
COMP 212 Fall 2022
Homework 03

1 Introduction

This homework will focus on writing functions on lists and proving properties of them. This
homework is longer and harder than the previous two: start early!

Because the programming and written tasks are integrated, all problems are described in
this handout, but there is a separate handin sheet for the written on the course web page.
You should hand in your hw03.sml and hw03-written.pdf files by uploading them to your
Google Drive handin folder.

You must write purposes and tests for all functions on this assignment (and on all future
assignments!).

2 Zip/Unzip

Lists can contain elements of any type, not just numbers. For example, ["a","b"] :

string list and [(1,"a"),(2,"b")] : (int * string) list.
It’s often convenient to take a pair of lists and make one list of pairs from it. For instance,

if we have the lists
[5, 1] and [“a”, “b”]

“zipping” this together gives the list

[(5, “a”), (1, “b”)]

where each element of one list is paired with the corresponding element of the other (if both
lists have that many elements).

Task 2.1 (10 pts). Write the function

zip : int list * string list -> (int * string) list

that performs the transformation of pairing the nth element from the first list with the nth

element of the second list. If your function is applied to a pair of lists of different length, the
length of the returned list should be the smaller of the lengths of the argument lists. You
should ensure that zip is a total function (but you do not need to formally prove this fact).

Task 2.2 (10 pts). Write the function

1



unzip : (int * string) list -> int list * string list

unzip does the opposite of zip in the sense that it takes a list of tuples and returns a tuple
of lists, where the first list in the tuple is the list of first elements and the second list is the
list of second elements. You should ensure that unzip is a total function (but you do not
need to formally prove this fact).

Task 2.3 (10 pts). Prove Theorem 1.

Theorem 1. For all l : (int * string) list, zip(unzip l) ∼= l.

Be sure to use the template for a proof by structural induction on lists ; see the Lecture
5 notes.

You may assume that for all inputs l1,l2,l, zip(l1,l2) and unzip l are valuable (are
equal to values). In particular, this means that

• for any l1 : int list and l2 : string list, there is a list l12 : (int * string)

list such that zip(l1,l2) ∼= l12.

• for any l : (int * string) list, there are lists li : int list and ls : string

list such that unzip l ∼= (li,ls).

You will need to use the latter of these facts to step through the code in your proof: if you
get stuck stepping, you can replace unzip l with its value, of shape (li,ls) for some lists li
and ls.

Task 2.4 (5 pts). Prove or disprove Theorem 2.

Theorem 2. For all l1 : int list and l2 : string list,

unzip(zip (l1,l2)) ∼= (l1,l2)

2



3 Conway’s Lost Cosmological Theorem

3.1 Definition

If l is any list of integers, the look-and-say list of s is obtained by reading off adjacent groups
of identical elements in s. For example, the look-and-say list of

l = [2, 2, 2]

is
[3, 2]

because l is exactly “three twos.”. Similarly, the look-and-say sequence of

l = [1, 2, 2]

is
[1, 1, 2, 2]

because l is exactly “one ones, then two twos.”
We will use the term run to mean a maximal length contiguous sublist of a list with all

equal elements. For example,
[1, 1, 1] and [5]

are both runs of the list
[1, 1, 1, 5, 2]

but
[1, 1] and [5, 2] and [1, 2]

are not: [1, 1] is not maximal, [5, 2] has unequal elements, and [1, 2] is not a contiguous
sublist.

You will now define a function look and say that computes the look-and-say sequence
of its argument using a helper function and a new pattern of recursion.

3.2 Implementation

To help define the look and say function, you will write a helper function lasHelp with the
following spec. lasHelp takes two inputs

• l : int list, a list

• y : int, the number you are looking for in a run

From these arguments, the lasHelp computes the pair (tail, total) where

• tail : int list is the tail of l after any and all numbers equal to y at the front of
the list have been removed

• total : int is the total length of the run of numbers equal to y at the front of l.

3



For example,

lasHelp([1, 2, 3], 4) ∼=([1, 2, 3], 0)

lasHelp([2, 2, 6, 3], 2) ∼=([6, 3], 2)

Task 3.1 (20 pts). Write the function

lasHelp : int list * int -> int list * int

according to the given specification. Note that you can write x = y to compare integers x

and y for equality (the result has type bool). Now, write the function

look_and_say : int list -> int list

using this helper function.1

3.3 Cultural Aside

The title of this problem comes from a theorem about the sequence generated by repeated ap-
plications of the “look and say” operation. As look and say has type int list -> int list,
the function can be applied to its own result. For example, if we start with the list of length
one consisting of just the number 1, we get the following first 6 elements of the sequence:

[1]

[1,1]

[2,1]

[1,2,1,1]

[1,1,1,2,2,1]

[3,1,2,2,1,1]

Conway’s theorem states that any element of this sequence will “decay” (by repeated applica-
tions of look and say) into a “compound” made up of combinations of “primitive elements”
(there are 92 of them, plus 2 infinite families) in 24 steps. If you are interested in this se-
quence, you may wish to consult [Conway(1987)] or other papers about the “look and say”
operation.

