
COMP 212 Spring 2022
Homework 08

In this homework you will implement n-body simulation using the Barnes-Hut algorithm.
We will grade this assignment based on the style of your submission as well as its correct-

ness: you should strive to write clear, concise, and readable code. Please consult the course
staff or your previously graded homeworks for style advice.

See the instructions at the end of this document for how to compile and run
your code: because the project consists of many files, you will need to use CM.make

rather than use.

1 Sequence Library

For this assignment, you will use the implementation of sequences that you downloaded in
lab. It is important that you unzip the homework code so the src directory from sequences
and hw08-handout are next to each other. You can find the signature for sequences in the
files src/sequence/sequencecore-sig.sml and src/sequence/sequence-sig.sml. For
your reference, we describe the functions you should use here:

• Seq.length : ’a Seq.seq -> int

Seq.length s evaluates to the number of items in s.

• Seq.empty : unit -> ’a Seq.seq

Seq.empty () evaluates to the sequence of length zero.

• Seq.cons : ’a * ’a Seq.seq -> ’a Seq.seq

If the length of xs is l, Seq.cons (x, xs) evaluates to a sequence of length l+1 whose
first item is x and whose remaining l items are exactly the sequence xs.

• Seq.singleton : ’a -> ’a Seq.seq

Seq.singleton x evaluates to a sequence of length 1 where the only item is x.

• Seq.append : ’a Seq.seq -> ’a Seq.seq -> ’a Seq.seq

If s1 has length l1 and s2 has length l2, Seq.append evaluates to a sequence with
length l1 + l2 whose first l1 items are the sequence s1 and whose last l2 items are the
sequence s2.

1

• Seq.tabulate : (int -> ’a) * int -> ’a Seq.seq

Seq.tabulate (f, n) evaluates to a sequence s with length n where the ith item of s
is the result of evaluating (f i). Seq.tabulate (f, i) raises Range if n is less than
zero.

• Seq.nth : int * ’a Seq.seq -> ’a

nth i s evaluates to the ith item in s. This is zero-indexed. Seq.nth (i, s) will
raise Range if i is negative or greater than (Seq.length s)-1.

• Seq.filter : (’a -> bool) * ’a Seq.seq -> ’a Seq.seq

Seq.filter (p, s) returns the longest subsequence ss of s such that p evaluates to
true for every item in ss.1

• Seq.map : (’a -> ’b) * ’a Seq.seq -> ’b Seq.seq

Seq.map (f, s) maps f over the sequence s. That is to say, it evaluates to a sequence
s’ such that s and s’ have the same length and the ith item in s’ is the result of
applying f to the ith item of s.

• Seq.reduce : ((’a * ’a) -> ’a) * ’a * ’a Seq.seq -> ’a

Seq.reduce c b s combines all of the items in s pairwise with c using b as the base
case. c must be associative, with b as its identity.

• Seq.mapreduce : (’a -> ’b) * ’b * (’b * ’b -> ’b) * ’a Seq.seq -> ’b

Seq.mapreduce l e n s is equivalent to Seq.reduce n e (Seq.map l s).

• Seq.toString : (’a -> string) * ’a Seq.seq -> string

Seq.toString (ts, s) evaluates to a string representation of s by using ts to convert
each item in s to a string.

• Seq.repeat : int * a -> ’a Seq.seq

Seq.repeat (n, x) evaluates to a sequence consisting of exactly n-many copies of x.

• Seq.flatten : ’a Seq.seq Seq.seq -> ’a Seq.seq

Seq.flatten ss is equivalent to reduce append (empty ()) ss

• Seq.zip : (’a Seq.seq * ’b Seq.seq) -> (’a * ’b) Seq.seq

Seq.zip (s1,s2) evaluates to a sequence whose nth item is the pair of the nth item
of s1 and the nth item of s2.

• Seq.split : int * ’a Seq.seq -> ’a Seq.seq * ’a Seq.seq

If s has at least i elements, Seq.split (i, s) evaluates to a pair of sequences
(s1,s2) where s1 has length i and Seq.append (s1, s2) is the same as s. Oth-
erwise it raises Range.

1Here we use the term “subsequence” to mean any subsequence of a sequence, not necessecarily one
whose elements are consecutive in the original sequence. For example, 〈〉, 〈3〉, and 〈2, 4〉 are subsequences of
〈1, 2, 3, 4〉.

2

• Seq.take : int * ’a Seq.seq -> ’a Seq.seq

Seq.take (i, s) evaluates to the sequence containing exactly the first i elements of
s if 0 ≤ i ≤ length s, and raises Range otherwise.

• Seq.drop : int * ’a Seq.seq -> ’a Seq.seq

Seq.drop (i, s) evaluates to the sequence containing all but the first i elements of
s if 0 ≤ i ≤ length s, and raises Range otherwise.

3

2 n-Body Simulations

2.1 Two Planes

2.1.1 Big Picture

The main portion of this programming assignment is modeling movements of bodies through
a universe represented by a two-dimensional Euclidian plane. To make this model, we must
pick an SML representation of points in the plane that allows us to meaningfully measure
the distance between points—that is to say, we must pick a way to measure the universe.

The obvious choice, and the one we made in the lecture on n-body simulation, is to say
that a point in the plane is a pair of real numbers, represented by a pair of values of type
real. Values of type real are relatively fast to compute with, come with many helpful
functions because they are built into SML, and work well with the visualizer we wrote.
Critically, though, they are a floating point precision approximation to real numbers—not
actual real numbers in the mathematical sense. In particular, addition and multiplication on
values of type real are not always associative, and multiplication does not always distribute
over addition. This means that you can do the same sequence of operations in two slightly
different orders and get drastically different results:

- 10E30 + (~10E30 + 1.0);

val it = 0.0 : real

- (10E30 + ~10E30) + 1.0;

val it = 1.0 : real

This makes testing programs that compute with reals hard. Two completely correct imple-
mentations of a particular algorithm that use slightly different associations will, in general,
produce different results.

A less obvious representation is to say that a point in the plane is a pair of rational num-
bers. Rationals are not built into SML, but can be represented as pairs of infinite precision
integers, where the pair (n, d) is thought of as the fraction n

d
. These do represent mathe-

matical rational numbers, so all the operations that should be associative and distributive
actually are. Critically, this means that the results produced by rational arithmetic are easily
testable: any correct implementation of an algorithm using rationals will produce the same
output.

There is, however, a price to pay: computation involving values of type rationals is often
very slow because the type is implemented with arbitrary precision integer arithmetic. It’s
so slow that you can’t use a simulation implemented using rationals to simulate anything
very large or very interesting. More damningly, abstract mathematical rational numbers
don’t support Euclidian distance: if x and y are rational numbers, it is not necessarily the
case that √

x2 + y2

is a rational number. Another definition of distance—the Manhattan Distance—is an appro-
priate definition of distance mathematically speaking in that it makes pairs of rationals into
a metric space, but does not intuitively model the universe we know. Manhattan distance
between (x1, y1) and (x2, y2) is |x2 − x1| + |y2 − y1| — i.e. it describes how far “over” and
“up” you have to drive.

4

2.1.2 Avoiding A Choice

So we have two possible ways to represent points in space, each with benefits and drawbacks.
Instead of picking one over the other, we’ll use both as they suit us. The reason that this
is valid is that both pairs of rationals and pairs of reals form a mathematical object called
a metric space: if we only program using properties of metric spaces in general, it doesn’t
matter which particular metric space we choose when we run the code.

To that end, you will write your code for this assignment without committing to either
representation of points and using only functions that work on an abstract idea of points in
general.

For testing, we have included implementations of a plane built from both real and rational
points. This gives you two choices:

• If you want to run your code to see if your algorithm is correct: use the rational plane
and compare your output to ours. (Details in Section 2.5.)

• If you want to run your code, once you’ve decided that it’s correct, to see the results
of the simulation, or if you want to see how far off your code is: use the real plane and
upload the output into the visualizer. (Details in section 2.5.4.)

Your grade for this assignment will factor in the behaviour of your code on both repre-
sentations of the plane. We will test that your implementation produces exactly the same
results as ours with rational points and also that it produces roughly the same results in the
real metric space.

2.2 The Plane

To make your code work with both implementations of the plane, we use the SML module
system.

2.2.1 Scalars

There is a signature SCALAR for numbers (see scalar.sig), with two implementations, one in
terms of rationals, and the other in terms of reals. The real implementaiton uses the normal
Euclidean distance metric, and the rationals implementation uses Manhattan distance. The
type Scalar.scalar refers to the currently selected implementation. The implementation of
real scalars is in realplaneargs.sml and of rational scalars is in realplaneargs.sml. This
provides only some core operations that differ between the two implementations; operations
that are the same for both implementations are in scalar.sml. Overall, you should be able
to do the homework just by reading scalar.sig and not the implementations, but look at
realplaneargs.sml and scalar.sml if you are confused about what an operation does (the
rationals implementation is a little harder to read). We describe some of the operations in
more detail here:

The type Scalar.scalar is equipped with the following functions:

• Scalar.plus : Scalar.scalar * Scalar.scalar -> Scalar.scalar which com-
putes the sum of two scalars.

5

• Scalar.minus : Scalar.scalar * Scalar.scalar -> Scalar.scalar which com-
putes the difference of two scalars.

• Scalar.times : Scalar.scalar * Scalar.scalar -> Scalar.scalar which com-
putes the product of two scalars.

• Scalar.divide : Scalar.scalar * Scalar.scalar -> Scalar.scalar which com-
putes the quotient of two scalars.

• Scalar.compare : Scalar.scalar * Scalar.scalar -> order which computes the
ordering between two scalars.

• Scalar.fromRatio : IntInf.int * IntInf.int -> Scalar.scalar

Plane.s fromRatio (x,y) evaluates to the value of type Scalar.scalar which rep-
resents x

y
.

• Scalar.toString : Scalar.scalar -> string which computes a string represen-
tation of a scalar.

There are other helper functions in the file implemented in terms of these. By using only
the above operations, your code will work with either implementation of the plane.

2.2.2 Points and Vectors

Using scalars, we have provided an implementation of the plane, which consists of points and
vectors. These are represent by the types Plane.point and Plane.vec. In order to write
our implementation of the Barnes-Hut algorithm, we need several operations on vectors and
points in space, many of which we discussed in lecture. The type Plane.point is used to
represent a point in space, and the type Plane.vec is used to represent vectors of velocity,
acceleration, etc. In the implementation, we define the type of points and vectors as in
lecture:

type Plane.point = Scalar.scalar * Scalar.scalar

type Plane.vec = Scalar.scalar * Scalar.scalar

This uses Scalar.scalar for numbers and represents points and vectors in Cartesian coor-
dinates. In the client, these types are abstract, and you should code only in terms of the
provided operations on points and vectors.

You can see the full signature for the plane in space.sig. Some operations include:

• Plane.--> : Plane.point * Plane.point -> Plane.vec

the vector whose tail is the first point and whose head is the second point

• Plane.zero : Plane.vec

the zero vector

• Plane.++ : Plane.vec * Plane.vec -> Plane.vec

add two vectors

6

• Plane.** : Plane.vec * Scalar.scalar -> Plane.vec

scale a vector by a constant

• Plane.origin : Plane.point

the origin point of the vector space.

• Plane.distance : Plane.point * Plane.point -> Scalar.scalar

Plane.distance p1 p2 evaluates to the distance between the points p1 and p2.

• Plane.midpoint : Plane.point * Plane.point -> Plane.point

Plane.midpoint p1 p2 evaluates to the midpoint of the points p1 and p2.

• Plane.head : Plane.vec -> Plane.point

Plane.head v evaluates to the point that corresponds to the displacement of v from
the origin.

In the Barnes Hut file, we have opened the Plane module, which means you can refer to
these operations without writing Plane.X. We have also made the symbols infix, so you can
write e.g. p1 --> p2 and v1 ** c.

2.2.3 Bounding boxes

The type BoundingBox.bbox represents a rectangular region in two-dimensional space. You
will want to use the functions whose types and specs are given in bbox.sig. These functions
are implemented in bbox.sml. In the Barnes Hut file, we have renamed BoundingBox to BB

for conciseness. Here some useful functions:

• BB.contained : (bool * bool * bool * bool) * Plane.point * BB.bbox -> bool

BB.contained bs p bb evaluates to true if and only if the point p is in the box b. The
four booleans control whether the left/right/top/bottom edges of the box are included
or excluded, where true means to exclude an edge.

For example, BB.contains((false,false,false,false),p,b) returns true if p is in
the box b including all of the edges, while BB.contains((true,false,false,false),p,b)
is the same except it will return false if p is directly on the left edge of the rectangle.
The order of the booleans is

(exclude left side, exclude right side, exclude top side, exclude bottom side)

and a corner is excluded if either of the sides containing it are excluded.

• BB.diameter : BB.bbox -> Scalar.scalar

Computes the diameter of the box, i.e. the length of the diagonal.

• BB.from2Points : Plane.point * Plane.point -> BB.bbox

from2Points (p1, p2) returns the smallest bounding box containing both p1 and p2

7

• BB.fromPoints : Plane.point Seq.seq -> BB.bbox

Computes the minimum bounding box containing every point in a sequence of points,
assuming the sequence is non-empty.

• BB.center : BB.bbox -> Plane.point

Computes the center point of the bounding box.

• BB.corners : BB.bbox -> Plane.point * Plane.point * Plane.point * Plane.point

Returns the four corners of the bounding box in order

(top left, top right, bottom left, bottom right)

2.3 Barnes-Hut

In lecture, we discussed how to solve the n-body problem in the näıve, quadratic manner.
The code for this is given in mechanics.sml and naiveNBody.sml. Recall that the pieces
of information we need about a body in space are its mass, location, and velocity. This is
represented by the type definition

type body = Plane.scalar * Plane.point * Plane.vec

The type body is used to represent the different bodies in the n-body simulation. Specifically,
in an expression (m, p, v) of type body, m is the mass of the body, p is its position, and v

is the vector representing its velocity.
The näıve, quadratic implementation of an n-body simulation is given by the function

accelerations : body Seq.seq -> Plane.vec Seq.seq

in naiveNBody.sml. This function transforms a sequence of bodies into a sequence in which
the element at position i represents the acceleration for the element at position i of the
sequence of bodies.

One of the vital helper functions for this is

accOn : body * body -> Plane.vec

found in mechanics.sml. Recall the specification is that accOn (b1, b2) calculates the
acceleration on b1 due to b2. Using this function, the calculation is fairly straightforward:

fun accelerations (bodies : body Seq.seq) : Plane.vec Seq.seq =

Seq.map (fn b1 => Plane.sum (fn b2 => accOn (b1, b2)) bodies) bodies

However, on large inputs, this implementation is accurate, but unacceptably slow for an
actual simulation. There are many different approximations that have been developed; the
one we will look at is called Barnes-Hut.

8

2.3.1 The algorithm

In short, Barnes-Hut groups bodies by quadrants (in the two-dimensional case) and uses a
threshold value θ to determine whether each individual body is “far enough” away from a
group of other bodies. If it is, it groups the other bodies into a big pseudobody and uses that
for the acceleration calculation instead of each individual body composing the pseudobody.
This results in a loss of accuracy, but a dramatic speedup in terms of runtime—while the old
algorithm had work in O(n2), this algorithm’s work is in O(n log n) if the threshold value is
well-chosen.

To calculate the effect of a pseudobody on another body, it is important to know the
total mass of all the bodies represented by the pseudobody and also their center of mass
or barycenter. Therefore, when we form a pseudobody, we will compute a tuple (m, c)

such that m : Plane.scalar is the total mass of the bodies and c : Plane.point is the
barycenter. To compute the barycenter, we compute a weighted average of the vectors
corresponding to the displacement of each body’s position from the origin. For example, if
the positions are given by the set {pi | i ∈ I} and the corresponding masses are given by the
set {mi | i ∈ I} then we compute the following vector:

R =

∑
i∈I miri∑
i∈I mi

where ri is the vector corresponding to the displacement of position pi from the origin. The
barycenter is then the head of this vector.

