
COMP 212 Fall 2024
Lab 6

In this lab, we will look at some ways to read data from user input, either things the user
types in or from files. First, we need a couple of new datatypes.

1 Options

The type ’a option is defined as follows:

datatype ’a option =

NONE

| SOME of ’a

For example, a value of type int option is either NONE, or SOME 0, or SOME 1, or
SOME(17), etc. Options are often used to signal that a function may or may not success-
fully return a value. For example, the function Int.fromString : string -> int option

attempts to read the first characters from a string as an integer, and if successful returns
SOME(n) with the integer it found, or if not returns NONE.

Task 1.1 Try the following examples in SMLNJ:

• Int.fromString("123")

• Int.fromString("a123")

• Int.fromString("123,456")

• Int.fromString("123.22")

• Real.fromString("123.22")

• Real.fromString("the number 123.22")

In code that calls a function that returns an option, you will typically use case analysis to
distinguish NONE and SOME

case (v : ’a option) of

NONE => e0

| SOME x => e1 [x has type ’a here]

1

2 Unit

The type unit represents an “empty tuple”, and has value (). It is useful for functions that
do their work imperatively (by updating things) rather than functionally (by creating new
values).

3 Input and output

In this lab, you will use functions from the TextIO library; see https://www.cs.princeton.
edu/~appel/smlnj/basis/text-io.html.

The types TextIO.instream and TextIO.outstream represent “something you can read
from” and “something you can write to”, respectively.

3.1 Text Input/Output from the Terminal

Here are some input and output streams for reading from/writing to the terminal:

• TextIO.stdIn : TextIO.instream (“standard input”) reads input you type in the
terminal

• TextIO.stdOut : TextIO.outstream (“standard output”) writes output to the ter-
minal

Here are some functions for reading and writing:

• TextIO.inputLine : TextIO.instream -> string option read a line of input, re-
turning NONE if no further input is available, or SOME(input) if a line of input was
available. This was used in the controller code for the shopping cart problem, for
example.

• TextIO.output : TextIO.outstream * string -> unit write a string to the given
output stream.

Unlike all of the functions we have seen so far, inputLine and output change
the provided input stream and output stream — by requesting data from the
user, by making text appear on the screen, or (using the streams we’ll use later
in the lab) reading/writing files.

Task 3.1 In smlnj, try out these functions, using them to read and write from the terminal:
what do the following do?

• TextIO.output (TextIO.stdOut, "hello world")

One place where you have seen output before is the function print s (used in the
tester functions all semester), which is defined to be TextIO.output(TextIO.stdOut,

s).

2

https://www.cs.princeton.edu/~appel/smlnj/basis/text-io.html
https://www.cs.princeton.edu/~appel/smlnj/basis/text-io.html

• let val () = TextIO.output (TextIO.stdOut, "hello")

val () = TextIO.output (TextIO.stdOut, "world")

in () end

• TextIO.inputLine TextIO.stdIn

Note: you have to type some text and then press enter for the inputLine to proceed.

• val a = TextIO.inputLine TextIO.stdIn;

val b = TextIO.inputLine TextIO.stdIn;

Explain what is unusual about this.

Task 3.2 Write a function

val copy : TextIO.instream * TextIO.outstream -> unit

that copies the entire input stream to the output stream. Try it out interactively:

- copy (TextIO.stdIn, TextIO.stdOut);

hi there [you type this and press enter]

hi there [it prints this]

how are you [you type this and press enter]

how are you [it prints this]

[waiting for more input]

You can use Control-c to stop the loop from running.

Have us check your work before proceeding!

3.2 Text Input/Output from Files

The following functions create input and output streams from files; the argument is the file
name:

• TextIO.openIn : string -> TextIO.instream

• TextIO.openOut : string -> TextIO.outstream

WARNING: overwrites the file specified by the file name

Task 3.3 Write a function

val copy_files : string * string -> unit

that takes two filenames and copies the contents of the first to the second.

Task 3.4 Try this out on some file. Make sure your file has more than one line, and
that they are all copied.

Have us check your work before proceeding!

3

4 Reading a list

Task 4.1 Write a function int file to list : string -> int list that takes the name
of a file (as a string) and produces a list of all of the integers in that file, assuming that
each integer is at the start of a separate line of the file. For examples, if the file nums.txt

contains

1

12

33

a

4

then int file to list("nums.txt") should return [1,12,33,4].

Task 4.2 Write a function float file to list : string -> int list that takes the
name of a file (as a string) and produces a list of all of the floats in that file, assuming that
each floating point number is at the start of a separate line of the file. For examples, if the
file nums2.txt contains

1

12.22

33.12

a

4.444

then int file to list("nums2.txt") should return [1.0,12.22,33.12,4.444]. (What
does int file to list return for nums2.txt?)

Task 4.3 Write a higher-order polymorphic function that generalizes the previous two tasks,
avoiding repeated code.

Have us check your work!

4

	Options
	Unit
	Input and output
	Text Input/Output from the Terminal
	Text Input/Output from Files

	Reading a list