1Hint: The recursive call in the inductive case of look and say will sometimes be on a list that is more
than one element shorter. This is like recurring on n-d in the divmod problem from last week.

4



4 Subset sum

A multiset is a slight generalization of a set where elements can appear more than once. A
submultiset of a multiset M is a multiset, all of whose elements are elements of M . To avoid
too many awkward sentences, we will use the term subset to mean submultiset.

It follows from the definition that if U is a sub(multi)set of M , and some element x
appears in U k times, then x appears in M at least k times. If M is any finite multiset of
integers, the sum of M is ∑

x∈M

x

With these definitions, the multiset subset sum problem is answering the following question.

Let M be a finite multiset of integers and n a target value. Does there exists any
sub(multi)set U of M such that the sum of U is exactly n?

Consider the subset sum problem given by

M = {1, 2, 1,−6, 10} n = 4

The answer is “yes” because there exists a subset of M that sums to 4, specifically

U1 = {1, 1, 2}

It’s also yes because
U1 = {−6, 10}

sums to 4 and is a subset of M . However,

U3 = {2, 2}

is not a witness to the solution to this instance. While U3 sums to 4 and each of its elements
occurs in M , it is not a submultiset of M because 2 occurs only once in M but twice in U2.

We represent multisets of integers as SML values of type int list, where the integers
may be negative. You should think of these lists as just an enumeration of the elements of
a particular multiset. The order that the elements appear in the list is not important.

Task 4.1 (15 pts). Write the function

subset_sum : int list * int -> bool

that returns true if and only if the input list has a subset that sums to the target number.
As a convention, the empty list [] has a sum of 0. Start from the following useful fact: each
element of the set is in the subset, or it isn’t.2

2Hint: It’s easy to produce correct and unnecessarily complicated functions to compute subset sums. It’s
almost certain that your solution will have O(2n) work, so don’t try to optimize your code too much. There
is a very clean way to write this in a few (5-10ish) elegant lines.

5



5 NON-COLLABORATIVE CHALLENGE PROBLEM:

Inverse of Adjacent Numbers

Remember that non-collaborative challenge problems are to be done indepen-
dently. You are not allowed to communicate with anyone about the problems,
except to ask the instructor or TAs clarification questions (not hints). Addi-
tionally, you are not allowed to search for help on the specific problem from
any sources besides the course materials. You are free to ask clarification questions
about the concepts involved — in this case, recursion, induction, the SML type real, which
represents floating point numbers — numbers with a decimal point represented using a fixed
(roughly 64) number of bits (0 or 1) of information.

Task 5.1 (5 pts). Implement a function
inverse adjacent : int -> real, where inverse adjacent(n) computes the sum

1

1× 2
+

1

2× 3
+

1

3× 4
+ . . . +

1

n× (n + 1)

That is, the function computes the “the inverse of (the product of) adjacent numbers”.
You should write examples in a comment but you do not need to make a test inverse adjacent

function — instead you can test by running the function interactively in SMLNJ using the
show function in the handout code, which prints a floating point number to 20 decimals, and
comparing the answer to the expected output by hand.

Hints:

• You can use the function real : int -> real to convert an integer to a floating
point number.

• Floating point constants must be written e.g. 1.0 and 2.0 even when they are whole
numbers — you can’t write 1 as a float.

Task 5.2 (5 pts). It turns out that this sum has a simple alternative description:

Theorem 3. For natural number values n,

inverse adjacent(n) =
n

n+1

Prove this by induction on n. For this part of the problem, you should assume that the
floating point numbers represented by the SML type real are mathematical real numbers,
so you can use the usual properties of addition/multiplication/division.

Task 5.3 (1 pts). Compare show(inverse adjacent 200) with show(200.0/201.0). Ex-
plain why what you see does not match the theorem you proved in the previous task.

References

[Conway(1987)] J. Conway. The weird and wonderful chemistry of audioactive decay. In T. Cover
and B. Gopinath, editors, Open Problems in Communication and Computation, pages 173–188.
Springer-Verlag, 1987.

6


	Introduction
	Zip/Unzip
	Conway's Lost Cosmological Theorem
	Definition
	Implementation
	Cultural Aside

	Subset sum
	NON-COLLABORATIVE CHALLENGE PROBLEM: Inverse of Adjacent Numbers