Given the total mass and barycenter, we approximate the acceleration due to all the
bodies in the group as the acceleration due to a single body located at the barycenter with
mass equal to the total mass.

2.3.2 Computing the barycenter

Rather than computing the barycenter for each quadrant of space from all of the points
that space, we will approximate the barycenter as an average of the averages of the four
subquadrants of a region of space. This means that all we ever need to do is to compute the
barycenter of four pairs of masses and points.

Task 2.1 (10 pts). Write the function

fun barycenter ((m1,p1) : (Scalar.scalar * Plane.point),

(m2,p2) : (Scalar.scalar * Plane.point),

(m3,p3) : (Scalar.scalar * Plane.point),

(m4,p4) : (Scalar.scalar * Plane.point)) :

Scalar.scalar * Plane.point = ...

that computes the pair (m, c) where m is the total mass of the four bodies (i.e., the sum of
the first components of the pairs) and c is the barycenter.

9

2.3.3 Grouping bodies

We still have not discussed exactly how to group bodies. There are many different ways
of doing so, but the most straightforward is by grouping things into quadrants (for the 2D
case). That is, starting at the center of the area, we divide the field into quadrants, then
recursively group the bodies in each quadrant, stopping when a region has either zero or
one body in it. This yields a tree-structured division of space, where each node has four
subtrees, corresponding to the four quadrants of it. We can represent this tree structure as
a datatype in SML:

datatype bhtree =

Empty

| Single of body

| Cell of (Scalar.scalar * Plane.point) * BB.bbox

* bhtree * bhtree * bhtree * bhtree

Empty represents a region with no bodies in it. Single b represents a region with exactly
the body b in it. Cell ((m, c), bb, sq) is somewhat more complicated:

• m is the total mass of the bodies contained in the region.

• c is the barycenter of the bodies contained in the region.

• bb is a bounding box of the region.

• The four subtrees represent the subdivisions of the four quadrants of the region. The
four child bhtree’s are, in order, the top-left, top-right, bottom-left, and bottom-right
quadrants of the region, respectively.

As a first step in constructing this tree, we will write the quarters function to split a
bounding box into four equally sized quadrants.

Task 2.2 (10 pts). Write the function

quarters : BB.bbox -> BB.bbox * BB.bbox * BB.bbox * BB.bbox

to compute the four bounding boxes that correspond to the top-left, top-right, bottom-left,
and bottom-right quadrants of the argument bounding box. Use the bounding box functions
described above.

2.3.4 Growing the tree

We now have the tools we need to compute a bhtree from a sequence of points and a
bounding box.

Task 2.3 (30 pts). Write the function

compute tree : body Seq.seq * BB.bbox -> bhtree

10

such that compute tree (s, bb) evaluates to T, where T is the tree decomposition of s in
the bounding box bb. You may assume that all of the bodies in s are within the bounding
box bb and that no two bodies in s occupy the same position (i.e., have equal position
components).

In the recursive calls, you will need to divide s into four sequences corresponding to those
bodies in each of the four quadrants of bb. If a body is on the border between two quadrants,
it should be placed in the first quadrant that it is in, in the following order: top left, top
right, bottom left, bottom right.

Note: The barycenter of the bodies in a bounding box should be computed as the barycen-
ter of the four quadrants’ barycenters. You can use the helper function center of mass :

bhtree -> Plane.scalar * Plane.point to project the relevant data from the result of a
recursive call.

2.3.5 Computing acceleration

Now that we can calculate the tree determined by a group of bodies, we can use it to
efficiently compute an approximation of the acceleration of all the bodies at this particular
timestep. This brings us back to the threshold value θ mentioned above.

