15-150 Lecture 2: SML Basics

Lecture by Dan Licata

January 19, 2012

I’d like to start off by talking about someone named Alfred North Whitehead. With someone
named Bertrand Russell, Whitehead wrote Principia Mathematica, the first volume of which was
published in 1910. This book was the first major attempt at doing mathematics in a fully formal
way, inside of logic. On page 362, they even prove that 1 + 1 = 2. (I bring this up because in
lab someone asked what level of detail of proofs we expect. I'm not serious. Well, maybe a little
serious.)

Fast-forwarding a century, this book is important because, if you want to do math on a computer,
you need to do it in a formal logic. For example, Tom Hales over at Pitt has a proof of the Kepler
conjecture (the way oranges are arranged at the grocery store is the most space-efficient way to
arrange them), but the mathematical community doesn’t believe the proof, because it involves
some computer calculations, and is really long. He is formalizing the proof using a tool called HOL
Light, which will allow computers to verify the proof. This is very much in the spirit of Russell
and Whitehead’s program. And do you know what language you use to interact with HOL Light?
Not SML, but a close relative called CAML.!

Whitehead is also one of my favorite philosophers of education, and in particular I want to
talk about The Rhythm of Education, 1922.> The main idea is that there is a cycle of romance
(exploring a new idea, being confused) and precision (mastering the details) which repeats itself,
at various levels of granularity, as you learn. Last lecture and lab were romance; today we get to
some precision about ML programming.

The main ideas of today’s lecture are:

1. expressions versus values

2. type checking and evaluation
3. errors

4. declarations

5. functions

1 Expressions, Types, Values

The basic unit of an ML program is an expression. Here are some simple expressions:

'which has better libraries
http://www.archive.org/details/rhythmofeducatioOOwhitiala

http://www.archive.org/details/rhythmofeducatio00whitiala

2

1+ 1

(1 +2) x (3+4)

III amll

"T am" ~ " the walrus"

intToString 5
"the walrus" + 1
5 div 0

Note that parens are used for grouping, and that (1 + 2) * (3 + 4) isdifferentthan1 + 2 * 3 + 4,
which by convention is the same as 1 + (2 * 3) + 4.

1.1 Computing by calculation

The way we run an ML program is to calculate it down to a walue, which is the result of a
computation. Simple values include numeric constants (written like 2) and string constants (written
like "I am").
We write <exp> ==> <val> to mean “the expression <exp> calculates to the value <val> (note
that ==> is not part of the syntax of ML; it is notation we use to talk about an ML program).
For example,

2 ==> 2

1 +1==2

(1 +2) x (3+4)==>21

"I am" ==> "I am"

"T am" =~ " the walrus" ==> "I am the walrus"
intToString 5 ==> "b&"

"the walrus" + 1 no value

5 div O no value

The value of an expression is determined by calculating. Each value has no calculation left to
do; it is done. For each operation, we calculate the values of its subexpressions, and then apply the
operation to the result.

The operations on int and float and string are all primitives that “do the expected thing”
in one step of calculation. We write |-> for one step of calculation.

For example,

1 +2) x (3+4)

[-> 3 % (3 + 4) (because 1 + 2 |-> 3)
[-> 3 % 7 (because 3 + 4 |-> 7)
|-> 21

We write (1 + 2) * (3 + 4) ==> 21 to mean that the expression calculates to the value in
an arbitrary number of steps.

The above execution trace is for sequential calculation, where we only calculate one operation
in each time-step.

We can also do a parallel calculation, where we are allowed to calculate as many independent
operations as we want in one timestep:

(1 +2) x (3+4)
>3 %7 (because 1 + 2 |=> 3 AND 3 + 4 |[=>T7)
> 21

|
|
If the expression were (1 + 2) * (3 + 4) * (2 + 2), we could do 3 additions in parallel in step

2, etc.
Exercise. In pairs, do both sequential and parallel evaluation for the expression

(III am n - IIhe ll) -~ (Ilas you are n -~ "She").

1.2 Types

What about "the walrus" + 17 What do we do about expressions that don’t evaluate and are
not values? We open up Principia Mathematica to page 37 and read about types.

