |- J)

<- |- A true
<- (B hyp -> |- J).

saysr : |- (K says A) true
<- |- K affirms A.

saysl : ((K says A) hyp -> |- K affirms C)
<- (A hyp -> |- K affirms C).

allr : |- (all ([c] A c)) true
<- {c : term S } |- (A c) true.

alll : ((all A) hyp -> |- J)
<- ((A T) hyp -> |- J).

cut : |- J
<- |- A true
<- (A hyp -> |- J).

Figure 9: LF Signature for Authorization Logic
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dan : term princ.
/home/dan/plan : term res.

owns : term princ -> term res -> aprop. %infix owns.
mayrd : term princ -> term res -> aprop. %infix mayrd.

ownsplan : (atom (dan owns /home/dan/plan)) hyp.
danplan : (dan says

(all [p] atom (p mayrd /home/dan/plan))) hyp.
grantrd : all ([p] (all ([q] (all [r]

implies (atom (p owns r))
(implies (p says atom (q mayrd r))

(atom (q mayrd r))))))) hyp.

Figure 10: A Policy For File Access

Access-Controlled Operations Now that we have a logic for specifying authoriza-
tion, we may use it to give rich types to functions that interact with resources, such as
a function for reading the contents of a file:
read : 〈 · 〉 ∀r:term res.

∀ :|- (atom (self mayrd r)) true.
↑ string

To write this type, we use an informal concrete syntax for meta-functions, allowing
ourselves to write∀X :A.B+ for the type∀A(X 7→ B +) when the meta-function can be
defined uniformly with only one pattern branch binding a meta-variableX . To remain
in the formalism presented above, we definestring as(∃ : lstring.1), wherelstring

as an LF type representing lists of characters.
To call this function, a programmer must provide a file resource r as well as a

proof that the program may readr . The resourcer is used as the file name, and the
function returns the contents of the file. The intended invariant of this DSL is that a
proof of self mayrd F implies that the fileF exists and that the program has the
appropriate file system permissions to read it; if this invariant is violated (i.e. the DSL
itself is incorrect), thenread will abort, e.g. by looping or raising an exception. If
a client program uses this interface for all reads, then all reads are authorized by the
access control policy. It is important thatread is typed in the empty LF context (i.e.,
that its contextual type is〈·〉A-): otherwise, clients could simply bind new LF variables
standing for proofs and use them to justify a call toread .

How is read implemented? One option is to simply ignore the proof, map the
resource to a string, and call a primitive read function (we did not include I/O effects
in the above presentation of our type theory, but they are simple to add). In this case,
dependency is used only to enforce an invariant, with no bearing on the actual run-
time behavior. Alternatively, following Vaughan et al. [67], we may wishread to
log the provided proofs for later audit. Administrators canuse such logs to diagnose
unexpected consequences of an access-control policy. Logging requires a function
tostring : 〈 · 〉 ∀J:conc. ∀ :(|- J). ↑string
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which should be implemented by induction on LF terms.

Policy Analysis We can use computation with LF terms to investigate the properties
of the stated access control policy. As a very simple example, we may wish to know
that the only owner of/home/dan/plan is dan . We can encode this theorem with
a negative value of the following type. Because we included general recursion in the
language, a term with this type is not necessarily a proof, but we do not usefix to write
this particular term.

onlydan : 〈·〉 ∀P : term princ .
∀ : (atom (P owns /home/dan/plan)) hyp .
↑∃ : id P dan . 1

This theorem says: for any principalP that owns/home/dan/plan , P is dan , where
id is an LF type family representing equality:

id : term S -> term S -> type.
refl : id T T.

We implementonlydan with a meta-function on destructors:

onlydan = val-(dan ; ownsplan ; ǫ 7→ (refl , ()) [·])

A meta-functionφ implementingonlydan is well-typed when:

(∆  d :: 〈·〉A- > C+ −→ · ⊢ φ(d) : C +)

whereA- is the type ascribed toonlydan above. In this LF signature and context, the
only destructor pattern of this type isdan ; ownsplan ; ǫ, in which case∆ is empty
andC + is the contextual type〈·〉 ↑∃ : id dan dan .1—the result type is refined by
the case analysis. The positive value(refl , ()) [·] inhabits this type.

