COMP 212 Fall 2022
Homework 07

In lecture and lab, we looked at higher-order functions on lists. Since lists are bad for
parallelism, so in this homework we will investigate similar higher-order functions on trees.

Previously, we used trees that had data at each internal node. For this week, we will
instead consider trees where there is data only at the leaves:

An ’a tree is either

1. empty
2. a leaf with value x:’a

3. a node with two subtrees

and that’s it!

This is represented by the following datatype:
datatype ’a tree = Empty | Leaf of ’a | Node of ’a tree * ’a tree

This datatype is defined in 1ib.sml, which is loaded by your homework file. 1ib.sml also
provides

val fromlist : ’a list -> ’a tree
val tolist : ’a tree -> ’a list

which you can use for testing (but only for testing!). Since we are mostly concerned with
the contents of the trees, and not their specific arrangement, we can write tests that convert
lists to trees and back, which has a more concise notation than writing the trees themselves.
There are some examples in the homework code, which you can add more tests to.

We have also provided a function sort

sort : (’a * ’a -> order) * ’a tree -> ’a tree

based on the tree sorting code from earlier in the semester (together with some additional
code to convert the leaf-empty-node trees used here to the leaf-node trees used in sorting,
and vice versa).

sort takes a comparison function, which produces an order, which is datatype whose
constructors are LESS and EQUAL and GREATER:

datatype order = LESS | EQUAL | GREATER

It sorts the tree into increasing order according to this comparison function. There are built-
in comparison functions on integers (Int.compare) and floating points (Real.compare). For
example,

Real.compare(3.0,2.0) == GREATER
Real.compare(2.0,3.0) == LESS
Real.compare(2.0,2.0) == EQUAL

sort (Real.compare , (Node(Node(Leaf 3.0, Leaf 2.0),
Node(Leaf 4.0, Leaf 1.0))))
== Node (Node (Leaf 1.0,Leaf 2.0),
Node (Leaf 3.0,Leaf 4.0))

1 Map

Consider the following two functions:

(* pluralize_rec t evaluates to a tree t’, where
t’ has the same structure as t, and the string at each leaf of t’
is the string at the corresponding position in t, with an ’s’
affixed to the end. *)
fun pluralize_rec (t : string tree) : string tree =
case t of
Empty => Empty
| Leaf x => Leaf (x =~ "s")
| Node(l,r) => Node(pluralize_rec 1 , pluralize_rec r)

(* mult_rec t evaluates to a tree t’, where
t’ has the same structure as t, and the int at each leaf of t’
is the int at the corresponding position in t, multiplied by c
*)
fun mult_rec (c : int, t : int tree) : int tree =
case t of
Empty => Empty
| Leaf x => Leaf (c * x)
| Node(l,r) => Node(mult_rec (c,l) , mult_rec (c,r))

The pattern is “compute a new tree by applying some function f to each element of the
given tree.”

Task 1.1 (8 pts). Write a higher-order function
map : (’a -> ’b) * ’a tree -> ’b tree
that abstracts this pattern.

Task 1.2 (2 pts). Rewrite pluralize and mult using map. The functions should be equiv-
alent to pluralize rec and mult _rec, but should be defined using map rather than being
defined directly by recursion.

2 Reduce

Consider the following two functions:

(* sum_rec t evaluates to a number n, where n is
the sum of all of the numbers at the leaves of t *)
fun sum_rec (t : int tree) : int =
case t of
Empty => 0
| Leaf x => x
| Node(t1,t2) => (sum_rec tl1) + (sum_rec t2)

(* join_rec t evaluates to a string s, where s is
the concatenation of all of the strings at the leaves of t,
in order from left to right *)
fun join_rec (t : string tree) : string =
case t of
Empty => nn
| Leaf x => x
| Node(t1,t2) => (join_rec t1) ~ (join_rec t2)

val "abc" = join_rec(Node(Leaf "a", Node(Leaf "b", Leaf "c")))

The general pattern here is called reduce, which takes a binary function of type ’a *
>a -> ’a to apply at each node, and a value of type ’a for the empty tree, and computes
an ’a from an ’a tree.

Task 2.1 (8 pts). Write the function
reduce : (’a * ’a -> ’a) * ’a * ’a tree -> ’a
that implements the operation of reduction on trees.

Task 2.2 (2 pts). Rewrite sum and join using reduce. The functions should be equivalent
to sum_rec and join rec, but should be defined using reduce rather than being defined
directly by recursion.

3 Programming with map and reduce

To receive credit for a task in this section, your function must not be defined
recursively. The goal is to practice programming by combining higher-order functions.
In each task, you may use map, reduce, any previous tasks in this section, and any other
functions that are specifically allowed by the task. If you cannot figure out how to solve
a task this way, you may wish to first define it recursively, and then think about how the
recursive version can be rewritten with higher-order functions.

We say that x is an element of a tree t if Leaf x occurs somewhere in t. In all of these
tasks, the shape of the resulting tree is up to you, as long as it has the correct elements in
the order specified in the problem. For example, the following trees have all of the same
elements in the same order:

Node(t1,Node(t2,t3)) and Node(Node(t1,t2),t3)
Node (Empty,t) and t
Node(t,Empty) and t

so one side is always just as correct an answer as the other. In particular, you never need to
rebalance a tree.

