COMP 212 : Functional Programming, Fall 2024

Homework 03

Name: _____

Wes Email:

Question	Points	Score
1	21	
Total:	21	

If possible, please type/write your answers on this sheet and upload a copy of the PDF to your google drive handin folder. Otherwise, please write the answers in some sort of word processor and upload a PDF. Please name the file hw03-written.pdf.

See the homework handout for descriptions of the problems.

1. Zip Proof

(10) (a) Prove the following about your code:

Theorem 1. For all 1 : (int * string) list, $zip(unzip \ l) \cong l$.

Solution: The proof is by structural induction on 1. Case for [] To show: Proof: Г

Solution: Case for x::xs Inductive hypothesis:
To show:
Proof:

Page 4 of 7

(5) (b) Prove or disprove:

Theorem 2. For all 11 : int list and 12 : string list,

$unzip(zip (l1, l2)) \cong (l1, l2)$

Solution:

(5) (c) NON-COLLABORATIVE CHALLENGE PROBLEM Prove

Theorem 3. For natural number values n, inverse_adjacent(n) = n/n+1.

Solution: The proof is by induction on n. Case for 0 To show:

Proof:

Г

Case for $1 + k$
Inductive hypothesis:
To show:
TO SHOW.
Proof:

(1) (d) Compare show(inverse_adjacent 200) with show(200.0/201.0). Explain why

what you see does not match the theorem you proved in the previous task.

Solution: