COMP 212: Functional Programming, Spring 2022

Homework 05

Name:			
Wes Email:			

Question	Points	Score
1	15	
2	18	
3	6	
Total:	39	

If possible, please type/write your answers on this sheet and upload a copy of the PDF to your google drive handin folder. Otherwise, please write the answers in some sort of word processor and upload a PDF. Please name the file hw05-written.pdf.

See the homework handout for descriptions of the problems.

1. Proof

(15) (a) Prove the following:

Theorem 1. For all trees t, depth $t \leq size t$.

Solution: The proof is by structural induction on t.
Case for Empty
To show:
Proof:

Solution: Case for Node(1,x,r) Inductive hypotheses:
To show:
Proof:

(more space for the proof if you need it)

2. Rebalance

(3) (a) Give a recurrence for the work of takeanddrop in terms of the **depth** d; argue that it is O(d).

Solution: $W_{\mathtt{takeanddrop}}(d) =$

(3) (b) Give a recurrence for the span of takeanddrop in terms of the **depth** d; argue that it is O(d).

Solution: $S_{\mathtt{takeanddrop}}(d) =$

(3) (c) Give a recurrence for the work of halves in terms of the **depth** d; give a tight big-O bound.

Solution: $W_{\mathtt{halves}}(d) =$

(3) (d) Give a recurrence for the span of halves in terms of the **depth** d; give a tight big-O bound.

Solution: $S_{\mathtt{halves}}(d) =$

\mathbf{C}	OMP	P 212 Homework 05	Page 7 of 10			
(3)	(e)	Give a recurrence for the work of rebalance in terms of the size n ; assume the depth of the tree is $c \log n$ for some c . Give a closed form and a tight big-O bound.				
		Solution: $W_{\texttt{rebalance}}(n) =$				

	COMI	212 Homework 09
(3)	(f)	Give a recurrence for the span of rebalance in terms of the size n ; assume the depth of the tree is $c \log n$ for some c . Give a closed form and a tight big-O bound.
		Solution: $S_{\text{rebalance}}(n) =$

3. Errors

(3)	(a)	Analyze	the	work	$\circ f$	vour	errors	function	n
(3)	(a)	Anaryze	une	WULK	OI	your	GIIOIS	Tuncun	лı.

Solution:

Solution:		