
COMP 212 Fall 2024
Homework 10

In this homework, you will implement a parallel programming abstraction called extract-
combine, which is the essence of cluster-programming techniques like Hadoop and Google’s
MapReduce.

You will use extract-combine to program a simple machine learning algorithm called näıve
Bayes classification, and use this classification algorithm to automatically label news articles
with categories (such as “econonmics” or “government/social”); another typical application
is spam filtering, labeling an email with categories “spam” or “not spam”. The first phase
of classification is training, where word frequency counts are extracted from a collection of
documents that have been labeled with categories. In the next phase, these frequencies are
used to predict the category for unlabeled documents. Näıve Bayes classification is called
“näıve” because it treats a document as a multiset of words, ignoring the order of the words
and other dependencies. It is called “Bayes” because a fact about probabilities called Bayes’
rule is the main component of the method.

1 Extract-combine

For many data analysis tasks, the input is a large collection of documents of some sort, which
we call a dataset. Here, we will use a dataset whose documents are Reuters news articles:

England midfielder Paul Gascoigne stunned Hearts with two goals in 90 seconds...

The Stock Exchange of Singapore said on Tuesday that a technical fault...

One common pattern for processing such a dataset is to

1. extract some information from each document, and then

2. combine the extracted information from all documents

It is often convenient if the extraction phase produces a sequence of key-value pairs (where
a particularl key can occur more than once in the sequence), and the combination phase
combines these pairs into a dictionary.

For example, suppose we want to count the frequencies of each word in the following
dataset, which has two documents:

1

this is is document 1

this is document 2

We would

1. Extract from each document the sequence of pairs (w, 1) for each word in the document:

("this",1)

("is",1)

("is",1)

("document",1)

("1",1)

("this",1)

("is",1)

("document",1)

("2",1)

2. Combine these pairs into a dictionary mapping words to numbers, by adding the values
associated with each word:

"1" ~ 1

"2" ~ 1

"document" ~ 2

"is" ~ 3

"this" ~ 2

This suggests a higher-order function

val extractcombine : (’k * ’k -> order) (* comparison *)

* (’a -> (’k * ’v) Seq.seq) (* extractor *)

* (’v * ’v -> ’v) (* combiner *)

* ’a Seq.seq

-> (’k,’v) Dict.dict

This first input is a comparison function ordering some type of keys ’k. The second input is
the extractor, which extracts a key-value sequence from a document, where a single document
is represented by a type ’a. The third input is the combiner, which is used to combine values
(which have type ’v) when the same key occurs multiple times in the extracted information.
The fourth input is a sequence of documents. The output is a key-value dictionary consisting
of all of the keys extracted from all of the documents, where the dictionary maps a key to
the combination of all of its extracted values.

For example, for frequency counting, suppose where are given a sequence of documents,
where each document is a single string. Then we can do

2

fun wordcount (docs : string Seq.seq) : (string,int) Dict.dict =

extractcombine (String.compare,

fn doc => Seq.map (fn w => (w, 1), (words doc)),

Int.+,

docs)

Here we assume that the function words divides a string into words. The extractor pairs
every word in a document with 1, and the combiner is addition. The resulting function
creates a dictionary with the frequencies of all of the words in all of the documents.

1.1 Data source

For many applications of extract-combine, each individual entry in the input dataset is not
very large, but the overall number of documents is big, so that the size of the entire dataset
is megabytes or gigabytes or more.

The above type for extractcombine assumes a sequence (Seq.seq) of documents as an
input. Since an ’a Seq.seq is represented by a value in memory (RAM), this means that to
use extractcombine, we first need to load the entire dataset as a value in memory. However,
for many applications, the information being collected from the data is much smaller than
the dataset itself. For example, when we count word frequencies, the output is proportional
to the number of unique words in the documents, which will likely be much less than the
total number of words in the documents. Thus, we should be able to process a collection of
documents that is too big to fit in memory, as long as the number of unique words fits.1 But
to do this, we need to generalize extractcombine so that it does not require its input to be
in memory.

At a first cut, what we want is another implementation of the SEQUENCE signature, whose
values are stored as a file on disk instead of as a value in memory. However, for this problem,
we will not need these disk-based sequences to support all of the sequence operations: in
particular, we never need to create such a sequence (via tabulate or map), we only need to
consume them. Indeed, the only operation we need is mapreduce, so we define the following
signature:

signature MAP_REDUCE =

sig

type ’a mapreducable

(* Assume that

- n is associative and commutative

- e is a unit for n

Then mapreduce (l, e, n, s) computes the map-reduce of

l e n on s *)

val mapreduce :

(’a -> ’b) (* result for single element *)

1If the extracted information does not fit in memory, it too can be stored on disk, but we won’t pursue
that here.

