
15-150 Lecture 7:

Parallel Sorting

Lecture by Dan Licata

February 7, 2012

Today’s main points:

• Writing recurrence relations for span

• Lists are a bad data structure for parallelism

• Programming with trees

1 Span

In sequential evaluation, to evaluate a pair (e1,e2) you evaluate e1 and then evaluate e2. Work
is the number steps it takes to sequentiallly evaluate a program. In particular, this means that the
work to evaluate (e1,e2) is the number steps to evaluate e1 plus the number of steps to evaluate
e2.

Parallel evaluation has all of the same rules as sequential evaluation, except to evaluate a
pair (e1,e2) you evaluate e1 and e2 in parallel. E.g. (3+1,4+5) |=> (4,9) in one parallel step.
(Caveat: SML is not actually implemented using parallel evaluation for pairs; to get parallelism, you
need to use a special language construct (sequences), that we will talk about later in the semester.
But all of the examples that we do using pairs can be rephrased to use sequences later.) Span is
the number steps it takes to evaluate a program according to parallel evaluation. In particular,
this means that the span to evaluate (e1,e2) is the max of the number of steps to evaluate e1 and
the number of steps to evaluate e2. The span is however long it takes whichever one takes longer
to finish.

Recall the mergesort code from last lecture:

fun split (l : int list) : int list * int list =

case l of

[] => ([] , [])

| [x] => ([x] , [])

| x :: y :: xs => let val (pile1 , pile2) = split xs

in (x :: pile1 , y :: pile2)

end

fun merge (l1 : int list , l2 : int list) : int list =

case (l1 , l2) of

([] , l2) => l2

| (l1 , []) => l1

1

| (x :: xs , y :: ys) =>

(case x < y of

true => x :: (merge (xs , l2))

| false => y :: (merge (l1 , ys)))

fun mergesort (l : int list) : int list =

case l of

[] => []

| [x] => [x]

| _ => let val (pile1,pile2) = split l

in

merge (mergesort pile1, mergesort pile2)

end

The work was O(n log n).
What is the span? You might think that mergesort is good for parallelism, because of the

tree-shaped decomposition of problems:

sort [3,1,4,2]

sort [3,1] sort [4,2]

sort [3] sort [1] sort [4] sort [2]

The depth of the tree is O(log n), where n is the length of the list. So maybe mergesort has
logarithmic span?

Unfortunately, no! The very first thing it does it to use split to deal the list out into two piles.
There is no parallelism here, since it deals the elements out one by one, so we have to wait at least
O(n) timesteps right at the start, even if we have as much computational power as we need. This
is bad.

We just argued that the span is at least linear. Let’s write a recurrence to see what it actually
is. The recurrences for split and merge are the same as they would be for the work, because there
are no pairs to evaluate in parallel:

Ssplit(n) = k1 + Ssplit(n− 2)
Smerge(n) = k2 + Smerge(n− 1)

Thus, both are O(n).
However, for mergesort, we get

Smergesort(n) = k3 + Smerge(n) + Ssplit(n) + max(Smergesort(n/2), Smergesort(n/2))
≤ k′ · n + ·Smergesort(n/2)

Because the two recursive calls are in a pair, they can be calculated in parallel, and thus we only
count one of them towards the span.

If we factor out the constant and expand out this recurrence, we get

Smergesort(n) ≤ k′(n + n/2 + n/4 + n/8 + n/16 + . . .)

= k′(n + n · (Σlogn
i=1 (1/(2i))))

The latter sum is always less than 1 (this is Zeno’s paradox: if you always step halfway there, you
never get there), so the whole thing is less than 2k′n, and Smergesort is therefore O(n).

2

This is less than ideal. For the moment, ignore the constant factors; a similar example can be
chosen no matter what they are. Suppose you want to sort a billion numbers on 64 processors.
log 109 is about 30. So the total work to do is 30 billion. On 64 processors, this should take less
than half a billion timesteps, if you divide the work perfectly among all 64 processors. However,
this span says that the length of the longest critical path is still a billion, so you can’t achieve this
division! This gets worse as the number of processors gets larger.

