15-150 Lecture 19:
Signatures, Structures, and Type Abstraction

Lecture by Dan Licata
March 27, 2012

In these lectures, we will discuss the use of the ML module system for structuring large programs.
Key concepts include structures, signatures, abstract types, type classes, and functors.

The goal is to figure out how to divide up programs that are so big that you can’t fit them in
your head at once. Our basic answer is:

1. divide programs up into chunks called modules, or structures.
2. limit which modules interact with each other.

3. for modules that do interact, specify their interaction with a signature, which summarizes the
functionality of one module for use in another.

4. abstract over patterns of modules using functors (next time).
For example, the code for this HW is divided up into a variety of structures:

Sequenece
RealPlane
RatPlane
Mechanics
BBox
NaiveNBody
BarnesHut
Simulation

You are implementing BarnesHut. Your implementation relies on a bunch of our libraries:
RealPlane and RatPlane are two different implementations of the plane—the former uses floating
point numbers for actual simulation; the latter uses arbitrary-precision rationals, which are much
slower, but good for predictable testing (because floating point addition/multiplication are not
associative, if you do operations slightly differently than our solution, your output won’t exactly
match our tests). Mechanics is basic mechanics—like the accOn function from last time. BBox
implements bounding bozes: a rectangle containing a bunch of points. NaiveNBody (the quadratic
code from lecture last week) and BarnesHut are two different ways of computing accelerations.
Simulation is the outer loop that ties it all together, using p’ = p + vt + 1/2at? etc. to update
bodies.

To make it easier to understand this code, we limit interactions—Mechanics deals only with
one body at a time; other code lifts operations to Sequences. We also specify interfaces using
signatures.

1 Signatures

Here is the interface for sequences that we talked about last week, written out as a signature:

signature SEQUENCE =
sig
type ’a seq
val map : (’a -> ’b) -> ’a seq -> ’b seq
val reduce : ((’a * ’a) -> ’a) -> ’a -> ’a seq -> ’a
val tabulate : (int -> ’a) -> int -> ’a seq
val nth : int -> ’a seq -> ’a
end

This defines a signature named SEQUENCE (signatures are traditionally named in all caps). Our
code implements this signature (provides something with this specification), whereas yours is the
client (makes use of the types and functions provided). The type ’a seq is what is called an
abstract type: clients do not know its implementation. That is, the client (you) know that there is
some type ’a seq with the provided operations. The implementor picks a type to fill in for ’a seq
and implements the operations.

Another example is the signature SPACE, which describes the plane:

signature SPACE =
sig
type vec
type point
val --> : point * point -> vec

end

Here we make the types vec and point abstract—unlike last time, where we knew that they
were implemented as pairs of scalars. Right away, you can see that there can be more than one
implementation of a signature: both RealPlane and RatPlane have the signature SPACE.

Signatures serve two purposes. The first is communication: as much as possible, you want to
write code so that other people need only to read the signatures of your code, not the implementa-
tion. This means writing down the types and specs in a separate place from the implementation—
e.g., you might annotate map with the spec that map f <x1,...,xn> ==> <f x1,...,f xn>, to
demand that this spec hold for all implementations. The second is information hiding. That is, we
deliberately hide information (operations in the implementation that are not in the signature; the
identities of abstract types) from ourselves/others. Why?

e It breaks the code up into chunks that are easier to understand. You don’t know the imple-
mentation of ’a seq, so you don’t need to think about it. All you know about it is what is
said right there in the signature.

e It makes it easier to evolve the code over time. The client can pick another implementation of
the same signature, without otherwise changing the code (e.g. switching between RealPlane
and RatPlane). The implementor can change the implementation type, without the clients
needing to change.

e It localizes reasoning about representation invariants. An abstract type uniquely identifies
the code that acts on it. So if there is a violation of an invariant, you know what code to
look at.

An example of this occurs in BBox: internally, BBox is represented as a pair of the lower-
left and upper-right corners. Last semester, students had access to this representation, and
screwed things up, by putting the points in the wrong order (then BBox.contained doesn’t
work). This year, we used the module system to make BBox.bbox an abstract type, so you
can’t have this bug! Because only the functions in the implementation of BBox, not client
code, can access the internal representation, you ever see a bbox whose points are in the
wrong order, it’s our fault, not yours.

e It lets you use the type system to find bugs at compile-time, by making different concepts
have different types, even if the underlying representations are the same.

An example of this is point and vec in SPACEs: both are implemented as pairs of scalars, but
they mean different things, and using one in place of the other is a bug. To convert a point
to a vector or vice versa, you need to remember to specify the tail, and now the type system
forces you to do this.

e It allows you to type-check and compile different parts of your program independently, before
the parts they depend on have been written.

We’ll see more examples of all of these later on.

2 Structures

Here’s an example of the implementation/client divide:

(* implementation *)
structure ArraySeq : SEQUENCE = struct ... end

(* client *)
fun accels(bodies : body ArraySeq.seq) : vec ArraySeq.seq =
ArraySeq.map (fn bl => sum bodies (fn b2 => accOn(b1l,b2)))

The implementation is what is called a structure, which implements the abstract type and the
corresponding operations. The client code is the quadratic n-body code from last week. The thing
to note is that you refer to components of structures using dot notation: you write ArraySeq.map
for the map component of ArraySeq. This includes both values, like ArraySeq.map, and types, like
ArraySeq.seq.

It’s important to understand that the type is a component of the structure—a common mis-
conception is that the types come from te signature, whereas the values come from the structure.
Unlike langauges like Java, where an interface defines a single abstract type, ML signatures can de-
scribe packages that define many related abstract types at once. This is important when you want
one block of code that knows the implementation of all of them, and then these implementations
to be hidden from the clients—e.g. with point and vec above!