3

* ’b (* result for empty *)

* (’b * ’b -> ’b) (* merge results *)

* ’a mapreducable

-> ’b

end

A type is mapreducable if it has a mapreduce function. The prototypical mapreducable type
is ’a Seq.seq, which is expressed by the following instance:

structure SeqMR :> MAP_REDUCE where type ’a mapreducable = ’a Seq.seq =

struct

type ’a mapreducable = ’a Seq.seq

fun mapreduce (l, e, n, s) = Seq.mapreduce (l, e, n, s)

end

The homework support code also defines a second instance FileMR that reads from a file:

structure FileMR : MAP_REDUCE

The idea is that ’a FileMR.mapreducable reads values of type ’a from a file, and the
mapreduce function does a map-reduce on all of the values in a file.

For the remainder of the homework, we will assume that there is a

structure MR : MAP_REDUCE

defining a mapreducable type, which will be either SeqMR or FileMR from above, depending
on which CM file is used to compile the project. You should use MR.mapreduce to refer
to the mapreduce function for either sequences or files in your code. Like the two plane
implementations in Barnes Hut, this will allow you to test the code using both sequences
(for small tests written in the SML files) and using data read from a file.

1.2 Task

Your job is to implement the extract-combine pattern as a function with the following type
(see extractcombine.sig):

signature EXTRACT_COMBINE =

sig

val extractcombine : (’k * ’k -> order)

* (’a -> (’k * ’v) Seq.seq)

* (’v * ’v -> ’v)

* ’a MR.mapreducable

-> (’k,’v) Dict.dict

end

4

Task 1.1 (0 pts). Before the support code will load, you need to copy your solutions from
HW9 into the appropriate spots in dict.sml, which is an implementation of dictionaries
with some extra operations that you might find useful. If you didn’t finish HW09, you can
contact me for a reference implementation.

Task 1.2 (25 pts). Implement this module in extractcombine.sml.
This should be an abstraction of your frequencies solution from HW9.
You do not need to write tests for extractcombine. You can test by running the word

frequency counting code in wordfreq.sml after loading the CM file sources-ec.cm. For
example:

- CM.make "sources-ec.cm";

- WordFreq.test();

Task 1.3 (0 pts). Make sure CM.make "sources-ec-file.cm"; also loads without errors —
otherwise you are assuming that the data source MR is a sequence, and your extract-combine
code won’t also work for files. If it doesn’t, rewrite your extractcombine so that the only
operation it applies to the ’a MR.mapreduceable is MR.mapreduce.

2 Text Classification

See the section on testing below for which CM files to use to compile your code
for this part.

In this problem, you will implement a simple form of statistical machine learning—i.e.
you will write a computer program that learns from examples. Machine learning techniques
are ubiquitous these days; they play a role in web search, touchscreen input recognition, voice
recognition, machine translation; sports and election and economic predictions, . . . Our goal
for this assignment is to categorize text documents in some way. Specifically, we will organize
Reuters news articles into four categories used by Reuters: (CCAT = “corporate/industrial”,
ECAT = “economics”, MCAT = “market”, GCAT = “government/social”).2 Such a categoriza-
tion might be used by a news aggregator site to automatically group articles by topic. The
same idea can be used to implement spam filters (the categories are “spam” and “not spam”),
to recognize what language a web page is in, and for many other purposes.

In (supervised) machine learning, the starting point is some training examples, which
have been labeled with the correct outputs by some means (e.g. hand-labeled by a person).
Based on the training examples, you build some sort of statistical model, which is then used
to predict the output for new examples. The model’s predictions are tested on some test
examples, which are also labeled, but are not included in the training examples.

For this assignment, we will be using a collection of Reuters news articles from the late
1990s that have been labeled with one of the above four categories.3.

2These are the top level of a hierarchical categorization scheme; we will ignore all the lower levels.
3Lewis, Yang, Rose, and Li. RCV1: A New Benchmark Collection for Text Categorization Research.

Journal of Machine Learning Research, 2004.

5

MCAT Worries about the U.S.-Iraq crisis faded on Asian markets...

CCAT Sun Microsystems Inc president Ed Zander will sign on June 16...

GCAT Israel’s beleaguered leader Benjamin Netanyahu scored a...

ECAT International trade through Florida totaled $26.9 billion...

ECAT Nothing is sacred, it appears, in the British Treasury’s...

GCAT The following is a list of upcoming ballot initiatives...

The goal is to build a classifier that, given a new article, labels it with one of MCAT or
CCAT or ECAT or GCAT.

We have provided training and test datasets, each with 70,000–80,000 labeled articles.

2.1 Näıve Bayesian classification

We write P (A) for the probability of something, and P (A | B) for the conditional probability
of thing A assuming that B happened. One form of Bayes’ rule is that,

P (A | B) is proportional to P (A)× P (B | A)

Bayes’ rule is used to “flip” a conditional probability P (A | B), expressing it in terms of
P (B | A) and some estimate of how likely A is outright.