The world of ML expressions is divided up into types. The type of an expression is a prediction
about the value it will yield, should it yield a value at all. For example, if an expression has type
int, then its value will be a numeral (if it has a value at all). An expression in well-typed if it has at
least one type;® otherwise it is ill-typed. The type checker determines whether or not an expression
is well-typed, and rejects ill-typed programs at compile-time (when you're writing the program).
This helps you catch mistakes at compile-time, which is better than finding them at run-time (when
someone runs the program). E.g. it’s much better if you find the bug at compile-time, than if the
program’s user finds the bug after you ship it to them.

We write <exp> : <type> to mean that the expression <exp> has type <type>.

For example:

2 : int
1+ 1 : int
(1 +2) x (3+4) : int

"T am" : string

"I am" ~ " the walrus" : string
intToString 5 : string

"the walrus" + 1 is ill-typed

5 div 0 : int

In general, a type is specified by a collection of walues, which are the possible results of an
expression of that type, as well as a collection of operations, which are how you use things of that

type.
For example:

e The type int has

— Values: 0, 27, 782, ...

— Operations: +,*,-, intToString, ...

Note that negatives are written like ~3, while subtraction is written as -.

3When can an expression have more than one type? This is called polymorphism. We saw an example in lab: the
cons function was used to construct both rows (sequences of integers) and classrooms (sequences of rows). We’ll see
more examples in a few weeks.

e The type string has

— Values: "I am", "the walrus", ...

— Operations: -, size, ...
e The type real (read: float) has

— Values: 0.0, 3.14, 2.17, ...

— Operations: +, *, = /, ...(note that these reuse the same names as for int; they are
disambiguated based on context (if the context provides insufficient info, they default to
int).

1.3 Type checking

The type of an expression is determined compositionally by looking at the types of the expressions
inside it (“subexpressions”):

e cach of the values listed above has the type indicated. E.g.

27 : int
"I am" : string

These are axioms, which are unconditionally true.

e cach of the operations is well-typed if its subexpressions have the “right” types. For example:

— <expl> + <exp2> : int if <expl> : int and <expl> : int

— <expl> " <exp2> : string if <expl> : string and <exp2> : string
— intToString <exp> : string if <exp> : int

These rules can be used to derive the type of a compound expression:

(3 + 7) * 5 : int because

3 + 7 : int because

3 : int is an axiom

7 : int is an axiom

5 : int is an axiom

Some expressions have no type:
"the walrus" + 1 would have type int if

"the walrus" has type int (but it doesn’t!)
1 has type int (check)

Exercise. In pairs, derive a type for "I am " =~ (intToString 5).

1.4 Exceptions

What about 5 div 0?7 div means integer division. This expression is well-typed, but can’t have a
value, because division by 0 is undefined. So, it signals an error at run-time, when you’re running
the program. This is called raising an exception:

5 div 0O
|-> raise Div

Exceptions is that the propagate up to the top of your program. So if some expression somewhere
in your program errors, that error will be the final result of the computation. For example:

(56 div 0) + 1
|-> (raise Div) + 1
|-> raise Div

Later in the semester, we will talk about recovering from exceptions; for now, you should only
raise them in cases where you want that to be the final result of your program.

Raising an exception is considered different that returning a value. An expression is valuable iff
there exists some value that it evaluates to: e is valuable iff 3 a value v such that e ==> v. So a
valuable expression doesn’t raise an exception. For example, 5 div 1 is valuable, but 5 div 0 is
not.

You might wonder why 5 div 0isn’t a type error: why wait until run-time to signal a problem?
The reason is that, to check whether 5 div e is permissible, you’d need to know whether e evaluates
to 0 or not. In general, you can’t write an algorithm to decide this, because of something called
the halting problem. There are fancier type systems than ML’s, in which you can rule out such
programs at compile-time; we’ll talk more about this later in the semester.

1.5 Classes of Expressions

We can summarize this by identifying several classes of expressions, each of which is a strict superset
of the next. For each, we give an example expressions that is in that class, but not the next one
down.

e Nonsense.

Syntactically correct expressions. These expressions make some basic level of sense; all of the
above expressions are syntactically correct.

Well-typed expressions. These expressions pass the type checker.

Valuable expressions. These expressions compute to a value.

Values. These expressions already are values.

For example:

e (1+2 is not even syntactically correct, so if you say

- (1+2;

you will get a syntax error at compile-time.

"the walrus"+1 is syntactically correct, but not well-typed, so you will get a type error at
compile-time.

e 5 div 0 is well-typed, but not valuable.

5 div 1 is valuable, because it evaluates to 5. But it is not already a value.

