
COMP 212 Spring 2022
Lab 5

The goal for the this lab is to make you more comfortable writing functions that operate
on trees.

1 Survey

Please fill out this survey: https://forms.gle/RsrwRTSoz8YD1fTi7

2 Tree Recursion

In class, we saw that mergesorting lists doesn’t have a very good span (O(n)), because
splitting and merging lists are entirely sequential operations. This motivates representing
sequences of data as trees instead of as lists.

We represent a tree as follows:

A tree is either

• Empty, or

• Node(l,x,r) where l is a tree, x is an int, and r is a tree.

and that’s it!

Task 2.1 Draw a diagram of the tree

val t0 = Node(Node(Empty,3,Node(Empty,1,Empty)),

7,

Node(Node(Empty, 12, Empty), 2, Empty))

Task 2.2 The root of a tree is the value at the top. What is the root of t0?

Task 2.3 The size of a tree is the number of numbers in it. What is the size of t0?

Task 2.4 The depth of a tree is greatest number of non-Empty Nodes on a path between
the root and an Empty (including the root but not counting the Empty). What is the depth
of t0?

1

https://forms.gle/RsrwRTSoz8YD1fTi7

Task 2.5 A tree is balanced (roughly) when its depth is as small as possible given its size.
More precisely, we can say that a tree is balanced when the depths of any two Emptys differ
by no more than 1. Is t0 balanced? Draw some other trees with the same elements that are
less balanced.

Writing functions on trees We can use case on a tree like so:

case t of

Empty => ...

| Node (l, x, r) => ...

and in the Node case, we will usually make recursive calls on l and r.
For example, a function that computes the size of a tree is defined like this:

(* Purpose: compute the number of elements in the tree *)

fun size (t : tree) : int =

case t of

Empty => 0

| Node (L, x, R) => 1 + size L + size R

Here is a function for adding one to each element of a tree, producing a new tree:

(* Purpose: add one to each element in a tree *)

fun addone (t : tree) : int =

case t of

Empty => Empty

| Node (L, x, R) => Node(addone L, x+1, addone R)

2.1 Depth

Intuitively, the depth of a tree is the length of the longest path from the root to an Empty.
More precisely, we define the depth of a tree inductively: the depth of Empty is 0; the depth
of Node(l, x, r) is one more than the larger of the depths of its two children l and r.

Task 2.6 Define the function

depth : tree -> int

that computes the depth of a tree.
Hint: You will probably find the function max : int * int -> int, which we have

provided for you, useful.

2

2.2 Tree to List

Task 2.7 Define a function treeToList, which converts a tree to a list “in order”. This
means that the contents of the left subtree should come before the middle data, which should
come before the contents of the right subtree. For example:

treeToList (Node(Node(Empty,1,Empty),

2,

Node(Empty,3,Empty)))

== [1,2,3]

Hint: remember that the append function on lists is built-in and called @.

Have us check your code before proceeding!

3 Lists to Trees

For testing, it is useful to be able to create a tree from a list of integers. To make things
interesting, we will ask you to return a balanced tree: one where the depths of any two
Emptys differ by no more than 1.

Task 3.1 Define the function

listToTree : int list -> tree

that transforms the input list into a balanced tree. Hint: You may use the split function
provided in the support code, whose spec is as follows:

If l is non-empty, then there exist l1,x,l2 such that

split l == (l1,x,l2) and

l == l1 @ x::l2 and

length(l1) and length(l2) differ by no more than 1

Have us check your code before proceeding!

4 Reverse

In this problem, you will define a function to reverse a tree, so that the to-list of the reverse
comes out backwards:

treeToList (revT t) ∼= reverse (treeToList t)

3

Code

Task 4.1 Define the function

revT : tree -> tree

according to the above spec.

Have us check your code for reverse before proceeding!

Analysis

Task 4.2 Determine the recurrence for the work of your revT function, in terms of the size
(number of elements) of the tree. You may assume the tree is balanced.

Task 4.3 Give a closed form and big-O bound for WrevT.

Task 4.4 Determine the recurrence for the span of your revT function, in terms of the size
of the tree. You may assume the tree is balanced.

Task 4.5 Give a closed form and a big-O bound for SrevT.

Have us check your analysis before proceeding!

Correctness

Prove the following:

Theorem 1. For all values t : tree, treeToList (revT t) ∼= reverse (treeToList t).

You may use the following lemmas about reverse on lists:

• reverse [] ∼= []

• For all valuable expressions l and r of type int list,

reverse (l @ (x::r)) ∼= (reverse r) @ (x::(reverse l))

When we do induction on a tree, we do a case for Empty and a case for Node(l,x,r). In
the Node case, we can assume two inductive hypotheses, which say that the theorem holds
for l and that the theorem holds for r.

4

Case for Empty

To show:

Case for Node(l,x,r)

Inductive hypothesis for l:
Inductive hypothesis for r:

To show:

5

Have us check your proof!

6

	Survey
	Tree Recursion
	Depth
	Tree to List

	Lists to Trees
	Reverse