For categorization, we would like to know

how likely is it that a document has category C, given that the document words
are w1, . . . , wn?

because then we can choose the most likely category. Applying Bayes’ rule with A = “docu-
ment has category C” and B = “document has words w1, . . . , wn?”, the probability we want
is proportional to

how likely is a document to have category C? (without knowing anything about
what is in the document)

and

how likely is it for a document in category C to be the words w1,. . . ,wn?

This is helpful because we can extract information from the training data that allows us
to answer these questions:

• To know how likely a document is to have category C, we count how many documents
are in each category, and the total number of training documents:

P (a document has category C) =
number of documents with category C

total number of categorized documents

6

• To know how likely a document in category C is to be w1, . . . , wn, we make the näıve
assumption that all words are independent, so that

P (document in category C is w1, . . . , wn) =
n∏

i=1

P (word in category C is wi)

For the latter, we count the number of times each word occurs in each category, and
the total number of words in each category:

P (word in category C is wi) =
number of times wi occurs in documents with category C

number of words in documents with category C

Putting this all together, we get:

P (C | w1, . . . , wn) =
number of docs in C

total number of docs
·

n∏
i=1

count of wi in C

total number of words in C

One technical point is that the above probabilities often get too small to represent in
a floating point number. Because the natural log function is monotone, it is equivalent
(because log turns products into sums) to compute:

lnP (C | w1, . . . , wn) = ln
number of docs in C

total number of docs
+

n∑
i=1

ln
count of wi in C

total number of words in C

and then take the max of these. This keeps the numbers in a range that is easier to represent.
Another point is what to do about a word that occurs in the test document that does

not appear in the training documents (so we have no idea how likely it is). There are several
possibilities, but one that works well is to say that its probability is

ln (
1

total number of unique words in all training documents
)

Overall, we have the following algorithm:

1. Training: from the training examples, compute the quantities used above.

2. Classifying: compute lnP (C | w1, . . . , wn) for each category C, and then classify with
the category C that maximizes this probability.

The assumption behind this algorithm is that we have a representative collection of
training examples, so that the distribution of words the training examples will predict the
categories for test examples.

7

2.2 Task

In classify.sml, your job is to implement

structure NaiveBayes :> NAIVE_BAYES_CLASSIFIER

where the signature NAIVE_BAYES_CLASSIFIER is in Figure 2.2.3.
The real exports of your classifier are:

signature CLASSIFIER =

sig

type category = string

type document = string Seq.seq

type labeled_document = category * document

val train_classifier : labeled_document MR.mapreducable

-> (document -> (category * real))

end

A category is just a string, a document is a sequence of words, and a labeled_document

is a document (sequence of words) together with a category. The main export is the
train_classifier function, which is given a training dataset of labeled documents, and
produces a classifying function.

However, to make it easier to test the intermediate stages of the computation, your clas-
sifier will also export the intermediate functions described in the NAIVE_BAYES_CLASSIFIER

signature. For everyone but the tester, we will retype the classifier with the CLASSIFIER

signature given above to hide the helper functions.

2.2.1 Training

From the training data, you need to extract the following information:

1. for each category, the number of documents in that category

2. for each category, the total number of words in that category (counting duplicates)

3. for each category and word, the number of times that word occurs in documents with
that category

4. the sequence of all categories

5. the total number of classified documents

6. the total number of distinct words used in all documents (i.e. don’t count duplicates).

8

You will probably want to use multiple extract-combines to do this (my solution uses four
or five).

Task 2.1 (30 pts). Use ExtractCombine.extractcombine to define a function

type statistics =

(category,int) Dict.dict

* (category,int) Dict.dict

* (category * string, int) Dict.dict

* category Seq.seq

* int

* int

val gather : labeled_document MR.mapreducable -> statistics

Feel free to also use any functions from the DICT and SEQUENCE signatures.

2.2.2 Classifying

Now we use the above data to classify a given document.

Task 2.2 (20 pts). First, compute the log-probabilities of each category. Define a function

val possible_classifications : statistics * document -> (category * real) Seq.seq

that maps a document w1, . . . , wn to the sequence of all pairs

(C, lnP (C | w1, . . . , wn))

for every category C. The Math.ln function computes the natural log.

Task 2.3 (10 pts). Next, compute the best (maximum) category:

val classify : statistics * document -> category * real

The function can return the empty string and Real.negInf (negative infinity) if there
are no possible classifications.

2.2.3 Putting it all together

Task 2.4 (10 pts). Finally, define

val train_classifier : labeled_document MR.mapreducable

-> (document -> (category * real))

For efficiency, it is important that this function does all processing of the train-
ing data is done before the document -> category * real function is returned.
This is something we can do with a function-that-returns-a-function that we could not do
if the function took in a pair labeled document MR.mapreducable * document as input.
Training will sometimes take minutes, and you definitely do not want to retrain the classifier
for every document that you classify.