5 is a value.

2 Declarations

The top level of an ML program is a sequence of declarations.
For now, we will consider two kinds of declarations:

2.1 Val Bindings

The first is a val binding, such as
val x : int = 2 + 3

This means that the variable x stands for the value of the expression 2 + 3 (which must have
type int) in the subsequent program. The general form of a val binding is val <var> : <type> = <exp>.
These declarations are used to name intermediate steps in a program.

Typing The declaration is well-typed iff <exp> : <type>. In the scope of the declaration (“be-
low”, modulo the caveat mentioned soon), the variable <var> can be used in an expression with
type <type>. E.g. in the scope of the above val binding, x can be used in an expression with type
int.

Evaluation To evaluate a sequence of val declarations, you evaluate the first expression, and
then substitute its value in for the variable in the subsequent declarations (replace occurrences of
the variable with the value).

For example, consider

val x : int = 2 + 3
val y : int = x + 1
val z : int = x + y

We first calculate (2 + 3) ==> 5, and then proceed as if the program were

val x : int =5
val y : int =5 + 1
val z : int =5 + y

Here we have substituted the one occurrence of x in the expression x + 1 with the value 5, to get
the expression 5 + 1, and the occurrence in x + y to get 5 + y. Next, we calculate 5 + 1 ==> 6
and proceed with the program

1]
(¢)]

val x : int
val y : int = 6
val z : int = 5 + 6

which in one more step evaluates to

val x : int = 5
val y : int = 6
val z : int = 11

To summarize, the value of a sequence of declarations is a sequence of declarations of values.

Shadowing What happens when you have two different val bindings with the same variable?

val x : int = 5
val x : int = 3

The right way to think about this is that these are two different variables that happened to be
spelled with the same ASCII string. The second is not an assignment that updates x, like in an
imperative language. Variables in ML are not like “variables” in C or other languages: variables
don’t vary! Once a value has been bound to a variable, it is bound for life. There is no possibility
of changing the value of a variable once it has been bound. Variables are like variables in math:
placeholders that can be plugged in for. This difference will become sharper later, when we can
declare variables inside of functions; at that point, we can construct an example to illustrate it.

So, when you evaluate

val x : int = 5
val x : int = 3

you do not substitute 5 for the x on the second line. The x on the second line is an entirely
independent variable, not an occurrence of the first x.
Similarly, if you have

val x : int = 5
val y : int = x + 1
val x : int = 3
val z : int = x + 1

then the x in the second line is an occurrence of the variable bound in the first line, where the
x in the fourth line is an occurrence of the variable bound in the third line. This is because, by
convention, a variable refers to to the nearest enclosing declaration. So the value of this sequence
of declarations is

val x : int =
val y : int =
val x : int =

S w o o

val z : int =

We can make this apparent by consistently renaming the second x to x’ in the declaration and at
all occurrences.

val x : int = 5
val y : int = x + 1
val x’ : int = 3
val z : int = x’ + 1

This program has the same value as before, modulo the fact that the second x in the result is now
called x°.

2.2 Type Definitions

The second kind of declaration is a type definition. For example, last lecture, we saw
type row = int sequence

This declaration means that the type variable row stands for the type int sequence in the
subsequent program. The general form of a type declaration is type <tyvar> = <type>. In the
scope of a type definition, <type> can be used as a type.

The scoping rules (shadowing) for type variables are the same as for value variables.

3 Functions

Thus far, we have some basic values and operations, and the ability to name intermediate com-
putations. However, a val binding introduces a variable that stands for the value of one specific
expression. Thus far, we have no way to capture repeated patterns of computation. That is where
functions come in.

To a first approximation, functions in ML are like functions in math. For example,

flz)=2x+6

can be rendered as
fun f(x : real) : real = (2.0 * x) + 6.0

This is a fun declaration, which introduces a function named £, with argument x of type real,
and result, also of type real, given by the body expression (2.0 * x) + 6.0.

The main operation on functions is function application. For example, we can write £ 3.0 to
apply the function f to the argument 3.0. A function application calculates by substitution: you
plug in the value of the argument for the variable. In this case

f 3.0
[-> (2.0 * 3.0) + 6.0
|-> 6.0 + 6.0
|-> 12.0

Call-by-value It’s important to know that you calculate a function’s argument down to a value
before plugging in. This is called call-by-value evaluation. E.g.

f (1.0 + 2.0)
|-> f (3.0)
|-> (2.0 * 3.0) + 6.0

Another choice would be to plug in the whole expression:

f (1.0 + 2.0)
|-> (2.0 *x (1.0 + 2.0)) + 6.0

but this is not what ML does. How can you tell? Consider £ (5 div 0) where f doesn’t use its
argument.