The reason Barnes-Hut is more efficient than the näıve approach is that it does not
compute the exact acceleration—instead, it uses a parameter θ to determine exactly how
precise to be. Whenever your algorithm reaches a region with more than one body in it
(that is, a Cell in the tree), it checks to see if diam

dist
≤ θ, where diam is the diameter of

the region (the length of the diagonal) and d is the distance from the body being checked
to the region’s barycenter. If it is, then the region is treated as one large body located
at its barycenter (which we have conveniently already calculated!). Otherwise, the region
gets decomposed into quadrants and the respective accelerations from the bodies in each
quadrant are computed recursively, combined, and returned.

Task 2.4 (5 pts). Write the function

val too far : Plane.point * Plane.point * BB.bbox -> Scalar.scalar -> bool

such that given a point p1 (position of body whose acceleration is being computed), a point
c (center of a region), and bounding box bb (bounding box of that region) and a threshold
t (θ), too far (p1, c, bb, t) evaluates to true if diam

dist
≤ θ and false otherwise.

Task 2.5 (25 pts). Write the function

bh acceleration : bhtree * Plane.scalar * body -> vec

such that bh acceleration (T, threshold, b) computes the acceleration on b from the
tree T according to the algorithm described above. (Hint: Use a function from mechanics.sig,
which is the mechanics code from lecture.)

Task 2.6 (20 pts). Finally, write a function

11

barnes hut : Scalar.scalar * body Seq.seq -> vec Seq.seq

that uses your compute tree and bh acceleration functions to form the Barnes-Hut tree
for a sequence of bodies and then use it to compute the acceleration on each body in the
sequence.

2.4 How to Load the Project

To load your code using the floating point implementation of the plane, in SMLNJ issue the
command

- CM.make "sources-real.cm";

To load your code using the rational implementation of the plane, in SMLNJ issue the
command

- CM.make "sources-rat.cm";

CM.make uses the SMLNJ compilation manager to load many different files, including
all of our support code and the code that you write. Every time you edit your file,
you should re-run CM.make to reload your code—do this in place of “using” the
homework file.

2.5 Testing

Barnes-Hut is more difficult to test than the previous homeworks, because the data structures
are more complex and examples are harder to write out by hand. We encourage you to test
your code using all of the following techniques:

2.5.1 Unit Tests

Because your solution consists of several functions that build on each other, it is in your
interest to test each function in isolation, which will help you figure out where your bugs
are. For barycenter, quarters, and compute tree, we have provided some tests, and you
can write more (if you want) using the helper functions and hard-coded points/bounding
boxes/bodies in the module TestData. You can run BarnesHut.test_X() for the test

functions in BarnesHut.sml.

2.5.2 Testing Exact Answers with the Rational Plane

For the final Task 5.6, you should test your overall implementation by running on the rational
plane and diffing the output against ours, as described below. You do not need to include
hard-coded tests in your SML file. Running the visualization with the output from the
floating point scalars should give you a rough idea of if your code is correct, but comparing
with our output on the rational scalars will be more precise.

We have provided the output of our code on the rational scalars on a few examples.
These are in the example-transcripts directory.

You can compare your output with ours as follows:

12

- CM.make "sources-rat.cm";

- Transcripts.run_tests();

(exit SMLNJ)

$ diff -q tests/ expected-transcripts/

If you see nothing, that means the output was what it should be. If you see lines like

Files tests/rat.system.2day.auto.txt

and expected-transcripts/rat.system.2day.auto.txt differ

that means your output was different than ours in that case. You can ignore output about
.DS store (a MacOS file), and if you see output about real.system.*.*.txt only being in
the tests directory that just means that you accidentally ran this tester with the real plane
instead of the rational one.

If the tests fail, running the solar system transcripts (described next) in the visualizer
(described at the end) might be helpful for debugging, since it will give you a visual sense
of whethwer the simulation is mostly right or not.

2.5.3 Generating Transcripts

Another way to test is to generate transcripts and use the visualizer to see what they look
like. A good first goal is to see that the planets orbit the sun:

• Transcripts.run solar inner : int * string -> unit

run solar inner (days, outfilename) generates a transcript for running the solar
system for that many days and puts the results in the file data/outfilename. The
transcript file tells the visualizer to show only the planets up to Mars.

