COMP 212 Fall 2022
Homework 05

This homework will focus on lists, trees, and work-span analysis. You must write purposes
and tests for all functions on this assignment.

1 Trees

The type tree, with constructors Empty and Node (1,x,r) represents binary trees of integers
with data stored only in the internal nodes. Here are some definitions about trees:

e The tree Empty has depth 0. The tree Node (1,x,r) has depth d if and only if

1. 1 has depth d;
2. r has depth d,
3. d = max(d;,d,) + 1.

e The tree Empty has size 0. The tree Node(1,x,r) has size s if and only if

1. 1 has size s;
2. r has size s,

3. s=s8+s,+1
e The tree Empty is balanced. The tree Node(1,x,r) is balanced if and only if

1. 1 is balanced
2. r is balanced
3. 1 has depth d;, r has depth d, and |d; — d,| < 1.

e The tree Empty is sorted. The tree Node(1,x,r) is sorted if and only if

1. 1 is sorted

2. r is sorted

3. For every node Node(11,x1,rl) inl, xl < x
4.

For every node Node (1r,xr,rr) inr, xr > x

An expression e : tree is sorted iff it is equivalent to a value that is sorted.

1

These definitions are implemented in hw05-1ib.sml, with a few other helper functions.
Download this file and put it in the same folder as your hw05.sml file. You should feel free
to write your tests in terms of these functions.

depth : tree -> int computes the depth of its argument.

size : tree -> int computes the size of its argument.

isbalanced : tree -> bool evaluates to true if and only if its argument is balanced.
issorted : tree -> bool evaluates to true if and only if its argument is sorted.

tolist : tree -> int list computes a flattening of its argument into a list, as
given in lab.

fromlist : dint list -> tree computes a balanced tree from a list—very useful
for testing, but do not use it in any of your solutions, or they will not have the right
span.

treeeq : tree * tree —> bool tests whether two trees are equal

2 Contains

Task 2.1 (7 pts). Write a function contains : tree * int -> bool such that for any
sorted tree t, contains(t,i) returns true if i is an element of t and returns false if not.
For full credit, your solution should have O(logn) work and span when ¢ is a balanced tree
of size n.

The 1listToTree function from lab is called fromlist : int list —> tree in the

homework code, and can be used to write tests.

3 Tree Induction
Recall the size and depth functions on trees:

(* size t computes the natural number which
represents how many Nodes are in a tree *)
fun size (t : tree) : int =
case t of
Empty => 0
| Node (1, x, r) => 1 + size 1 + size r

(* depth t computes the natural number which
represents how many levels are in a tree *)
fun depth (t : tree) : int =
case t of
Empty => 0
| Node (1, x , r) => 1 + max (depth 1, depth r)

Task 3.1 (15 pts). Prove the following relationship:
Theorem 1. For all trees t, depth t < size t.

The function max(z,y) returns the maximum of = and y; i.e. if x is bigger it returns z
and if y is bigger it returns y. You may want to use some of the following properties of max:

e r <max(z,y) and y < max(z,y)
e max(z,y) < zifrx <zand y <z

e max(z,y) < max(z',y) if x <z’ and y <9/

4 QuickSort

In last week’s homework, you implemented QUICKSORT on lists. As we’ve discussed in
lecture, there is not a lot to be gained by using parallel sorting algorithms on lists: there are
dependencies inherent in the structure of a list that get in the way of real parallelism.

In that spirit, you’ll now implement QUICKSORT on trees. Assuming the pivots yield
subproblems of equal size (which can be achieved using randomness), this algorithm will have
O(nlogn) work and O((logn)?) span. The logarithmic span means significant speedups can
be gained by running the algorithm in parallel.

We’ll represent trees with the tree type defined at the beginning of this assignment. In
specs, we will say that x is an element of a tree t when Node(. .. ,x,...) appears somewhere
in t.

