
COMP 212 Fall 2024
Final Non-Collaborative Challenge Problems

Remember that non-collaborative challenge problems are to be done independently. You
are not allowed to communicate with anyone about the problems, and in particular are
not allowed to discuss the problems with other students. Additionally, you are not allowed
to search for help on the specific problem from any sources besides the course materials,
including the Web or any generative AI tools. There will be a zero-tolerance policy
for violations. Anyone suspected of violating the honor code will be referred to
the honor board, with a recommended penalty of a grade of F in COMP 212 if
found responsible. If you can’t solve a problem on your own, leave it blank.

1 Text Generation

The code for this problem is in generate.sml and sources-generate.cm. Put these in-
side your hw10-handout folder because the problem also uses the support code from that
homework.

In this problem, you will write a simple text generator, which takes a “prompt” and
outputs a continuation of that prompt.

For example:

val g = Generate.make_generator

(Generate.open_file_no_label "data/RCV1.medium_train.txt");

val test = Seq.tolist (Generate.generate (g, 7,

SeqUtils.words "The"));

Might see: val test = ["The","company","said","the","first","quarter","of","the"]

val test2 = Seq.tolist (Generate.generate (g, 4,

SeqUtils.words "Several players went"));

Might see: val test2 = ["Several","players","went","to","the","first","quarter"]

The first line trains a generator based on the Medium training set articles from Homework
10 (ignoring the category labels). test uses the generator to generate the next 7 words after
“The”. test2 uses the generator to generate the next 4 words after “Several players went”.

Task 1.1 (45 pts). Write a function

1



make generator : document MR.mapreducable -> (string Seq.seq -> string)

that takes a training dataset and outputs a function that, when given the sequence of words
in a prompt, generates a next word.

You can follow the same general outline as in Homework 10: gather some statistiics from
the training data, and then use those statistics to estimate the probability of the possible next
words that the generator might generate, and then pick a word according to that probability.

For the first step, use the pairs of words that occur one after the other in the training
data to estimate the probability of the next word after a given a word. (For extra credit,
use more than a single word to pick the next word.)

For the second step, use the training data to determine what words might possibly follow
a given word.

For the third step, as a baseline you can pick the word with the highest probability (like
in Homework 10). But for full credit you should pick a word using some randomness. For
example, if the possible next words after the word “frog” are “jumped” with probability 0.75
and “sat” with probability 0.25, your generator should pick “jumped” 3/4 of the time and
“sat” 1/4 of the time. This way, less common words sometimes get picked too. You can use
the function randomReal() to generate a random number in the range 0.0 though 1.0. Each
time you call the function, it produces a different number. The numbers produced will be
different every time you compile the program.

Upload your generate.sml to your handin folder.

2 Regular Expression Matching

The code for regular expression matching from this past week’s lectures is in regexp.sml

linked from this assignment.

Task 2.1 (10 pts). Fill in the case for OneOrMore r for fastmatch.

Task 2.2 (20 pts). Do the cases for Lit c and OneOrMore r of the following proof.

Theorem 1. For all regular expressions r, stacks k, and strings s,

fastmatch(r,k,s)

=
exists(fn (p1,p2) => match(r,p1) andalso matches(k,p2), splits(s))

Proof. The proof is by lexicographic induction on s and then r. This means you are allowed
inductive hypotheses whenever (1) for the recursive call, the string s is smaller than the
input to the original function call, or (2) in the recursive call, the string s stays the same as
the input but the regular expression r is a child tree of the input regular expression.

• Case for Or(r1,r2): We want to show that

fastmatch(Or(r1,r2),k,s)

=
exists(fn (p1,p2) => match(Or(r1,r2),p1) andalso matches(k,p2),

splits(s))

2



On the left-hand side

fastmatch(Or(r1,r2),k,s)

7→ fastmatch(r1,k,s) orelse fastmatch(r2,k,s)

= exists(fn (p1,p2) => match(r1,p1) andalso matches(k,p2), splits(s))

orelse

exists(fn (p1,p2) => match(r2,p1) andalso matches(k,p2), splits(s))
by the inductive hypothesis on (s,r1) and (s,r2), which is valid because s is the same
length and r1 and r2 are smaller.

On the right-hand side

exists(fn (p1,p2) => match(Or(r1,r2),p1) andalso matches(k,p2), splits(s))

= exists(fn (p1,p2) => (match(r1,p1) orelse match(r2,p1))

andalso matches(k,p2), splits(s))

Suppose the left-hand side of the equation evaluate to true. Then either

exists(fn (p1,p2) => match(r1,p1) andalso matches(k,p2), splits(s))

or

exists(fn (p1,p2) => match(r2,p1) andalso matches(k,p2), splits(s))

evaluates to true. In the first case, because the exists evaluates to true, there is some
splitting of s for which match(r1,p1) and matches(k,p2) evaluate to true. Therefore,
there is some splitting for which

(match(r1,p1) orelse match(r2,p1)) andalso matches(k,p2)

evaluates to true, and the right-hand side is true as well. In the second case, there
is some splitting of s for which match(r2,p1) and matches(k,p2), so the right-hand
side similarly evaluates to true.

Conversely, assume the right-hand side of the equation evaluates to true. Then there
is some splitting of s for which

(match(r1,p1) orelse match(r2,p1)) andalso matches(k,p2)

evaluates to true. For this expression to be true, at least one of match(r1,p1) or
match(r2,p1) must evaluate to true. When match(r1,p1) is true, we have that
(match(r1,p1) andalso matches(k,p2)) is true, and so is

exists(fn (p1,p2) => match(r1,p1) andalso matches(k,p2), splits(s))

When match(r2,p1) is true, so is

exists(fn (p1,p2) => match(r2,p1) andalso matches(k,p2), splits(s))

3



So in either case, the left-hand side is true.

• Case for Then(r1,r2): We want to show that

fastmatch(Then(r1,r2),k,s)

=
exists(fn (q1,q2) => match(Then(r1,r2),q1) andalso matches(k,q2),

splits(s))

On the left-hand side

fastmatch(Then(r1,r2),k,s)

7→ fastmatch(r1,r2::k,s)

= exists(fn (p1,p2) => match(r1,p1) andalso matches(r2::k,p2), splits(s))
by the inductive hypothesis on (s,r1), which is valid because s is the same length and
r1 and r2 are smaller. By definition of matches,

matches(r2::k,p2)

7→ exists(fn (p21,p22) => match(r2,p21) andalso matches(k,p22), splits(p2))
So, all told, there exists a splitting of s into p1 followed by p21 followed by p22 where
match(r1,p1) and match(r2,p21) and matches(k,p22).

On the right-hand side

match(Then(r1,r2),q1)

7→ exists (fn (q11,q12) => match(r1,q11) andalso match(r2,q12), splits(q1))
So, all told, there exists a splitting of s into q11 followed by q12 followed by q2 with
match(r1,q11) and match(r2,q12) and matches(k,q2).

Identifying p1 = q11 and p21 = q12 and p22 = q2, these are the same conditions.

(We are being informal about associativity of splitting here: if (p1,p2) is in splits(s)

and (p11,p12) is in splits(p1), then some (p11, q) is in splits(s) with (p12,p2)

in splits(q); and similarly for p2.)

• Case for Lit c: Do this case.

• Case for OneOrMore r: Do this case.

Upload regexp.sml and final.pdf with the answers to these tasks.

4


	Text Generation
	Regular Expression Matching

