
COMP 212 Homework 02 Page 1 of 7

COMP 212 : Functional Programming, Fall 2024

Homework 02

Name:

Wes Email:

Question Points Score

1 20

2 15

Total: 35

If possible, please type/write your answers on this sheet and upload a copy of the PDF to
your google drive handin folder. Otherwise, please write the answers in some sort of word

processor and upload a PDF. Please name the file hw02-written.pdf.



COMP 212 Homework 02 Page 2 of 7

1. Basics

The type real represents numbers with decimal points/fractions using a floating point
representation. The built-in function real : int -> real returns the real value corre-
sponding to a given int input; for example, real 4 evaluates to 4.0. Conversely, the
built-in function trunc : real -> int returns the integral part (intuitively, the digits
before the decimal point) of its input; for example, trunc 2.7 evaluates to 2. Feel free
to try these functions out in smlnj.

Once you understand these functions, you should solve the questions in this section in
your head, without first trying them out in smlnj. The type of mental reasoning involved
in answering these questions should become second nature.

(a)(3) Consider the following code fragment:

fun square (x : real) : real = x * x

fun square (x : int) : int = x * x

val z : real = square 7.0

Does this typecheck? Briefly explain why or why not.

Solution:

(b) In class, we went over SML’s syntax for let-bindings. It is possible to write val

declarations in the middle of other expressions with the syntax let ... in ...

end. See the end of the Lecture 3 notes for more details. Consider the following
code fragment (the line-numbers are for reference, not part of the code itself):

(1) val x : int = 12

(2)

(3) fun assemble (x : int, y : real) : int =

(4) let val q : real = let val x : int = 3

(5) val p : real = 5.2 * (real x)

(6) val y : real = p * y

(7) val x : int = 123

(8) in p + y

(9) end

(10) in

(11) x + (trunc q)

(12) end

(13)

(14) val z = assemble (x, 2.0)



COMP 212 Homework 02 Page 3 of 7

i.(2) What gets substituted for the variable x in line (5)? Briefly explain why.

Solution:

ii.(2) What gets substituted for the variable p in line (8)? Briefly explain why.

Solution:

iii.(2) What gets substituted for the variable x in line (11)? Briefly explain why.

Solution:

iv.(2) What value does the expression assemble (x, 2.0) evaluate to in line (14)?

Solution:

(c)(6) Consider the following code fragment:

fun square (x : int) : int = x * x

val z : int =

let

val x : real = real (square 6)

in

3 + (trunc x)

end

Provide a step-by-step sequential evaluation trace of the right-hand-side of the



COMP 212 Homework 02 Page 4 of 7

declaration of z (that is, let val x : real = real (square 6) in 3 + (trunc

x) end). You may assume that, for values i : int, the expression real i evaluates
in one step to the corresponding real value, and similarly for trunc r given a value
r : real.

Solution:

(d)(3) Recall the fact function from Lecture 3. Define

fun f (x : int) : int = f(x) + f(x)

Are the following two expressions behaviorally equivalent?1 Explain why or why
not. (Recall that ∼ 1 is the SML notation for negative 1.)

fact (∼ 1)
?∼= f 10

1In Tuesday’s class, we wrote e1 = e2 for behavioral equivalence. Since there are multiple possible notions
of equivalence of programs (e.g. “has the same behavior” or “has the same behavior and the same running
time”), we’ll sometimes use ∼= to emphasize that we’re refering specifically to behavioral equivalence.



COMP 212 Homework 02 Page 5 of 7

Solution:



COMP 212 Homework 02 Page 6 of 7

2. Induction

(a)(15) The sum of the natural numbers from 0 to n can be calculated quickly like this

0 + 1 + 2 + . . . + n =
n(n + 1)

2

We will prove the summ function that you implemented in lab correct by relating it
to this formula.

fun summ (n : int) : int =

case n of

0 => 0

| _ => n + (summ (n - 1))

Theorem 1. For all natural numbers n, summ n ∼= (n*(n+1)) div 2.

The proof is by induction on the natural number n. Your equality reasoning should
include each individual step of evaluation necessary to prove the equivalence. In the
inductive case, you will need to do some algebraic manipulation; you may assume
basic properties of arithmetic (associativity, distributivity of ∗ over +, commuta-
tivity, etc.).

Solution: The proof is by induction on n.

Case for 0

To show:

Proof:



COMP 212 Homework 02 Page 7 of 7

Case for 1 + k

Inductive hypothesis:

To show:

Proof:


