
15-150 Lecture 4:

Lists

Lecture by Dan Licata and Ian Voysey

26 January 2012

1 What Are Lists?

A list of integers (a value of type int list) is either

[], or

x :: xs where x : int and xs : int list.

And that’s it!

[] is pronounced “nil” or “the empty list”; :: is pronounced “cons”. Therefore, the values of type
int list are lists like these:

1 :: (2 :: (3 :: (4 :: [])))

This can also be written without the parens as

1 :: 2 :: 3 :: 4 :: []

because :: is right-associative. For a particular list with a fixed number of elements, you can also
write the elements inside of square-brackets separated by commas, as in

[1,2,3,4]

This is just a convenient notation from SML; it’s short hand for the above form.

The operation on lists is case analysis (and recursion):

case l of

[] => <branch1>

| x :: xs => <branch2, with (x : int) and (xs : int list) in scope>

giving a branch for [] and a branch for ::. In the body of the :: branch, the variable x stands
for the first element of the list, and the variable xs stands for the rest of the list.

Note that :: is being used both to create lists, in value declarations, and take lists apart, in
the part of the :: branch to the left of =>.

1

2 Structurally Recursive Functions on Lists

2.1 length

Let’s write a function compute the length of a list, which is to say the number of elements in the
list, or the number of times that :: appears in the structure of the list.

(* Purpose: compute the length of the list l *)

fun length (l : int list) : int =

case l

of [] => 0

| x :: xs => 1 + length xs

val 5 = length (1 :: (2 :: (3 :: (4 :: (5 :: [])))))

The length of the empty list is 0: it has no elements, and we know that because :: does not
appear in []. If we assume that the recursive call is correct inductively, the length of x :: xs is
one more than the length of the tail xs: we saw an instance of ::, so we add 1 and recur.

Here’s an example of length running on a small list:

length (1 :: (2 :: []))

|-> case (1 :: (2 :: [])) of [] => 0 | x :: xs => 1 + length xs

|-> 1 + length (2 :: [])

|-> 1 + (case 2 :: [] of [] => 0 | x :: xs => 1 + length xs)

|-> 1 + (1 + (length []))

|-> 1 + (1 + (case [] of [] => 0 | x :: xs => 1 + length xs))

|-> 1 + (1 + (0))

|-> 1 + 1

|-> 2

length transforms a list into an integer by walking down the list, replacing each element with
1, and each :: with +, and then evaluating up all of the additions once the recursion finishes. So
above, we start with the int list expression

1 :: 2 :: []

and we get the int expression

1 + 1 + 0

2.2 sum

We can write a function to compute the sum of the elements in a list very similarly:

(* Purpose: sum the numbers in the list *)

fun sum (l : int list) : int =

case l

of [] => 0

| x :: xs => x + sum xs

val 15 = sum [1,2,3,4,5]

2

sum transforms a list into an integer by walking down the list, leaving each element alone, replacing
each :: with a +, and evaluating up all of the additions once the recursion finishes.

So, for example, in the trace

sum (1 :: (2 :: []))

|-> case (1 :: (2 :: [])) of [] => 0 | x :: xs => x + sum xs

|-> 1 + sum (2 :: [])

|-> 1 + (case 2 :: [] of [] => 0 | x :: xs => x + sum xs)

|-> 1 + (2 + (sum []))

|-> 1 + (2 + (case [] of [] => 0 | x :: xs => x + sum xs))

|-> 1 + (2 + (0))

|-> 1 + 2

|-> 3

we transform the int list expression

1 :: 2 :: []

into the int expression

1 + 2 + 0

2.3 General Form

These two functions suggest a general template for a function on lists:

(* Purpose: operate on every element of a the list *)

fun f (l : int list) : A =

case l of

[] => < expression of type A >

| x :: xs => < expression of type A in terms of x : int,

xs : int list,

and (f xs) : A >

In the cons case, you can use the first element of the list x, the rest xs, and a recursive call to f

on the smaller list xs. Note that any call to f on any expression equivalent to l that gets evaluated
in the recursive case causes non-termination.

2.4 Raise Salaries

Let’s do something a bit more practical. I have here a list of the TA’s salaries and—since Dan isn’t
around to stop me—I’m going to give everyone a big raise.

(* Purpose: add amount to each salary in the list *)

fun rB (l : int list, amount : int) : int list =

case l

of [] => []

| x::xs => (x + amount) :: rB (xs,amount)

val [1001, 1002, 1003, 1005] = rB ([1, 2, 3, 5], 1000)

3

Note that this function takes two arguments, like the add function you wrote in lab; see the end
of the Lecture 3 notes if you need to review pairs. Also note that this function transforms integer
lists into other integer lists, which is slightly more interesting than the examples above; this is a
case where we’ve picked the type A in the general form to be the type int list.