Call-by-value makes it easy to to predict when an expressions is evaluated. This is helpful for
time analysis and for reasoning about non-valuable expressions (like an expression that raises an
exception).

Scoping Function bodies can of course refer to variables that are in scope, including other func-
tions. Example:
fun g(x : real) : real = £ (f x)

Function arguments take precedence over bindings further out:

val x : real = 4.0
fun g(x : real) : real = £ (f x)

Here x still refers to the function argument, not to the val binding above it.
Function arguments are not in scope below the function declaration:

fun g(a : real) : real = f (f a)
val y : real = a

Here a is unbound. This is the only thing that makes sense: the a doesn’t stand for any particular
value at this point, but for any number of possible values that we may later choose to apply £ to.

Functions are values of function type! Of course, we can have functions on types other than
real:

-~ ~

fun reapeatThreeTimes(s : string) : string = s ~ s " s

Exercise. Calculate the value of repeatThreeTimes "hi".

Moreover, functions are not some special class of things, but regular old values of a type, just like
everything else in ML. The type of f is written real -> real and the type of repeatThreeTimes
is written string -> string. In general, we have

e The type <typel> -> <type2> has

— Values: functions introduced by fun bindings

— Operations: function application, written £ a. Here £ a has type <type2> if a has type
<typel>.

This means that functions can be passed as arguments to other functions, and returned from
functions as results. We won’t exploit this much for a few weeks, but we’ve already seen a couple
of examples: map and reduce in the previous lecture and lab.

Functions can be recursive Functions can be defined by recursion (calling themselves). For
example, let’s write a recursive function to double a natural number:

(* Purpose: double the natural number n

Examples:
double O
double 2
*)
fun double (n : int) : int =
case n of
0=>0
| _ => 2 + (double (n - 1))

=>4

Let’s gloss this a little: the first bit a comment that tells you the purpose of the function, and
shows some examples. Next, we have a fun declaration for a function named double that takes an
integer argument and produces an integer result. In the body of this function, we do a case analysis
on the number n. The definition tells us that n is either 0 or 1 + k for some k. Thus, we have two
cases, one for 0, and one for 1 + k. The vertical bar | separates the two cases. In the first, the
function’s result is 0. In the second, the _ means that we’re not placing any restrictions on which
numbers match this case. In this case, the answer we give back is 2 + (double (n - 1)).

In essence, what we’re doing is this: we peel off 1 +’s until we hit a 0, and then add 2 back on
for each 1 + that we peeled off. This doubles the number.

When n is 1+k, the recursive call double (n - 1) continues the process of peeling off ones
on k. Note that this recursive call happens in exactly the same place as the self-reference in the
definition of the natural numbers.

case is a new operation on natural numbers. It lets you distinguish whether the number is 0
or not. On the first line, you give the result for when n is 0; on the second, you give the result for
when it is not—the _ means “any other number falls into this clause.” It calculates as follows:

case 0 of 0 => <branchl> | _ => <branch2> |-> <branchi>
case n of 0 => <branchl1> | _ => <branch2> |-> <branch2> if n is not O
For example, we can calculate as follows:
double 2
|-> case 2 of 0 => 0 | _ => 2 + (double (2 - 1))
|-> 2 + (double (2 - 1))
|-> 2 + (double 1)
[-> 2 + (case 1 of 0=>0 | _ => 2 + (double (1 - 1)))

10

[-> 2 + (2 + (double (1 - 1)))

[-> 2 + (2 + (double 0))

[-> 2 + (2 + (case 0 of 0 => 0 | _ => 2 + (double (0 - 1))))
[-> 2 + (2 + 0)

[-> 2 + 2

|-> 4

A case is well-typed if both branches have the same type, in which case that is the type of the
case. E.g. here both branches have type int, and so the overall case does, too. We’ll go over this
in more detail next time.

11

	Expressions, Types, Values
	Computing by calculation
	Types
	Type checking
	Exceptions
	Classes of Expressions

	Declarations
	Val Bindings
	Type Definitions

	Functions