3.1 Flatten

The type (*a tree) tree represents a tree whose leaves are themselves trees.

Task 3.1 (5 pts). Write a function
flatten : (’a tree) tree -> ’a tree

such that flatten t contains all of the elements of all of the trees in t. The elements of
each tree t1 in t should occur in flatten t in the same order in which they occur in t1; if
a tree t1 is to the left of a tree t2 in t, the elements of t1 should occur to the left of the
elements of t2 in flatten t.

For example:

flatten (Node (Leaf (Node (Leaf 1, Leaf 2)),
Node (Leaf (Leaf 3),
Empty)))
== Node (Node (Leaf 1,Leaf 2),Node (Leaf 3,Empty))

3.2 Filter

Task 3.2 (5 pts). Define a function

filter : (’a -> bool) * ’a tree -> ’a tree

such that filter (p, t) contains all and only the elements x : ’a of t for which p x
returns true. The elements that are kept should be in the same order as in the original tree.
For example:

filter (fn x => x > 2, Node (Node (Leaf 1,Leaf 2),Node (Leaf 3,Empty)))
== Node (Node (Empty,Empty),Node (Leaf 3,Empty))

Hint: first create an (’a tree) tree where each Leaf x in the original tree is replaced
by Leaf (Leaf x) if x is to be kept, or Empty if it is not.

3.3 All Pairs

Task 3.3 (5 pts). Define a function
allpairs : ’a tree * ’b tree -> (’a * ’b) tree

such that allpairs(tl, t2) contains the pair (x,y) for every element x of t1 and y of t2.
The order of the pairs is unspecified.
For example,

allpairs (Node(Leaf 1, Leaf 2), Node(Leaf "a", Leaf "b"));
== Node (Node (Leaf (1,"a"),Leaf (1,"b")),Node (Leaf (2,"a"),Leaf (2,"b")))

3.4 Partnr

You are writing an app to help students find study partners. Each student fills out a survey,
which, for simplicity, we will assume consists of the four questions in Figure 1. That is, each
person provides a tuple

(username,answerl,answer2,answer3,answer4) : string * int * int * int * int

where username is a string identifying the person, and each answerN is the number of that
person’s answer to question N.
For convenience, we abbreviate the tuple of int’s by the type abbreviation

type answers = int * int * int * int
For example,
("drl", 5, 2, 1, 2) : string * answers

means that my answers are “all of the above”, “in the computer lab”, “music”, and “let’s
do it live.”

Scoring Functions A scoring function is a function that takes two people’s answers and
computes a score, which is a floating point number, where higher numbers indicate higher
study partner compatibility.

For example, here is a simple scoring function, which totals up the number of answers
that two people have in common:

fun same(x : int, y : int) : real =
case x = y of
true => 1.0
| false => 0.0

fun count_same ((al,a2,a3,ad4) : answers , (al’,a2’,a3’,ad4’) : answers) : real =

same (al,al’) + same (a2,a2’) + same (a3,a3’) + same (a4d,ad’)
Scoring functions should be symmetric: score(al,a2) == score(a2,al).

Task 3.4 (2 pts). Write another scoring function my_scoring, which implements some
alternative compatibility scoring of your choice. Explain in a comment why you think your
scoring mechanism would provide good results. For example, other scoring functions might
give different weights to different questions, or allow “fuzzy matching” of answers (e.g. if
one person likes to study in the morning and another likes to study any time, maybe they
are somewhat compatible.)

Matching Your goal is to analyze the given data and report a ranked list of possible study
partners. You are given a scoring function and a cutoff, and should only report possible
partners whose scores are above the cutoff.

Task 3.5 (13 pts). Write a function

fun matches (similarity : answers * answers —-> real,
cutoff : real,
people : (string * answers) tree)
(string * string * real) tree = ...

where similarity is a scoring function, cutoff is a real number, people is the input data
for all of the users. matches (similarity, cutoff, people) should compute a tree of
pairs (personl,person2,score) where

e cach score is the similarity score of personl and person?2

the tree is sorted from highest scores to lowest scores

only pairs of people whose score is bigger than cutoff are included

the tree never contains a pair of people of the form (personl,personl,_) or both the
pair (personl,person2,_) and the pair (person2,personl,).

Hints:

e Start by making the tree of all pairs of people.

1. What time do you like to do your homework?

1 Morning

2 Afternoon

3 Evening

4 Late-night

5 All of the above

2. What’s your preferred brand of skype?

1 Hangouts
2 Zoom

3 Facetime
3. What kind of background noise helps you study?

1 Music
2 TV
3 Quiet, please!

4. How do you like to spread your work for a particular class out over the week?

1 Slow and steady wins the race

2 Let’s do it live

Figure 1: Survey

e Use < to test whether one string is less than another, according to lexicographic order.
e Use sort (described at the beginning of the handout) to sort trees.

e You can use the function show matches to print the results in a nice way. For example,
we have provided

val test_data : (string * answers) tree =
fromlist [("A",(1,1,1,1)), ("B",(2,2,2,2)), ("C",(1,2,2,2))]

and on this input, we have

- show_matches (count_same, 0.0, test_data);
B and C have compatibility 3.0
A and C have compatibility 1.0

	Map
	Reduce
	Programming with map and reduce
	Flatten
	Filter
	All Pairs
	Partnr

