
COMP 212 Spring 2022
Final Non-Collaborative Challenge Problems

Remember that non-collaborative challenge problems are to be done indepen-
dently. You are not allowed to communicate with anyone about the problems,
except to ask the instructor clarification questions (not hints). Additionally,
you are not allowed to search for help on the specific problem from any sources
besides the course materials.

1 Programming and Analysis

Wordle1 is a game that was popular a long time ago in early 2022.
The idea of the game is to guess a hidden 5-letter word by guessing 5-letter words. After

each guess, the game tells the player which letters were correct, which were in the word but
misplaced, and which were not in the word.

For example, if the word is “STAND”, then for the guess “STAMP” the “S” and “T”
and “A” are correct and the “M” and “P” are not in the word.

For this problem, you will implement a solver for a simplified version of Wordle, where
for each letter in the guess the game replies with “Right” (meaing the letter in that position
matches the hidden word) or “Wrong” (meaning the letter in that position does not match
the hidden word).2

We will represent a word as a sequence of strings, with each string representing one letter:

(* each string is a single capital letter *)

type word = string Seq.seq

Letters will always be written in capitals. In the test data a word will always have 5 letters,
but for full credit your code shouldn’t dependent on this. The function

(* E.g. makeWord "ERROR" = <"E","R","R","0","R"> *)

makeWord : string -> word

converts a string to a sequence of letters for easy input.
A result is Right/Wrong

1https://www.nytimes.com/games/wordle/index.html
2For significant extra credit, you can modify all of the code to work for “misplaced” as well.

1

https://www.nytimes.com/games/wordle/index.html

datatype result =

Right

| Wrong

A guess’s result is a sequence of letters, each paired with whether they were right or
wrong:

type guess_result = (string * result) Seq.seq

For example, the guess “STAMP” for hidden word “STAND” would result in the sequence

<("S",Right), ("T",Right), ("A",Right), ("M",Wrong), ("P",Wrong) >

The provided function

(* Checks a guess against a hidden word answer and returns the result.

E.g. check(makeWord "STAND", makeWord "STAMP") =

<("S",Right), ("T",Right), ("A",Right), ("M",Wrong), ("P",Wrong) >

*)

fun check(answer : word, guess : word) : guess_result

checks the letters in a guess against the letters in the answer.
The support code includes a sequence of around 2000 5-letter words in the variable words.

You can assume that all hidden words and all guesses come from this list.3

1.1 Possibilities

Your solver should maintain a sequence of possible answers, which will originally be the
2000ish words. Each guess restricts the remaining possible answers by giving you information
about, for each letter, whether the guess matches the answer.

Task 1.1 (10 pts). Write a function

fun update(possibilities : word Seq.seq, guess : guess_result) : word Seq.seq =

that takes a sequence of possible answers and a guess result and returns the sequence of
remaining possible answers.

Task 1.2 (5 pts). Analyze the work and span of your update function. For the analysis,
you can assume all words have 5 letters. If we haven’t talked about the running time of
a sequence helper function, you can assume that it is the same running time as for the
implementation of that helper function for Node/Empty/Leaf trees.

3The actual Worlde uses only a subset of the guessable words as answers, but here we assume they are
drawn from the same list.

2

1.2 Suggestions

Task 1.3 (15 pts). Write a function

(* Given a sequence of possible answers, pick one to guess *)

fun suggest(possibilities : word Seq.seq) : word

that picks a guess from a sequence of possible words. The algorithm for choosing the guess
is up to you. Solutions that use fewer guesses to guess the hidden word (to win the game)
will receive more credit.

1.3 Compiling

The support code includes a file sources.cm that attempts to import all of the sequence,
dictionary, and extractcombine libraries from from previous assignments. (If you didn’t
finish a part and need a reference solution, just let me know.) This file assumes that your
directory structure looks like this:

<comp212 folder>/src/

<comp212 folder>/final-handout/

<comp212 folder>/hw10-handout/

If it doesn’t (e.g. you have hw10-handout inside your own HW10 folder), you will need to
fiddle with the paths to tell it where to look or copy the folders into your final folder to look
like the above. If you need help with this let me know.

