
15-150 Lecture 5:

Asymptotic Analysis

Lecture by Dan Licata

January 31, 2012

In this lecture, we introduce the idea of asymptotic analysis. This includes the following con-
cepts:

• recurrence relations

• closed forms

• big-O notation

• time analysis of functions

1 Reverse

Let’s say I have a list of things, like this deck of science fiction author playing cards. I want to
reverse the list, so that instead of having my favorite authors on top, they’re on the bottom (save
the best for last). How do I do that?

Let’s start with the template, assuming we’ll do structural recursion:

(* Purpose: reverse [x1,x2,...,xn] == [xn,xn-1,...,x2,x1] *)

fun reverse (l : int list) : int list =

case l of

[] => ...

| x :: xs => ... (reverse xs) ...

val [3,2,1] = reverse [1,2,3]

At this point, if you’re stuck a good idea is to do some examples: what should the reverse of
[] be? According to the spec, it needs to be all the elements of [] in the opposite order, which is
[]. So we can fill in the base case:

fun reverse (l : int list) : int list =

case l of

[] => []

| x :: xs => ... (reverse xs) ...

Now if you’re stuck on the cons case, a good technique is to do an example where you assume
the recursive call works:

reverse [1,2,3,4] should evaluate to [4,3,2,1] by the spec

reverse [2,3,4] should evaluate to [4,3,2] if the recursive call works

1

So the question is how to get from [4,3,2] to [4,3,2,1]. And the answer is: put 1 at the back!
We can’t do this using ::, which adds something to the front of a list. But we can using a new op-
eration @ (append), which combines two lists in order; e.g. [1,2,3]@[4,5,6] == [1,2,3,4,5,6].
Thus, the final code is:

fun reverse (l : int list) : int list =

case l of

[] => []

| x :: xs => (reverse xs) @ [x]

How do you define append? It’s built-in, but it would be defined like this:

fun (l1 : int list) @ (l2 : int list) : int list =

case l1 of

[] => l2

| x::xs => x :: (xs @ l2)

Append recurs down l1 and creates a new list where the [] from l1 is replaced with l2.

2 Time Complexity

One way to choose between different algorithms for the same problem is to analyze their time
complexity. What this means is that you look at the code and extract a prediction about how long
it will take to run, as a function of the size of the input. The whole point is to predict how long
a function will take on big inputs, before you actually run it—so you know whether it will be fast
enough or not.

We break time complexity analysis down into three steps:

• Go from the code to a recurrence relation

• Go from the recurrence relation to a closed form

• Go from the closed form to a big-O bound

2.1 Recurrence Relations

Let’s use append as a first example. How long does it take to run l1 @ l2?

• The zero case takes 2 steps:

[] @ l2

|-> case [] of [] => l2 | ...

|-> l2

• The x::xs case takes 2 steps plus the time for the recursive call:

(x::xs)@l2

|-> case x::xs of ... | x::xs => x::(xs@l2)

|-> x::(xs@l2)

|-> ... |-> ... x::v (recursive call computes a value v)

2

This analysis exploits the fact that there is a well-defined, mathematical, notion of calcula-
tion step in functional programming. For this reason, computing by calculation is good both for
verification (as we saw when we used it in proofs last time) and for analysis of algorithms.

We can summarize this by defining a recurrence relation W@(n) representing the number of
steps it takes to run l1 @ l2 where l1 has length n. Note that the length of l2 is irrelevant,
because the number of steps that we counted above is independent of the length of l2. Here’s the
recurrence:

W@(0) = 2
W@(n) = 2 + W@(n− 1)for non-zero n

“Recurrence relation” is just a fancy name for a recursive definition of a function in math (not in
SML). It’s easy to extract a recurrence relation from a functional programming: you count the steps
it takes to get to the recursive call in each case. However, a recurrence relation is not a very useful
tool for comparing different algorithms, because the recurrence relation has the same recursion
structure as the code itself, but different algorithms might have different recursion structure.

2.2 Closed Forms

A more useful thing to consider is a closed form for the recurrence relation: a non-recursive speci-
fication of the same function. For example:

Theorem 1. For all n, W@(n) = 2n + 2.

In this case, the closed form of W@ is 2n+ 2. Why? Well, you can see that W@ adds 2 for every
1 that it peels off, with a base case of 2. This is just like the correctness of double that you’re
doing in the homework. Formally, we can prove this using induction:

Proof. Case for 0: To show: W@(0) = 2 ∗ 0 + 2. True by calculation.
Case for 1 + k: Inductive hypothesis: W@(k) = 2 ∗ k + 2.

