COMP 212 : Functional Programming, Fall 2024

Homework 05

Name: _____

Wes Email:

Question	Points	Score
1	15	
2	18	
Total:	33	

If possible, please type/write your answers on this sheet and upload a copy of the PDF to your google drive handin folder. Otherwise, please write the answers in some sort of word processor and upload a PDF. Please name the file hw05-written.pdf.

See the homework handout for descriptions of the problems.

1. Proof

(15) (a) Prove the following:

Theorem 1. For all trees t, depth $t \leq size t$.

Solution: The proof is by structural induction on t. Case for Empty To show:

Proof:

Solution: Case for Node(1,x,r) Inductive hypotheses:
To show:
Proof:

(more space for the proof if you need it)

2. Rebalance

(3) (a) Give a recurrence for the work of takeanddrop in terms of the depth d; argue that it is O(d).

Solution: $W_{\texttt{takeanddrop}}(d) =$

(3) (b) Give a recurrence for the span of takeanddrop in terms of the depth d; argue that it is O(d).

Solution: $S_{takeanddrop}(d) =$

(3) (c) Give a recurrence for the work of halves in terms of the depth d; give a tight big-O bound.

Solution: $W_{\texttt{halves}}(d) =$

(3) (d) Give a recurrence for the span of halves in terms of the depth d; give a tight big-O bound.

Solution: $S_{halves}(d) =$

(3) (e) Give a recurrence for the work of rebalance in terms of the size n; assume the depth of the tree is c log n for some c. Give a tight big-O bound. Show your work using a closed form or sum.

Solution: $W_{\texttt{rebalance}}(n) =$

(3) (f) Give a recurrence for the span of rebalance in terms of the size n; assume the depth of the tree is $c \log n$ for some c. Show your work using a closed form or sum.

Solution: $S_{\text{rebalance}}(n) =$