Auditing and Cut Elimination We have deliberately includedcut as a rule in our
authorization logic because the time and space costs of normalizing proofs can be large,
and proofs using cut suffice as justifications forread . Moreover, logging cut-full
proofs may provide clues to auditors [67]. On the other hand,proofs with cut may
contain irrelevant detours that make it difficult to see who to blame for unexpected
consequences of a policy, whereas the corresponding cut-free proof expresses the direct
evidence used to grant access. Thus, it is important to be able to eliminate cuts from
log entries during auditing. Fortunately, Garg and Pfenning [30] give a Twelf proof of
cut admissibility for their logic, and exploiting open-endedness, we can import their
Twelf code as a function in our language.

LetW stand for LF contexts of the form

x1:term S1 , x2:term S2 , . . . ,p1:A1 hyp , p1:A2 hyp , . . .
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for someSi andAj (in Twelf, these contexts are described by aregular worldsdecla-
ration [53]). The key lemma in cut elimination is cut admissibility, which is stated as
follows:

∀ · ⊢ Ψ ∈ W
Ψ ⊢LF A : prop
Ψ ⊢LF C : prop
Ψ ⊢LF D : |-cf A true
Ψ ⊢LF D ′ : Π :A hyp . |-cf C true :

∃ Ψ ⊢LF D ′′ : |-cf C true

We write|-cf for the cut-free version of|- , which is specified by all the rules for this
judgement in Figure 9 except forcut . Cut admissibility proves that one can substitute
cut-free evidence forA for a hypothesis ofA and obtain a cut-free result.

The proof of this theorem is a meta-function which can be usedto implement a
negative value of the following type:

〈·〉 ∀W . ∀A : prop .
∀C : prop .
∀D : |-cf A true .
∀D′ : (Π :A hyp . |-cf C true ).
↑(∃D ′′ : |-cf C true .1)

Here we write∀W .A- for ∀W(Ψ 7→ Ψ f A-); this type quantifies over all contexts in
the worldW and then immediately binds the context inA-. A value of this type is
implemented as follows:

val-(Ψ; unpackΨ.A ;C ;D ;D ′ ; ǫ 7→ (gp(Ψ,A,C ,D ,D ′), ()) [·])

Inverting the possible destructors for this type yields exactly the premises of the Twelf
theorem. To construct a result, we use the notationgp to call Garg and Pfenning’s Twelf
code to compute an LF term. Twelf is a logic programming language for programming
with LF terms, so their proof is not a function but a total relation, which may associate
more than one output with each input. We can resolve this non-determinism by simply
choosing to return the first result produced by Twelf’s proofsearch.

Alternatively, once we have designed a meta-function language, porting this Twelf
proof of cut admissibility will make for a good test case.

3.3.2 Mechanized Metatheory: Logical relations for G̈odel’s T

Twelf’s computational language for proving metatheorems about languages and logics
represented in LF permits only∀∃-statements over LF types. Moving to a higher-order
functional programming language like Delphin [56], Belgua[54], and our type theory
has a number of advantages. For example, when proving decidability of a judgementJ
in Twelf, one must inductively axiomatize its negation¬J and prove non-contradiction
(J ∧ ¬J ) → 0 explicitly. With more quantifier complexity, one can define¬J as
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J → 0, so non-contradiction is implemented by function application, and prove decid-
ability (J ∨ (J → 0)).

Additionally, because Twelf allows only∀∃-statements over LF types, it is not pos-
sible to formalize a logical relations argument by interpreting the types of an object
language as the types of the Twelf computational language.1 While Delphin and Bel-
uga have sufficient quantifiers to interpret object-language types, they do not permit
the definition of a type by induction on an LF term, which seemsnecessary to de-
fine a logical relation by induction on object-language types. Because our type theory
provides type-level computation, we can conduct such logical relations arguments di-
rectly, using the quantifiers of our computational language. It is of course possible
to formalize this style of argument in a dependent type theory such as Coq or Agda
which similarly provides large eliminations; the advantage of our approach is that the
programmer can carry out a logical relations argument whileusing LF to represent the
language’s binding structure.

As an example, we show how type-level computation with LF terms can be used
to type a logical relations argument for the termination of Gödel’s T (simply-typed
λ-calculus with iteration over natural numbers). For simplicity, we index terms with
their types so that only well-typed terms are representable, and we give a call-by-name
evaluation relation on closed terms where successor is treated lazily. Binderslam and
iter are represented using higher-order abstract syntax, and the evaluation relation
uses LF application to perform substitution.

The ultimate theorem we would like to prove is:

〈·〉 ∀A:tp .∀E:tm A .∃E’:tm A .∃D:eval E E’ .1

The logical relations proof of this theorem works by constructing a closed term model,
interpreting the types of G̈odel’s T as the types of the programming language. The
logical relation is defined by induction on object-languagetypes. In our calculus, this
is represented by a meta-functionht from LF terms to positive types:

(· ⊢LF A : tp and· ⊢LF E : tm A −→ 〈·〉 ht(A,E) type)
ht nat E = ∃ : htnat E .1
ht (arr A1 A2) E = ∃(( λ u.E’): Π :tm A1. tm A2).

∃D:eval E (lam ( λu.E’)) .
(∀E1:tm A1 .ht(A1,E1) → ↑ht(A2, [E1/u]E’ )

Here we use one-level pattern-matching and inductive callsto notate the meta-function
ht, which maps every G̈odel’s T type and closed term to a positive type. The case for
arr says thatE evaluates to a lambda, and moreover, for every hereditarilyterminating
argument, the substitution into the body of the lambda is hereditarily terminating. We
write [E1/u]E2 for LF substitution, which is defined as a meta-function on LFterms.
The base case refers to an auxiliary relationhtnat which is defined as follows:

1It is possible to formalize logical relations arguments in Twelf by interpreting types as quantifiers in a
specification logic encoded in LF [59], but this requires independent verification of the consistency of the
specification logic, which is often tantamount to the theoremone is trying to prove.
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tp : type.
nat : tp.
arr : tp -> tp -> tp.

tm : tp -> type.
z : tm nat.
s : tm nat -> tm nat.
iter : tm nat -> tm C -> (tm C -> tm C) -> tm C.
lam : (tm A -> tm B) -> tm (arr A B).
app : tm (arr A B) -> tm A -> tm B.

eval : tm A -> tm A -> type.
eval/z : eval z z.
eval/s : eval (s E) (s E).
eval/lam : eval (lam E) (lam E).
eval/iterz : eval (iter E Ez Es) Ez’

<- eval E z
<- eval Ez Ez’.

eval/iters : eval (iter E Ez Es) Es’
<- eval E (s E’)
<- eval (Es (iter E’ Ez Es)) Es’.

eval/app : eval (app E1 E2) E’
<- eval E1 (lam E)
<- eval (E E2) E’.

Figure 11: LF Representation of Gödel’s T

28



htnat : tm nat -> type.
htnat/z : htnat E

<- eval E z.
htnat/s : htnat E

<- eval E (s E’)
<- htnat E’.

The fundamental lemma of logical relations states that all well-typed terms are in
the relation. One difficultly is that the relation is defined only for closed terms, but
for the sake of the proof, the theorem must be generalized to consider open terms.
The standard maneuver is to interpret open terms under a grounding substitution of
hereditarily terminating terms. To do this, we need a type representing substitutions,
which we may define in LF as follows:

tplist : type.
tnil : tplist.
tcons : tp -> tplist -> tplist.

subst : tplist -> type.
snil : subst tnil.
scons : tm A -> subst As -> subst (tcons A As).

The typetplist codes an LF context (u : tm , d : of u A , . . .) by the list (tcons
A . . . tnil ). The indexed list(subst As) contains onetm of typeA for eachA
in As.

We also need a type expressing that a substitution contains hereditarily terminating
terms:

(· ⊢LF As : tplist and· ⊢LF Es : subst As −→ 〈·〉 hts(As,Es) type)
hts tnil snil = 1
hts (tcons A A2) (scons E Es) = ht(A,E) ⊗ hts(As,Es)

Then the fundamental lemma is stated as follows, whereW contain LF contexts (u : tm , d : of u A , . . .).