3 Structural Induction on Lists

3.1 Proof of Fusion Property

Let’s prove that two nested calls of raiseBy can be fused into one call without changing the result.
Specifically, we’ll prove Theorem 1. This is saying that we can optimize and traverse the list once
instead of twice, and no program will be able to tell the difference.

Theorem 1 (Fusion). For all values l : int list, a : int, b : int,

rB (rB (l, a), b) ∼= rB (l, a + b)

Proof. The proof is by structural induction on l. In all of the cases below, let a and b be any values
of type int.

Case for [] To show:
rB (rB ([], a), b) ∼= rB ([], a + b)

Proof:

rB (rB ([], a), b)
∼= rB (case [] of [] => [] | x :: xs => (x + a)::rB (xs, a), b) step
∼= rB ([], b) step
∼= case [] of [] => [] | x :: xs => (x + b)::rB (xs, b) step
∼= [] step
∼= case [] of [] => [] | x :: xs => (x + (a + b))::rB (xs, (a + b)) step, sym
∼= rB ([], a + b) step, sym

By transitivity of ∼=, this concludes this case.

Case for x::xs inductive hypothesis:

rB (rB (xs, a), b) ∼= rB (xs, a + b)

To show:
rB (rB (x :: xs, a), b) ∼= rB (x :: xs, a + b)

4

Proof:

rB (rB (x :: xs, a), b)
∼= rB (case x :: xs of [] => [] | x :: xs => (x + a)::rB (xs, a), b) step
∼= rB ((x + a) :: rB (xs, a), b) step
∼= case (x+ a) :: rB (xs, a) of [] => [] | x :: xs => (x + b)::rB (xs, b) ***
∼= ((x+ a) + b) :: rB (rB (xs, a), b) step
∼= ((x+ a) + b) :: rB (xs, a + b) IH
∼= (x+ (a+ b)) :: rB (xs, a + b) math
∼= case x :: xs of [] => [] | x :: xs => (x + (a + b))::rB (xs, (a + b)) step, sym
∼= rB (x :: xs, a + b) step, sym

By transitivity of ∼=, and taking *** on faith, this concludes this case and the proof.

3.2 Valuability

To finish the proof of Theorem 1 above, we need to give a justification for why

rB ((x + a) :: rB (xs, a), b)

and
case (x+ a) :: rB (xs, a) of [] => [] | x :: xs => (x + b)::rB (xs, b)

are equivalent.
Why do we need to be careful here? We make a very similar assertion in the base case when

we said that

rB ([], b) ∼= case [] of [] => [] | x :: xs => (x + b)::rB (xs, b)

In both cases, we’re substituting an argument for a parameter in the body of a function; the
critical difference is that in the base case the arguments to that function are both values, but in
the inductive case one of them is an expression but not a value.

So we need a rule stating to what a function application is equivalent that works in both
situations. We seem to want to be able to say that, when given any function

fun f (x : A) : B = e1

and any expression e2 : A,
(f e2) ∼= [e2/x]e1

where [e2/x]e1 is the expression that results from substituting e2 for all instances of x in e1.
To see why this isn’t good enough, consider the function

fun f (x : int) : int = 7

and the expression

f (1 div 0)

5

By our proposed rule, we can substitute for all zero occurrences of x in 7 and get

f (1 div 0) ∼= 7

But SML has a call-by-value evaluation semantics! So if we actually evaluate the expression, it
raises an error because you can’t divide by zero.

Because ∼= is an equivalence relation, allowing both interpretations would mean that

7 ∼= raise Div

which this directly contradicts the definition of ∼=, where we said that programs that raise exceptions
are not equivalent to programs that do not raise exceptions. The evaluation semantics of SML
aren’t going to change, so something must be wrong with our rule about equivalence of function
application expressions.

To patch up our rule, we need a couple of definitions:

1. Definition. An expression e is valuable if and only if there exists some value v such that
e ∼= v. Specifically to this proof,

• (pairs) If e = (e1, e2) then e is valuable iff e1 is valuable and e2 is valuable.

• (sums) If e = e1 + e2 then e is valuable iff e1 is valuable and e2 is valuable.

• (cons) If e = e1 :: e2 then e is valuable iff e1 is valuable and e2 is valuable.

• (app) If e = (f e1) then e is valuable iff f is total and e1 is valuable

2. Definition. A function f : α→ β is total if and only if for all values v : α, (f v) valuable.

Now, we can give the following rule:

Given any function

fun f (x : A) : B = e1

and any expression e2 : A, if e2 is valuable then

(f e2) ∼= [e2/x]e1

So, finally, the justification that we really wanted at *** is

1. • + is total

• x is assumed to be a value

• a is assumed to be a value

• Therefore, x+a is valuable by the rule for sums.