9

signature NAIVE_BAYES_CLASSIFIER =

sig

type category = string

type labeled_document = category * string Seq.seq

type document = string Seq.seq

val train_classifier : labeled_document MR.mapreducable -> (document -> (category * real))

(* -- *)

(* internal components that are exported only for testing *)

type statistics =

(category,int) Dict.dict

* (category,int) Dict.dict

* (category * string, int) Dict.dict

* category Seq.seq

* int

* int

val gather : labeled_document MR.mapreducable -> statistics

val possible_classifications : statistics * document -> (category * real) Seq.seq

val classify : statistics * document -> category * real

end

Figure 1: Classifier signature

10

2.3 Testing

Testing Each Function For these tests, you should compile your code with

- CM.make "sources-classify-seq.cm";

We have provided test functions for printing out each stage of the computation:

val print_stats : labeled_document MR.mapreducable -> unit

val print_stats_nofreqs : labeled_document MR.mapreducable -> unit

val print_possibles : labeled_document MR.mapreducable * labeled_document -> unit

val number_correct : labeled_document MR.mapreducable

* labeled_document MR.mapreducable

-> int * int

val print_predictions : labeled_document MR.mapreducable

* labeled_document MR.mapreducable

-> unit

The outputs look like this:

• Print stats

- TestSeq.print_stats TestSeq.dups_train;

Number of documents by category:

ECAT 1

GCAT 1

Number of words by category:

ECAT 4

GCAT 4

Frequencies:

ECAT: price occured 2 times

ECAT: stock occured 2 times

GCAT: congress occured 2 times

GCAT: court occured 2 times

All categories: ECAT GCAT

Total number of documents:2

Total number of distinct words:4

• Print possibles:

- TestSeq.print_possibles (TestSeq.dups_train, TestSeq.doc4);

Given Categories: ECAT

Scores:

ECAT ~2.77258872224

GCAT ~3.4657359028

11

This shows the given category of the document (i.e. the ones it was labeled with),
and the scores the classifier returned for each category. The classifier got things right
when the maximum score is the given category (note that the numbers are negative,
so maximum is closest to 0).

• Print predictions:

- TestSeq.print_predictions (TestSeq.dups_train, TestSeq.docs14);

CORRECT

Given Categories: ECAT

Predicted: ECAT

stock

CORRECT

Given Categories: GCAT

Predicted: GCAT

congress

CORRECT

Given Categories: GCAT

Predicted: GCAT

court fell

CORRECT

Given Categories: ECAT

Predicted: ECAT

stock ticker

For each document in a sequence, print the given category (what it was labeled with),
the predicted category, and the document.

• Number correct:

- TestSeq.number_correct (TestSeq.simple_train, TestSeq.docs14);

val it = (4,4) : int * int

For each document in a sequence, run the classifier, and compute the pair (number
correctly classified, total number of documents).

We have also provided very small documents in the TestSeq module in testclassify.sml.

Task 2.5 (0 pts). The files

expected-outputs/stats.txt

expected-outputs/possibles.txt

expected-outputs/predictions.txt

expected-outputs/number-correct.txt

show many ways to call to these test functions and what they should output. Make sure
your code matches these outputs (up to floating point rounding errors).

12

Evaluating your classifier For these tests, you should compile your code with

- CM.make "sources-classify-file.cm";

Now, you should run your classifier on some real data. Download hw10data.tar and
unzip it to create a data directory inside your hw10-handout folder. We have provided files
of three sizes:

Num docs File

65 RCV1.small_train.txt

8 RCV1.small_test.txt

7356 RCV1.medium_train.txt

808 RCV1.medium_test.txt

72398 RCV1.big_train.txt

78899 RCV1.big_test.txt

You should evaluate your classifier by counting the number it gets correct, such as:

TestFile.number_correct (TestFile.open_file "data/RCV1.small_train.txt",

TestFile.open_file "data/RCV1.small_test.txt");

Each run should take no more than 10–20 minutes.
The small test is small enough that you can print out the results to look at them:

TestFile.print_predictions (TestFile.open_file "data/RCV1.small_train.txt",

TestFile.open_file "data/RCV1.small_test.txt");

Task 2.6 (5 pts). In a comment at the bottom of classify.sml, report the percentage your
classifier gets correct for each of the three sizes (small, medium, large). You can also use
training/test of mismatched sizes to investigate how much additional training data helps—
e.g. does using the big training data improve results on the medium test?

13

	Extract-combine
	Data source
	Task

	Text Classification
	Naïve Bayesian classification
	Task
	Training
	Classifying
	Putting it all together

	Testing