〈·〉 ∀W(Ψ 7→ Ψ f ∀A : tp .∀E : tm A.
⋄(∀Es : subst (tpsΨ).hts(Es, (tpsΨ)) → ↑ht(A,E [Es] ))))

For anyΨ in W, given anE of typeA in Ψ, along with a closed hereditarily terminating
substitutionEs for each of the free variables ofE, we produce a proof that the simul-
taneous substitutionE [Es] is hereditarily terminating. The type⋄ is used to express
the fact that the substitution consists of closed terms. Themeta-operationtpsΨ, codes
a contextΨ as atplist ; it is defined by induction onΨ. The meta-functionE [Es]
implements simultaneous substitution for LF terms. This meta-function need not be
implemented directly for this instance: it can be derived from a generic simultaneous
substitution theorem for LF.

We implement this type by induction onE, using standard lemmas (closure under
head expansion, and an inductive lemma showing that the iterator is in the relation).
The proof uses several extensional type equalities involving properties of simultaneous
substitution. These equalities are true (e.g., they were proved by Harper and Pfenning
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[33] in the course of studying LF using logical relations), and because we treat equality
extensionally, they are not reflected in the proof term. We plan to study a concrete
language for type equality proofs in the thesis.

We consider a fully fleshed-out version of this logical relations proof to be an in-
teresting test case for our implementation.

4 Related Work

The work described in this thesis will make two technical contributions relative to prior
work: First, we will investigate issues such as variable binding, dependency, effects,
and modules from from the perspective of polarized type theory—a mathematically
interesting endeavor that has already led to new insights, such as our integration of
variable binding and computation in previous work [42]. Polarity [31, 32] and fo-
cusing [4] are logical ideas whose type-theoretic applications have just begun to be
explored. For example, they can be used to explain evaluation order [40, 72], and they
draw out the duality between proofs and refutations in computational interpretations
of classical logic (see, for example, Curien and Herbelin [19], Filinski [24], Selinger
[61], Zeilberger [72]).

Second, the language we arrive at will provide better support for programming
with domain-specific logics than existing languages do. At this point, we can justify
this claim by contrasting our integrated approach to binding and computation [42] with
the way one programs with variable binding in these existinglanguages.

Dependently Typed Programming Languages There has been a great deal of work
on integrating various forms of dependent types into practical programming languages
and their implementations [5, 13, 14, 15, 16, 22, 26, 27, 45, 48, 51, 52, 62, 63, 65,
69, 70, 71, 74], building on dependently typed proof assistants such as NuPRL [17]
and Coq [9]. However, none of these languages provide built-in support for repre-
senting variable binding and hypothetical judgements, which are essential ingredients
of domain-specific logics. Thus, programmers must implement variable binding on a
case-by-case basis, using one of the following techniques.

Variable binding can be implemented in a variety of ways (seeAydemir et al. [7] for
a survey). Among the concrete representation techniques, our approach is most similar
to representations where the context of a term is marked in its type, such as de Bruijn
representations using nested types or dependency [1, 8, 10]. In these representations,
binders introduce a new constructor for variables, which are explicitly injected into
terms. Our framework builds this use of dependency into the language: all types are
contextual and all datatypes may be extended by rule variables introduced by logical
connectives. This creates an opportunity to implement structural properties once for all
types, including negative types such as computational functions, and to abstract away
from the concrete implementation of variables themselves—as in LF, we can provide a
named notation without requiring the programmer to manage names.

Alternatively, it is tempting to try to reuse the computational function space of a
functional programming language to represent binding, butthe naive approach admits
too many functions. One solution to this problem is to use a predicate to identify
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those computational functions that are in fact substitution functions [3, 12, 20, 35,
47]. Another solution is to bind meta-language variables ofan abstract type defined
only by an axiomatic characterization of the properties of variables [11]. In contrast,
our representational functions provide a direct means of adequately encoding binding,
without requiring side conditions or axioms.