2. • xs is assumed to be a value

• a is assumed to be a value

• Therefore, (xs,a) is valuable by the rule for pairs.

3. • rB is total (by Theorem 2 proven below)

• Therefore, rB(xs,a) is valuable by the rule for applications.

6

4. • Therefore, (x+a)::(rB(xs,a)) is valuable by the rule for cons.

5. • b is assumed to be a value

• Therefore, rB((x+a)::(rB(xs,a)), b) is valuable by the rule for pairs.

6. Finally, then,
rB ((x + a) :: rB (xs, a), b)

is contextually equivalent to

case (x+ a) :: rB (xs, a) of [] => [] | x :: xs => (x + b)::rB (xs, b)

by the valuability argument above and a step.

This is very verbose and we’ll often suppress most of these concerns—like the totality of simple SML
built-ins, explicitly citing assumptions, and totality lemmas about structurally recursive functions
such as rB.

The main point, though, is that you can only treat an expression like a name for a value and
step through function application with it when you know it will actually produce a value.

3.3 Template for Structural Induction on Lists

Induction is applicable if you’re trying to prove a theorem of the form

“for all l : int list, [some statement about l is true]”

Here’s the format that any proof by structural induction on lists should have:

Proof. The proof is by structural induction on l.

Case for [] To show: [substitute [] into the statement for every instance of l]
Proof: . . .

Case for x::xs. Inductive hypothesis: [substitute xs into the predicate].
To show: [substitute x::xs into the statement for every instance of l].
Proof: . . .

3.3.1 Critical Observation

It’s critical to note that following this schema does not produce a proof by induction on the length
of the list: we’re arguing about the structure of the list directly and length is never involved. It
happens to be the case that lists and natural numbers have a similar structure, but that’s incidental.
We never mentioned length in our proof of Theorem 1 above or Theorem 2 below.

3.4 Totality

This proof was not presented in lecture, but it’s included for completeness and because it’s a good
example of a proof by structural induction on lists.

7

Theorem 2 (Totality). rB is total.

Proof. By the definitions of totality and valuability, it suffices to prove

For all values l : int list, a : int, ∃v : int list such that

rB (l, a) ∼= v

We will proceed, therefore, by induction on l. In all of the cases below, let a be any values of type
int.

Case for [] To show: ∃v : int list such that v is a value and rB ([], a) ∼= v
Proof:

rB ([], a)
∼= case [] of [] => [] | x :: xs => (x + a)::rB (xs, a) step
∼= [] step

Choose v to be the value [] : int list. By the transitivity of ∼=, this concludes the case.

Case for x::xs. Inductive hypothesis: ∃v : int list such that v is a value and rB (xs, a) ∼= v
To show: ∃v : int list such that v is a value and rB (x :: xs, a) ∼= v
Proof:

rB (x :: xs, a)
∼= case x :: xs of [] => [] | x :: xs => (x + a)::rB (xs, a) step
∼= (x + a) :: rB(xs, a) step

By the inductive hypothesis, ∃v : int list such that v is a value and rB (xs, a) ∼= v.
Therefore, let rl : int list be given such that rB(xs, a) ∼= rl. Continuing from above, this
gives us

∼= (x + a) :: rl IH

We assume that built in addition on values of type int is total, so let rs be a value such that

rs ∼= (x+ a)

Again continuing from above, this give us

∼= rs :: rl + total

We assume that built in :: is total, so let rf be a value such that

rf ∼= rs :: rl

Again continuing from above, this give us

∼= rf :: total

Choose v to be the value rf : int list. By the transitivity of ∼=, this concludes the case.

8

3.5 Other Theorems

The three simple functions discussed above are actually enough to prove a number of interesting
theorems. Here are just a couple, with the proofs left to the reader.

Theorem 3 (Self Inverse). For all values l : int list, a : int,

rB(rB(l,∼ a), a) ∼= l

Theorem 4 (Length Preservation). For all values l : int list, a : int,

(length l) ∼= length(rb(l, a))

Theorem 5 (Sum Scale). For all values l : int list, a : int,

sum(rB(l, a)) ∼= (sum l) + ((length l) ∗ a)

9

	What Are Lists?
	Structurally Recursive Functions on Lists
	length
	sum
	General Form
	Raise Salaries

	Structural Induction on Lists
	Proof of Fusion Property
	Valuability
	Template for Structural Induction on Lists
	Critical Observation

	Totality
	Other Theorems