The problem is that lists are bad for parallelism. The list data structure does not admit an
efficient enough implementation of split and merge to exploit all the parallelism one might have.

2 Trees

We can solve this problem by switching to a different data structure: the choice of data structure
influences how much parallelism is available. We will do a version of mergesort on trees that still
has O(n log n) work (so it’s work-efficient : the work is the same as the sequential algorithm you
start with) and has O((log n)3) span.

2.1 Lists as a Datatype

Lists are built in to ML, and we have said that

A list of integers (int list) is either

[], or

x :: xs where x : int and xs : int list.

And that’s it!

However, aside from some syntactic issues, lists could be defined by the following datatype
definition:

datatype intlist =

[]

| :: of int * intlist

Caveats: you can’t actually use [] as a constructor name; you can say that constructors should be
used in infix notation (to write x :: xs), but this doesn’t; the bracket notation [1,2,3] is special
to lists. But other than that, lists are just a datatype.

This generates constructors, [] and ::, which can be used both to construct lists and to case-
analyze them, as we have been doing.

2.2 Tree Datatype

Trees are defined as follows:

A tree is either

Empty, or

Node(l,x,r) where x : int and l : tree and r : tree.

And that’s it!

3

Trees are constructed by applying constructors:

val example = Node (Empty , 1 , Node (Empty , 3 , Empty))

However, trees are not built-in, so we have to define them. We do this using a datatype
declaration:

datatype tree =

Empty

| Node of (tree * int * tree)

This means the same thing as the English above, but is in a form SML can understand. It
defines a new type tree with two constructors, Empty and Node. Values can be constructed as
above, and the operation is, as usual, case-analysis and recursion:

(* Purpose: compute the number of elements in the tree *)

fun size (t : tree) : int =

case t of

Empty => 0

| Node (l, x, r) => 1 + size l + size r

val 2 = size example

This illustrates structural recursion on trees: Because there are two recursive occurrences of
tree as arguments to Node, you get two recursive calls, one for each.

3 Sorted Trees

When is a tree sorted?

• Empty is sorted.

• Node(l,x,r) is sorted iff

– l is sorted, and

– r is sorted, and

– everything in l is <= x, and

– x < everything in r.

• e is sorted if e ∼= e’ and e’ is sorted.

The first two clauses say when values are sorted; the third says that sortedness respects equivalence.
For example,

Node(Node(Node(Empty,1,Empty),

2,

Node(Empty,3,Empty)),

4,

Node(Empty,5,Empty))

is sorted using the first two clauses. We’ll use the third to state a theorem like “for all trees t,
sort t is sorted” and then prove it by calculating.

4

4 Mergesort on Trees

4.1 Code

Let’s be bold and follow the template for structural recursion:

fun mergesort (t : tree) : tree =

case t of

Empty => Empty

| Node (l , x , r) => ... mergesort l ... mergesort r ...

Assuming we have sorted l and r, what do we need to finish off the case? We need to merge
together the two sorted results and the tree containing just x. So we push one helper function on
the to-do list:

(* Purpose: combine two sorted trees into a third, containing exactly

the elements of both *)

fun merge (t1 : tree , t2 : tree) : tree = ...

and finish off mergesort by calling it:

fun mergesort (t : tree) : tree =

case t of

Empty => Empty

| Node (l , x , r) =>

merge(merge (mergesort l , mergesort r),

Node(Empty,x,Empty))

We use Node(Empty,x,Empty) to make a one-element tree, and use merge twice to put these three
trees together.

Why is this better than mergesort for lists? First, the split into subproblems is constant time—
the splitting is given by the data structure itself! Second, we can merge two trees in sublinear span,
which gets a sublinear span overall. This is tricky, but doable; we’ll show how today.

Merging Here’s the idea with merging: say we need to merge

Node (Node(Empty,1,Empty), 3 , Node(Empty,5,Empty))

and

Node (Node(Empty,2,Empty), 4 , Node(Empty,6,Empty))

We are, somewhat arbitrarily, going to choose to be guided by the first tree, and will stipulate
that the root of the first tree will be the overall root. So the question is, how do we need to fill in
this:

Node (merge(?,?) , 3 , merge(?,?))

