
COMP 212 Fall 2024
Lab 4

The goal for this lab is to practice asymptotic analysis.

1 Big-O

Let f and g be two mathematical functions from the natural numbers to the natural numbers.
We define f is O(g) to mean

there exist natural numbers k and l such that for all natural numbers x,
f(x) ≤ (k × g(x)) + l

It is common to notate the functions f(n) and g(n) by just writing their bodies in terms
of n. For example, O(n2) means O(g) where g(n) = n2.

For each of the following, decide whether it is true or false. If it is true, give k and x0 for
which the inequality holds. If it is false, convince yourself that there are no such k and x0.

• 3n is O(4n)

• 3n is O(n)

• 3n is O(1)

• 3n + 4 is O(n)

• 2n2 + 17n is O(n2)

• 2n2 is O(n)

• 8n2 is O(2n)

Have the course staff check your work before proceeding.
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2 Analysis

2.1 Simple Fibonacci

The Fibonacci sequence is a sequence of numbers defined by the rule that the next number
in the sequence is the sum of the previous two:

1, 1, 2, 3, 5, 8, 13, 21, . . .

This can be implemented by a recursive function with two recursive calls:

fun fib (n : int) : int =

case n of

~1 => 0

| 0 => 1

| 1 => 1

| _ => fib (n - 1) + fib (n - 2)

We’re going to add the harmless but slightly strange base case defining the negative first
element of the sequence to the definition as well; you’ll see why later in lab, but just go with
it for now.

Like evenP in lab last week, this function has three useful cases—zero one and 2 + n
(we won’t count the negative one case). The new thing about this function is that it makes
recursive calls not just on n− 2 but also on n− 1.

Because of these two recursive calls, the recurrence for the work looks like this (using our
convention that we can write any constant number of steps as 1):

Wfib(0) = 1
Wfib(1) = 1
Wfib(n) = 1 + Wfib(n− 1) + Wfib(n− 2) for non-zero n

This is not so helpful, since it says that the time to compute the nth Fibonacci n is the nth

Fibonnaci number!
However, if we can get an upper bound for this recurrence as follows:

Wfib(0) = 1
Wfib(1) = 1
Wfib(n) ≤ 1 + 2Wfib(n− 1)for non-zero n

Because Wfib(n) is monotonically increasing (it’s never smaller on bigger inputs), we can
pretend that it’s two recursive calls on n− 1.

This recurrence is O(2n), or exponential time, because at each level of the recursion you
double the number of steps done in the previous level.

2.2 Fast Fibonacci

In this problem, you will show that you can compute Fibonacci more efficiently. The key
insight is that one of the recursive calls can be reused each time:
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To compute We need

fib n fib (n-1) and fib (n-2)

fib (n-1) fib (n-2) and fib (n-3)

fib (n-2) fib (n-3) and fib (n-4)

So we really don’t need two recursive calls, if we reuse the same computaton of fib n the
two times we use it. To implement this, you must generalize the problem so that we compute
both fib n and fib (n-1).

2.2.1 Programming

Task 2.1 Implement a function

fastfib : int -> int * int

such that for all nats n, fastfib n ∼= (fib(n− 1), fib n)

Have the course staff check your code for fastfib before proceeding.

2.2.2 Analysis

Task 2.2 Write a recurrence for the work of fastfib,
Wfastfib.

Task 2.3 Compute the closed form for your recurrence.

Task 2.4 Give a tight big-O bound for this closed form.

2.2.3 Proof

Task 2.5 Prove that your code meets the specification, which is to say:

Theorem 1. For all natural numbers n, fastfib n ∼= (fib (n - 1) , fib n)

Use the template on the following page. Have the course staff check your work once you
finish.
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Theorem 2. For all natural numbers n, fastfib n ∼= (fib (n - 1) , fib n)

The proof is by induction on m.

• Case for 0

To show:

Proof:

• Case for 1 + k

Inductive hypothesis:

To show:

Proof:
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Have the course staff check your code, analysis, and proof for fastfib before
proceeding.

3 Merge

Task 3.1 Write a function

merge : int list * int list -> int list

that merges two sorted lists into one sorted list. You should assume that your input lists are
sorted in increasing order, and the list you return should also be in increasing order.

Task 3.2 Write a recurrence relation for the work of merge, in terms of the lengths of l1

and l2. What is the O of this recurrence?

Task 3.3 Prove the following correctness theorem about merge:

Theorem 3. For all lists of integers l1 and l2, if l1 and l2 are both sorted in increasing
order, then merge (l1, l2) is sorted in increasing order.

Hint: In your proof, you will need a lemma about how the contents of merge(l1,l2)

relates to l1 and l2. You should state this lemma, and convince yourself it is true, but you
don’t need to prove it formally.
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