To show: W@(1 + k) = 2 ∗ (1 + k) + 2. Proof: By definition, W@(1 + k) = 2 + Wexp(k). By the IH,
this equals 2 + 2 ∗ k + 2 which equals 2 ∗ (1 + k) + 2.

The closed form is a better representation for comparison, because it abstracts away from the
particular recursion pattern used to define the function.

2.3 Big-O Notation

Big-O notation is a way to abstract away a little more. The idea with big-O notation is to give a
“rough” upper bound on the value of a function.

To a first approximation, fisO(g) means that f is bounded from above by g. So, to show that
fisO(g), it suffices to show that f is always less than g—i.e. for all x, f(x) ≤ g(x). For example
xisO(x2).

However, for comparing the running times of algorithms, it is often useful to ignore a couple
of things. First of all, we will ignore constant factors. For example, 6xisO(2x), even though 6x is
never less than or equal to 2x. To show that f is O(g), it suffices to show that there exists a k such
that for all x, f(x) ≤ k ∗ g(x). That is, f must be less than some constant multiple of g.

Second, we will ignore what happens on small inputs. For example, x + 6isO(x2), even though
x + 6 is bigger up to a point. Thus, f is O(g) if there is some point after which f is always less
than g. Putting these two together, we get the following definition:

3

f is O(g) iff there exist k, x0 such that for all x ≥ x0, f(x) ≤ k ∗ g(x).

In the example, W@(n), which equals 2n + 2, is O(n). We say that @ runs in linear time.
O-notation is useful for analyzing the time complexity of algorithms because it gives you a

rough picture of how the running time depends on the input size, on large inputs—i.e. it gives
you a rough picture of the asymptotic analysis as the input size approaches infinity. For example,
an O(n) algorithm for a problem will usually be faster on large inputs than an O(n2) algorithm.
However, you can hide a lot in k and x0: sometimes an algorithm with better big-O has such
large constants that it is worse in practice. But in many case asymptotic analysis gives you good
predictions about which algorithm would run better on big inputs.

In this course, we will ask you to extract recurrence relations from your code, compute closed
forms, and use them to determine the asymptotic big-O time complexity of a function. Here wre
some big-O’s we’ll run into:

O(1) constant
O(log n) logarithmic
O(n) linear
O(n2) quadratic
O(n3) cubic
O(2n) exponential

and so on.
Each of these functions in the above list is O(the ones below it). E.g. n is O(n2), and O(2n).

Thus, it’s important to keep in mind that saying “f is O(g)” does not mean that g is the best
upper bound for f . None of the functions are O(the ones above them). E.g. there is no constant
multiple of log n that is (eventually) always greater than n.

When we ask you for the O of a function or recurrence relation, we expect you to give a tight
bound : i.e. one where f is bounded both above and below by g. (Otherwise you could always say
O(2n) and almost always be right.) Technically, the notation for this is “f is Θ(g)”, but we will be
sloppy and use O.

2.4 Reverse

Let’s do the same thing for reverse:

Recurrence Here’s a recurrence for the work of reverse:

Wreverse(0) = k0
Wreverse(n) = k1 + W@(n− 1) + Wreverse(n− 1)

There are a few things to note: First, if you’re doing big-O analysis at the end, the constants don’t
matter. Thus, you can make your life easier when writing recurrences by not calculating out exactly
how many steps something takes, but instead writing k0, k1, . . . for some fixed constant number of
steps. Second, the recurrence for reverse refers to the recurrence for @, just like the code does.
Third, it’s actually a little subtle to figure out what the argument to W@ should be: it’s the length
of the first argument to @, which is reverse xs. xs has length n − 1, and it’s a simple theorem
that the length of reverse xs is the same as the length of xs. Formally, we should prove this, but
when doing analysis we won’t always prove these relationships explicitly.

4

Closed Form Next, we want to compute a closed form for the recurrence. The first step is to
plug in the closed form for W@:

Wreverse(n) = k1 + 2 ∗ (n− 1) + 2 + Wreverse(n− 1)
= k1 + 2n + Wreverse(n− 1)
= k1 + k2n + Wreverse(n− 1)

and replace the 2 by an abstract constant.
What is the closed form of a recurrence of this form? To see this, it is helpful to expand the

recurrence and rewrite it as a sum:

Wreverse(n) = k1 + k2(n− 1)
+k1 + k2(n− 2)
+k1 + k2(n− 3)
. . .
+k0

Thus what we have is

Wreverse(n) =
∑n−1

i=0 (k1 + k2i)

Then we can use properties of arithmetic and sums to get a closed form:∑n−1
i=0 (k1 + k2i) = k1 ∗ (

∑n−1
i=0 1) + k2 ∗ (

∑n−1
i=0 i) + k0

= k1 ∗ (n− 1) + k2 ∗ ((n−1)n
2) + k0

= k3 ∗ n + k4n
2 + k5

In the second step, we used the equations

(
∑n

i=0 1) = n

(
∑n

i=0 i) = n(n+1)
2

In the third, we did some arithmetic and coalesced constants into some new constants k3 and k4
(it’s not hard to work out what k3 and k4 and k5 are in terms of k1 and k2 and k0).