4.1 Combine

First, we will need a function to combine two trees into one. Unlike merge from lecture,
we will not require that the inputs are sorted, but we will also not ensure that the outputs
are sorted, or that the outputs are in the same order as in the original trees. Because this
function will be used prior to sorting, the elements can be in any order we choose. This
means the following code suffices:

fun combine (t1 : tree, t2 : tree) : tree =
case t1 of
Empty => t2
| Node(1l1,x1,r1) => Node(combine(l1l,rl),x1,t2)

You may wish to draw combine’s output on some examples to understand how it works.
More formally, this code meets the following specification:

e Functionality: For all trees T1 and T2, combine (T1,T2) is valuable, and contains
every element of T1 and every element of T2 and no other elements.

e Depth: For the analysis of quicksort, we need the following bound on the depth of
combine’s result:

Lemma 1. For all values t1 t2:tree,
depth (combine(t1,t2)) < 1 + max(depth t1,depth t2).

e Running-time: Let d; be the depth of T1, dy be the depth of T2. The work and span
of (combine (T1,T2)) are both O(d;).

4.2 Filter

Task 4.1 (15 pts). Implement a tree analogue of filter_less and filter _greatereq:

filter_less : tree * int -> tree
filter _greatereq : tree * int -> tree

Your implementation must satisfy the following specs:
e Functionality: If T is a value of type tree, p is a value of type int, then:

— filter_less(T,p) contains all and only the elements of T that are less than p.
— filter greatereq(T,p) contains all and only the elements of T that are greater
than or equal to p.

e Depth: For all T:tree, p:int , depth (filter (T,p)) < depth T.

e Running-time: If d is the depth of a tree T, your implementation of each (filter
(T,p)) should have O(d?) span. On a balanced tree, your implementation of each
filter should have O(n) work, where n is the size of the tree.’

4.3 Quicksort

Task 4.2 (15 pts). Finally, put all the pieces together to write
quicksort_t: tree -> tree

which implements QUICKSORT values of type tree.
e Functionality: quicksort_t T is sorted and contains all and only the elements of T.

e Running-time: If T is a balanced tree with size n, (quicksort_t T) should have
O(nlogn) work and O((logn)?) span, assuming the pivots yield balanced subproblems.

You may want to use the fromlist : int list -> tree and issorted functions to
test your implementation of quicksort_t.

5 Balancing

To mergesort trees, we needed to rebalance a tree after manipulating it. Rebalancing takes
a tree that is not necessarily balanced, and computes a balanced tree with the same elements.

We have provided most of an implementation of a simple rebalancing algorithm in the
handout. The key helper function is unimplemented. You will implement this helper and
then analyze the complexity of rebalance.

In all of the tasks, you should assume that the function size : tree -> int, which
computes the size of a tree, runs in constant time on all inputs. This happens to be obviously
false. However, it’s easy to make binary trees whose size can be computed in constant time
by storing the size at each node—so this is a relatively harmless lie.

Task 5.1 (15 pts). Implement the function

'If you use the tree method to try to prove this, you will run into a sum that we have not yet seen in the
course; see the next problem for its big-O.

takeanddrop : tree * int -> tree * tree

takeanddrop(T,i) separates a tree T into “left” and “right” subtrees, T1 and T2 respectively.
T1 contains the leftmost i elements of T, in their original order, and T2 the remaining
elements, also in their original order. For example, if we define

val test =
Node

(Node (Node (Empty,1,Empty),
2,
Node (Empty,3,Empty)),

4,

Node (Node (Empty,5,Empty),
6,
Empty))

then we have

takeanddrop (test,3) ==
(Node (Node (Empty,1,Empty),2,Node (Empty,3,Empty)),
Node (Empty,4,Node (Node (Empty,5,Empty),6,Empty)))

More formally, suppose T is any tree, and 0 < i < size T. Then takeanddrop (T,i)
evaluates to a pair of trees (T1,T2) such that

e max(depth T1,depth T2) < depth T
e size T1I =1
e (tolist T1) @ (tolist T2) = (tolist T)

This last condition ensures that T1 contains the leftmost elements, and that the elements of
T1 and T2 are in the appropriate order.