Twelf, Delphin, Beluga In systems based on the LF logical framework [34], LF is
taken as a pure representation language, and a separate layer is provided for compu-
tation. In Twelf [53], LF/ML [58] Delphin [56], and Beluga [54], the computational
layer is an entirely separate language. Schürmann et al. [60] describe an approach in
which the same arrow is used for both computation and representation, with primitive
recursion isolated by a modality, but computation is nonetheless segregated because
the computational modality cannot appear in rules. These stratified approaches have
the advantage that all representations automatically obeythe structural properties of a
hypothetical judgement, with the disadvantage that certain encoding techniques, which
rely on embedding computation in data, are not possible. Ourapproach removes this
stratification, allowing rules that embed computation, with the consequence that not all
representable rule systems satisfy the structural properties. However, we may imple-
ment strengthening, weakening, and substitution generically under certain subordina-
tion conditions. Consequently, our framework provides meta-operations implementing
the structural properties “for free” for all rule systems definable in simply-typed LF,
as well as for many more rule systems that use iterated inductive definitions. Another
contribution relative to existing LF-based approaches is that we provide an account of
type-level computation with LF terms, as illustrated in thelogical-relations example
above.

Technically, our contextual modality〈Ψ〉A is different than that of contextual
modal type theory [49] and Beluga, where contextual variables are eliminated by sub-
stitution. Because side conditions, expressed as computational functions, can invalidate
structural properties such as weakening and substitution,and thus the type theory must
not commit to these properties by building them into the meaning of contextual types.
Instead of eliminating contextual types by substitution, we allow pattern matching on
contextual types, and view substitution as an admissible property (when it is true!),
defined in the meta-function language.

Our contextual types are also related to those in FOλ∆∇ [46]. Miller and Tiu’s self-
dual∇ connective is closely related to⇒ andf, also capturing the notion of a scoped
constant. An essential difference, however, is that because the∇ proof theory adopts
a logic programming-based distinction between propositions and types (∇ quantifies
over a type and forms a proposition), it is significantly lesssubtle than our work. For
example,∇ cannot appear in the domain of a∇ (in contrast to⇒).

Nominal Logic Nominal logic [28] is a theory of names and binding that has been
implemented in several programming languages (e.g., FreshML [55, 64] and the Is-
abelle nominal datatype package [66]). The differences between the nominal approach
and ours stem from the fact that FreshML separates fresh namegeneration from the
binding of a name in a scope, whereas in our type theory rule variables do not ex-
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ist outside of the scope in which they are bound. Nominal logic facilitates the di-
rect representation of informal algorithms that use names without being explicit about
their scope, whereas our approach follows the LF methodology of recasting these al-
gorithms in terms of a more disciplined binding structure. Separating name generation
from scoping makes it more difficult to determine what names are free in a computa-
tion, requiring freshness analyses [55], specification logics [57], or stateful operational
semantics [64] in order to ensure that functions respectα-equivalence of representa-
tions. In contrast, the free rule variables of all computations are tracked by our type
system, and respect forα-equivalence is achieved simply, by quotienting patterns by
α-equivalence.

Semantics Fiore et al. [25] and Hofmann [36] give semantic accounts of variable
binding. It would be interesting to see whether these semantic accounts can be extended
to rule systems which permit computational functions in premises.

5 Plan

In summary, I will substantiate my thesis statement by

• Designing a polarized type theory for programming with domain-specific logics,
with support for dependent types, computational effects, and polymorphism.

• Implementing that type theory and programming several examples.

The time spent on the thesis will be apportioned as follows:

40% Theory

20% Dependency

5% Effects

15% Polymorphism and modularity

40% Practice

10% Meta-function language

10% Term reconstruction

20% Implementation and examples

20% Writing
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Symposium on Logic in Computer Science, pages 162–172. IEEE Computer Society, 1991.

[38] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, , and S. Zdancewic. Aura:
A programming language for authorization and audit. InACM SIGPLAN International
Conference on Functional Programming, 2008.

[39] O. Laurent. Etude de la polarisation en logique. Thèse de doctorat, Université Aix-
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