Structures must define the types in the signature and implement the values on them. For
example, in our sequence implementation

structure ArraySeq : SEQUENCE =
struct

type ’a seq = ’a array
val map = <some code on arrays>

end

You can have different implementations of the same signature and its abstract types. Why
would you want this? They might have

e The same behavior, with different costs. E.g. array-based sequences have O(1) nth but O(n)
cons (you need to copy). Tree-based sequences have O(logn) nth and cons. So you might
want to choose between them depending on which operation you use more often.

e Different but “similar enough” behavior. E.g. RatPlane and RealPlane behave differently,
but both implement the plane in terms of some notion of number, and are useful for different
purposes.

Here’s a second implementation of sequences as trees:

structure Seq : SEQUENCE =

struct
datatype ’a tree = Leaf of ’a | Empty | Node of ’a tree * ’a tree
type ’a seq = ’a tree

fun map f (t : ’a seq) = case t of
Leaf x => Leaf (f x)
| Empty => Empty
| Node (t1 , t2) => Node (map f t1, map f t2)

fun reduce n e t
fun tabulate f n

(* helper function is not visible to clients *)
fun numlLeaves t =
case t of
Empty => 0O
| Leaf _ => 1
| Node (t1,t2) => numLeaves tl1 + numLeaves t2

fun nth i s =
case (s , i) of

(Empty , _) => raise Fail "out of range"
| (Leaf x , 0) => x
| (Leaf x , _) => raise Fail "out of range"

| (Node (t1 , t2) , n) =>
let val sl = numLeaves tl
in
case n < sl of
true => nth n ti

| false => nth (n - s1) t2
end
end

What does it mean for a structure to satisfy a signature?

1. The structure provides a definition for each declaration in the signature. In particular, the
structure can have more declarations, in which case the ones not in the signature are not
visible from the outside. Note that fun declarations can be used to provide values of function
type (because functions are values!).

2. Values must have the specified types, knowing the implementation of the abstract types.

As an example of the first point, numLeaves is not visible to clients, because it is not mentioned
in the signature. As an example of the second, when defining each function (e.g. map), you can
pattern match on a ’a seq because you know it is an ’a tree.

Type abstraction Seq.seq is an abstract type: the only thing a client can do is use the opera-
tions provided in the interface. Why?

There is a subtlety, which we will talk about more next time: in fact, ML does propagate the
definitions of types into the signature, so clients learn that ’a seq = ’a tree. There are good
reasons for why you want this, which we will talk about next time; but it’s not what you want here.

This seems to contradict what I’ve been saying about ’a seq being an abstract type. However,
it doesn’t! And the reason why it doesn’t is already on the board: First, declarations not in the
signature are not visible to clients. Second, this includes datatypes and constructors. Third, the
only thing you can do with a datatype is pattern-match or construct a value, and for both of
these you need to know the datatype constructors. So, if clients do not get access to the datatype
constructors, they can’t do anything with a value of that datatype except pattern-match.

Thus:

Methodology: To make a type abstract, define it to be a datatype that is not exported
in the signature.

If you always do this, clients of a module will only know exactly what is in the signature.

2.1 Client Evoluation

We can easily change the client code to use this implementation, by replacing all references to
ArraySeq with TreeSeq.

(¥ client *)
fun accels(bodies : body TreeSeq.seq) : vec TreeSeq.seq =
TreeSeq.map (fn bl => sum bodies (fn b2 => accOn(bl,b2)))

In fact, there is an easier way: We can make a structure binding that defines the name Seq to
be TreeSeq.

structure Seq : SEQUENCE = TreeSeq

(* client *)

fun accels(bodies : body Seq.seq) : vec Seq.seq =
Seq.map (fn bl => sum bodies (fn b2 => accOn(b1,b2)))

Because TreeSeq satisifies th same signature, this code is guaranteed to still type check, and
will probably still work, as long as the different implementations of the signature in fact behave
the same.

Methodologically, it is good to name structures with something descriptive about their particular
implementation of the signature; e.g. ArraySeq and TreeSeq.

2.2 Implementation Evolution

As an example of implementation evolution, the above nth function is inefficient, because it com-
putes the size of the tree at each step—thus it takes linear rather than logarithmic time. We can
fix this by storing, at each node, the size of the left subtree. Because the type ’a tree is abstract,
we can make this change without changing any client code.

structure TreeSeq : SEQUENCE =
struct

(* representation invariant:
in Node (t1 , s1 , t2) , sl is the number of leaves in til

*)
datatype ’a tree = Leaf of ’a | Empty | Node of ’a tree * int * ’a tree
type ’a seq = ’a tree

fun map f t = case t of
Leaf x => Leaf (f x)
| Empty => Empty
| Node (t1 , s1 , t2) => Node (map f t1, sl, map f t2)

fun nth i s =
case (s , i) of
(Empty , _) => raise Fail "out of range"
| (Leaf x , 0) => x
| (Leaf x , _) => raise Fail "out of range"
| (Node (t1 , s1 , t2) , n) =>
case n < sl of
true => nth n ti1
| false => nth (n - s1) t2

end

We change the datatype definition to store an integer at each node. In functions that construct
sequences, we need to compute this information—e.g. in map, where the map preserves the size. In
nth, we use the value to direct the search.

Because the type *a tree is not exported from this module, it is only the implementor, and not
the client, who can break the representation invariant that the integer is the size of the left subtree:
if you ever see a tree that does not satisfy this invariant, you know that it is the implementation of
TreeSeq’s fault. The abstract type uniquely identifies the code that acts on it. Put another way,
if you prove that each function in the signature preserves this invariant, then you know that any
larger program in which you use this module will maintain the invariant!

	Signatures
	Structures
	Client Evoluation
	Implementation Evolution