When you’re testing, you may want to compile the code using

- CM.make "sources.cm"; open Wordle;

(The open will save you from having to prefix all of the functions with Wordle.function

when you test.)

1.4 Testing

The function

fun play(answer : word, possibilities : word Seq.seq, shouldPrint : bool) : int

uses your update and suggest to repeatedly play the game until it wins, and returns the
number of guesses made.

For example,

play(makeWord "STAND", words, true);

Guessing SLATE

Guessing STARK

Guessing STAID

Guessing STAND

You guessed it!

val it = 4 : int

3

means that the hidden word was “STAND”, the word list words was the initial possibilities,
and the program guessed “SLATE”, “STARK”, “STAID”, “STAND” in that order and won
in 4 guesses. (The boolean true controls whether the guesses get printed out as it goes or
not.)

You can use play to see how your solver plays on some examples. To gather some bigger
data about its performance, the function

fun histogram ()

plays the game on all 2000ish words and prints a histogram of the number of guesses needed
to win each game. For example, in the chart

4

Num Guesses (N) | Games won in N guesses | % won in N guesses | % won in <=N guesses

.

.

.

.

6 | 559 | 24.13 | 75.57

.

.

.

the row for 6 means that 559 games we were won in exactly 6 guesses, which is 24.13% of
the 2317 words, and that the cumulative percentage won in 6 or fewer guesses is 75.57% of
the 2317 words. (For calibration, my best solver gets around 25% in 4 or fewer guesses, 50%
in 5 or fewer, 75% in 6 or fewer, and 90% in 7 or fewer).

Task 1.4 (5 pts). The main step in the histogram code is frequency-counting the numbers:

fun hist(s : int Seq.seq) : (int * int) Seq.seq =

Dict.toSeq(ExtractCombine.extractcombine (Int.compare,

fn c => Seq.singleton(c, 1),

Int.+,

s))

Analyze the work and span of hist for your dictionary and extractcombine implementation
from Homework 10.

2 Proof

For this problem, we use trees with data at the leaves (as in Homework 7):

datatype ’a tree = Empty | Leaf of ’a | Node of ’a tree * ’a tree

Sometimes, a computation will produce a tree with patterns like Node(Empty,t) or
Node(t,Empty) in it, which can be shrunk to just t without changing the contents of the
tree. The following function does this:

fun shrink (t : ’a tree) : ’a tree =

case t of

Empty => Empty

| Leaf x => Leaf x

| Node (l,r) => (case (shrink l, shrink r) of

(Empty, r’) => r’

| (l’,Empty) => l’

| (l’,r’) => Node(l’,r’))

5

That is, if either subtree of a tree shrinks to the empty tree, we delete that node, and
otherwise we make a node of the shrunken subtrees.

In homework, you implemented reduce for trees.

fun reduce (n : ’a * ’a -> ’a, e : ’a, t : ’a tree) : ’a =

case t of

Empty => e

| Leaf x => x

| Node (l,r) => n (reduce (n, e, l), reduce (n, e, r))

In this problem, you will prove that the behavior of reduce is unchanged by shrinking:

Theorem 1. Suppose we have total n:’a * ’a -> ’a and e:’a such that

1. For all x, n(e,x) = x

2. For all x, n(x,e) = x

Then for all t, reduce (n, e, shrink t) = reduce (n, e, t)

The assumptions say that the function n returns the other input when given e as one of
its arguments (e.g. if n is + and e is 0, or if n is × and e is 1).

Task 2.1 (15 pts). Prove this theorem.

6

	Programming and Analysis
	Possibilities
	Suggestions
	Compiling
	Testing

	Proof