For example:

- Transcripts.run_solar_inner (365, "year.txt.sim");

will create a file data/year.txt.sim that should show the earth orbiting the sun once.

• Transcripts.run solar : int * string -> unit Same as the above, except the
visualization radius includes all planets.

Next, you should run some larger simulations:

• Transcripts.run file : string * int * (IntInf.int * IntInf.int) -> unit

run file (filename, num iters, timestep) runs the simulation on an input file
specified by filename, for num iters steps, with time given by Scalar.fromRatio

timestep. The output is written to filename.sim.

For example:

- Transcripts.run_file ("data/galaxy2.txt", 2000, (1,10));

13

produces a file data/galaxy2.txt.sim. See data/datafiles.txt for descriptions of
the simulations.

Here are some good timesteps and numbers of iterations.

Transcripts.run_file ("data/asteroids1000.txt", 1000, (1,10)); (* 62 seconds*)

Transcripts.run_file ("data/cluster2582.txt", 2000, (1,10)); (* 555 seconds *)

Transcripts.run_file ("data/galaxy1.txt", 2000, (1,10)); (* 130 seconds *)

Transcripts.run_file ("data/galaxy2.txt", 2000, (1,10)); (* 83 seconds *)

Transcripts.run_file ("data/galaxy3.txt", 1500, (1,10)); (* 304 seconds *)

Transcripts.run_file ("data/galaxy4.txt", 2000, (1,10)); (* 41 seconds *)

Transcripts.run_file ("data/spiralgalaxy.txt", 2000, (1,10)); (* 94 seconds *)

Transcripts.run_file ("data/galaxymerge1.txt", 5000, (1,5)); (* 820 seconds *)

Transcripts.run_file ("data/galaxymerge2.txt", 2500, (1,10)); (* 626 seconds *)

Transcripts.run_file ("data/galaxymerge3.txt", 2500, (1,10)); (* 655 seconds *)

Transcripts.run_file ("data/galaxyform2500.txt", 2000, (1,10)); (* 294 seconds *)

Transcripts.run_file ("data/collision2.txt", 2500, (1,10)); (* 330 seconds *)

Transcripts.run_file ("data/collision1.txt", 1500, (1,10)); (* 299 seconds *)

Transcripts.run_file ("data/saturnrings.txt", 100, (1,100)); (* 112 seconds *)

Transcripts.run_file ("data/galaxy10k.txt", 100, (1,10)); (* 93 seconds *)

Transcripts.run_file ("data/galaxy20k.txt", 50, (1,10)); (* 188 seconds *)

Transcripts.run_file ("data/galaxy30k.txt", 800, (1,10)) (* 1736 seconds *)

Some of them take a while (the comment is how long they took for me). You don’t
need to run all of them — you can pick a few to try. Or you can either turn down the
number of iterations to see less of the movie, or run them overnight. The total size of
all files produced is about 2GB.

• The command

- Transcripts.run_files();

runs all of the above.

2.5.4 Running the Visualizer

Once you have produced a transcript file, you can visualize it by navigating to

https://dlicata.wescreates.wesleyan.edu/teaching/fp-s22/visualizer/visualizer.html

You can then load a transcript file in one of two ways: either dragging and dropping the
transcript file into the dashed box, or using the file browser to select the file manually.
The visualizer will only work with floating point transcripts! Once you select a
transcript, click ’Go!’ to run the visualizer. You should refresh the page before running
another transcript.

14

	Sequence Library
	n-Body Simulations
	Two Planes
	Big Picture
	Avoiding A Choice

	The Plane
	Scalars
	Points and Vectors
	Bounding boxes

	Barnes-Hut
	The algorithm
	Computing the barycenter
	Grouping bodies
	Growing the tree
	Computing acceleration

	How to Load the Project
	Testing
	Unit Tests
	Testing Exact Answers with the Rational Plane
	Generating Transcripts
	Running the Visualizer