Thus, we arrive that the closed form

Wreverse(n) = k5 + k3 ∗ n + k4n
2

big-O This closed form is O(n2). In general, when you have a sum of terms, the big-O is the
biggest summand.

Thus, reverse takes quadratic time. The reason is that @ takes linear time, and we do one
append for each element of the list. It’s not quite as simple as this explanation makes it seem,
because the list we are appending onto is smaller each time. But the formula for the closed form
of n summorial (cf. your HW 2 problem) tells us that this is still quadratic.

3 Fast Reverse

However, there’s a faster way to reverse a list: just place the elements into a separate pile, one by
one (e.g. watch me reverse this deck of science fiction author playing cards). The second pile will
then be the first pile in reverse order.

To implement this, we generalize the function so that it takes a second argument, representing
the second pile:

5

(* Purpose: reverse l in linear time *)

fun revTwoPiles (l : int list, r : int list) : int list =

case l of

[] => r

| (x :: xs) => revTwoPiles(xs , x :: r)

fun fastReverse (l : int list) : int list = revTwoPiles(l , [])

In the x::xs case of revTwoPiles, we pick up one card from the left pile, put it on the right, and
then continue the process by recurring. fastReverse calls revTwoPiles with the initial right pile
empty.

Analysis: The recurrence is

WrevTwoPiles(0) = k0
WrevTwoPiles(n) = k1 + WrevTwoPiles(n− 1)

WfastReverse(n) = k2 + WrevTwoPiles(n)

In the nil case, the function does a constant number of steps. In the cons case, the function does
a constant number of steps plus the recursive call. Analogously to append, the closed form is
k0 + k1 ∗ n, so the work is O(n). Thus, this version takes linear time.

This is our first example illustrating the idea that harder problems can be easier : by generalizing
the problem statement, we were able to get a faster algorithm.

4 Additional Example: Fast Exponentiation

Here is another example of analysis (this wasn’t covered in lecture, but might be helpful).

4.1 Analysis of exp

Recall exp from last week:

(* Purpose: compute 2^n

Examples: exp 0 ==> 1

exp 4 ==> 16

*)

fun exp (n : int) : int =

case n of

0 => 1

| n => 2 * exp (n-1)

How long does it take to run exp n?

• The zero case takes 2 steps:

exp 0

|-> case 0 of 0 => 1 | _ => 2 * (exp (0 - 1))

|-> 1

• The n + 1 case takes 4 steps plus the time for the recursive call:

6

exp (k+1)

|-> case (k+1) of 0 => 1 | _ => 2 * exp ((k+1)-1)

|-> 2 * exp ((k+1)-1)

|-> 2 * exp k

... recursive call computes a numeral m, so the program is ...

2 * m

|-> <one more step to do the multiplication>

Recurrence. We summarize this by defining a recurrence relation Wexp(n) representing the num-
ber of steps it takes to run exp on the numeral n:

Wexp(0) = 2
Wexp(n) = 4 + Wexp(n− 1)for non-zero n

Closed form. We can prove the closed form of this recurrence:

Theorem 2. For all n, Wexp(n) = 4n + 2.

In this case, the closed form of Wexp is 4n + 2. Why? Well, you can see that Wexp adds 4 for
every 1 that it peels off, with a base case of 2. Formally, we can prove this using induction:

Proof. Case for 0: To show: Wexp(0) = 4 ∗ 0 + 2. True by calculation.
Case for 1 + k: Inductive hypothesis: Wexp(k) = 4 ∗ k + 2.

To show: Wexp(1 + k) = 4 ∗ (1 + k) + 2. Proof: By definition, Wexp(1 + k) = 4 + Wexp(k). By the
IH, this equals 4 + 4 ∗ k + 2 which equals 4 ∗ (1 + k) + 2.

The closed form is a better representation for comparison, because it abstracts away from the
particular recursion pattern used to define the function.

Big-O Wexp(n), which equals 4n + 2, is O(n). We say that exp runs in linear time.