If d is the depth of T then your implementation of (takeanddrop (T,i) must have O(d)
work and span.

Hint: use the splitAt function from mergesorting trees as a model; the difference is that
instead of splitting based on the values stored in the tree, here we are splitting based on the
number of elements in the tree.

Task 5.2 (18 pts). Your implementation of takeanddrop is necessary for the helper function
halves, which is used by rebalance; see the starter code. The following tasks ask you to
analyze these functions:

1. Give a recurrence that describes the work of your implementation of takeanddrop,
Wi akeandarop(d), in terms of the depth d of the input tree. Argue that Wiakeanadarop(d)
is O(d).

2. Give arecurrence that describes the span of your implementation takeanddrop, Siaxeanddrop (),
in terms of the depth d of the input tree. Argue that Siakeanaarop(d) is O(d)

6

Note: the remaining tasks will be graded assuming that Wi.ceanaarop(d) and
Stakeanadrop(d) are O(d), even if that is not true for your code, or if your recurrence
above is incorrect.

3. Give a recurrence that describes the work of halves, Whaives(d), in terms of the depth
of the input tree. Give a tight big-O bound for Wyaiyes(d).

4. Give a recurrence that describes the span of halves, Shaives(d), in terms of the depth
of the input tree. Give a tight big-O bound for Spa1yes(d).

5. Give a recurrence that describes the work of rebalance, Wiepatance(n), in terms of the
size n of the input tree. You should assume that the input is roughly balanced—that
is to say, there exists some constant ¢ such that the depth of the input is clogn. This
will be true when rebalance is called from mergesort, because the merging will only
have unbalanced the tree by a known amount.

Give a tight big-O bound for Wiepatance (7). Show your work using a closed form and/or
sum.

6. Give a recurrence that describes the span of rebalance, Syepalance(7), in terms of the
size of the input tree. You should assume that the input is roughly balanced—that is
to say, there exists some constant ¢ such that the depth of the input is clogn. This
will be true when rebalance is called from mergesort, because the merging will only
have unbalanced the tree by a known amount.

Give a tight big-O bound for S;epatance(n). Show your work using a closed form and /or
sum.

The recurrences for the later tasks should be defined in terms of the recurrences defined
in the earlier tasks for the helper functions.
You may use the following tight bounds:

logn +1log % +log% +log®+...+1 is O (logn)?)
logn +2log § +4log 7 +8log § + ... (with logn terms) is O (n)

6 NON-COLLABORATIVE CHALLENGE PROBLEM:
Cargo

Remember that non-collaborative challenge problems are to be done indepen-
dently. You are not allowed to communicate with anyone about the problems,
except to ask the instructor or TAs clarification questions (not hints). Addi-
tionally, you are not allowed to search for help on the specific problem from any
sources besides the course materials. You are free to ask clarification questions about
the concepts involved.

You work for a shipping company, and are writing a program to help decide which cargo
to load onto an airplane. Each shipping box has a weight. Each box also has a profit value,
which is how much the shipping company makes by shipping that item on this plane. The

7

airplane has a maximum weight limit that it can safely carry. Your function will be given a
list of potential boxes for shipping, and must choose which boxes should be shipped on the
airplane. The company would like you to select the boxes that generate the highest profit,
subject to the constraint that chosen items cannot exceed the weight limit for the plane.

Task 6.1 (10 pts). Write a function cargo that, when given a list of shipping boxes and a
maximum allowed weight, returns the best list of items to ship on the plane.

Task 6.2 (6 pts). Analyze the work and span of your cargo function.

	Trees
	Contains
	Tree Induction
	QuickSort
	Combine
	Filter
	Quicksort

	Balancing
	NON-COLLABORATIVE CHALLENGE PROBLEM: Cargo