4.2 Fast Exponentiation

It turns out that there is an O(log n) algorithm for exponentiation: divide the exponent by 2 and
square the result (assuming multiplication is constant time, which it is for fixed-size integers). That
is, we exploit the fact that

2n = (2(n/2))2

Because we’re working with integers, we apply this identity only when n is even. When it’s odd,
we decrement by one.

Define fun square(x) = x * x, and note that there is a built-in operation div used like
6 div 2. When n is divisible by k, n div k computes to n/k. We can also implement evenP

in constant time using the built-in mod operator. Then we can define fast exponentiation as follows:

fun fexp (n : int) : int =

case n of

0 => 1

| n => (case evenP n of

true => square (fexp (n div 2))

| false => 2 * (fexp (n-1)))

7

It is very important to observe that we are doing something different here: we are making
a recursive call on a number other than n − 1. This is an example of something called well-
founded recursion, where you can make recursive calls on any smaller number, rather than just the
immediate predecessor. Here’s the template:

fun f (n : int) : T =

... recursive calls on any m < n ...

Let’s extract a recurrence for the running time. Here’s a trick: if you’re only going to use a
recurrence to compute the O, you don’t need to figure out the actual constants, since they won’t
matter in the end. We’ll write k0, k1, . . . for constant numbers.

Wfexp(0) = k0
Wfexp(n) = k1 + Wfexp(n/2) if n is even
Wfexp(n) = k2 + Wfexp(n− 1) if n is odd

Wfexp(n) is O(log n). I won’t prove this, but let’s see what happens when n is a power of 2. In
that case, you always hit the even case, so

Wfexp(n) = k1 + Wfexp(n/2) (1)

= k1 + k1 + Wfexp(n/4) (2)

= k1 + k1 + k1 + Wfexp(n/8) (3)

... (4)

Since log n is exactly the number of times you can divide n by 2 to get 1, the closed form is
k1 log n + k2 + k0, which is O(log n).

5 Addtional Example: FastFib

Name that integer sequence: 1, 1, 3, 5, 8, 13, 21, That’s right; it’s Fibonacci!
Here’s the obvious way to implement it:

fun fib (n : int) : int =

case n of

0 => 1

| 1 => 1

| _ => fib (n - 1) + fib (n - 2)

Live evenP in lab, this function has three cases—zero one and 2 + n. Like exponentiation, this
uses complete induction: it makes recursive calls not just on a number that is one-smaller, but
on any smaller number. For exponentiation, that meant half; here it means both the immediate
predecessor and one before that.

Because of these two recursive calls, the recurrence for the work looks like this:

Wfib(0) = k0
Wfib(1) = k1
Wfib(n) = Wfib(n− 1) + Wfib(n− 1)for non-zero n

This is not so helpful, since it says that the time to compute the nth Fibonacci n is . . . he nth

Fibonnaci number!.

8

However, if we can get an upper bound for this recurrence as follows:

Wfib(0) = k0
Wfib(1) = k1
Wfib(n) ≤ 2Wfib(n− 1)for non-zero n

because Wfib(n) is monotonically increasing (it’s never smaller on bigger inputs).
If you write it out, you can see that the closed form of this recurrence is

Wfib(n) = k0 + k1 + k2 ∗ 2n+1 − 1

To see this, you can write the recursion out as a tree. fib does k2 work at each recursive call, so
we can label each node with k2. Each node has two children, because each call makes two recursive
calls.

k2

k2 k2

k2 k2 k2 k2

...

The k2 is uniform, so factor it out

1 1

1 1 2

1 1 1 1 4

...

We want to count the number of nodes in this tree. The total has the form 1 + 2 + 4 + 8 + 16 +
The reason is that the tree has n levels, because the recurrence recurs on n − 1, and the ith level
has 2i work. Thus, the total amount of work is

n∑
i=1

2i

If you look it up, the closed form of this sum is 2i+1 − 1 (cf. how many binary numbers are there
with n bits).

Once you’ve written out the closed form, it’s clear that this recurrence is O(2n), just by forget-
ting the constants.

Fastfib How can we do better? We don’t really need two recursive calls:

To compute We need

fib n fib (n-1) and fib (n-2)

fib (n-1) fib (n-2) and fib (n-3)

fib (n-2) fib (n-3) and fib (n-4)

So we really don’t need two recursive calls, if we reuse the same computaton of fib n the two
times we use it. The key idea is to generalize the problem so that we compute both fib n and
fib (n-1).

You will implement this in lab.

9

	Reverse
	Time Complexity
	Recurrence Relations
	Closed Forms
	Big-O Notation
	Reverse

	Fast Reverse
	Additional Example: Fast Exponentiation
	Analysis of exp
	Fast Exponentiation

	Addtional Example: FastFib