Clearly, the left subtree of 3 needs to go to the left, and the right to the right, for the result to be
sorted and contain all the appropriate elements.

Node (merge(Node(Empty,1,Empty),?) , 3 , merge(Node(Empty,5,Empty),?))

For similar reasons, we need to put everything in the second tree that is less than 3 to the left, and
everything greater to the right.

5

Node (merge(Node(Empty,1,Empty),Node(Empty,2,Empty)),

3,

merge(Node(Empty,5,Empty),Node (Empty, 4 , Node(Empty,6,Empty))))

So let’s make up another helper function:

(* Purpose: assuming t is sorted, split t along the bound,

returning (l,r) where

l contains the elts of t that are <= bound

r contains the elts of t that are > bound

and both l and r are sorted *)

fun splitAt (t : tree , bound : int) : tree * tree =

Using this, it’s simple to write merge:

fun merge (t1 : tree , t2 : tree) : tree =

case t1 of

Empty => t2

| Node (l1 , x , r1) =>

let val (l2 , r2) = splitAt (t2 , x)

in

Node (merge (l1 , l2) ,

x,

merge (r1 , r2))

end

Split Here’s the code for split:

fun splitAt (t : tree , bound : int) : tree * tree =

case t of

Empty => (Empty , Empty)

| Node (l , x , r) =>

(case bound < x of

true => let val (ll , lr) = splitAt (l , bound)

in (ll , Node (lr , x , r))

end

| false => let val (rl , rr) = splitAt (r , bound)

in (Node (l , x , rl) , rr)

end)

Let’s look at the case where bound < x. By induction splitAt(l,bound) divides up l so that
everything less than bound is in ll and evertying greater is in lr. We know that x and r have to go
on the right side, because x > bound, everything in r is greater than x, and therefore also greater
than the bound. The other case is symmetric.

4.2 Correctness

How would you prove that mergesort returns a sorted tree? Structural induction on trees!

Theorem 1. For all trees t, mergesort t is sorted.

6

Here’s the template:

Proof. Case for Empty
To show: mergesort Empty is sorted.
Proof: mergesort Empty == Empty in 2 steps, and Empty is sorted by defintion.
Case for Node(l,x,r)

Inductive hypotheses: (1) mergesort l is sorted.
(2) mergesort r is sorted.

To show: mergesort (Node (l,x,r)) is sorted.
Proof:

mergesort (Node (l,x,r))

== merge (merge (mergesort l, mergesort r), Node(Empty,x,Empty)) [step x 2]

By the IH, mergesort l and mergesort r are sorted. By the spec for merge, which says that merge
takes two sorted trees to a third, merge(mergesort l, mergesort r) is sorted. Applying this
spec again, merge (merge (mergesort l, mergesort r), Node(Empty,x,Empty)), so because
sortedness respects equivalence, mergesort (Node (l,x,r)) is sorted as well.

It’s worth pointing out a subtlety in the proof: The easiest thing to prove about merge is

Lemma 1. For all values l:tree and r:tree, if l is sorted and r is sorted then merge(l,r) is
sorted.

When we state the theorem for values, then we can do a proof by induction, because the values
of type tree are indutively defined.

However, in the proof, we need to appeal to the lemma on non-values, like mergesort l and
mergesort r. To do this, we can lift the lemma to valuables:

Corollary 1. For all valuable expressions e1:tree and e2:tree, if e1 is sorted and e2 is sorted
then merge(e1,e2) is sorted.

Proof. By definition of valuability e1 ∼= v1 and e2 ∼= 2 for some values v1 and v2. Because sorted
respects equivalence, v1 and v2 are sorted. By the lemma above, this means that merge(v1,v2) is
sorted. Again because sorted respects equivalence, merge(e1,e2) is sorted.

In the proof, we then need to know that mergesort e1 and mergesort e2 and
merge(mergesort e1,mergesort e2) are valuable. But it is simple to prove that all of splitAt,
merge, and mergesort are total, because they are structurally recursive.

4.3 Analysis

The overall work of mergesort is O(n log n), and the span is O((log n)3). Let’s look at the span
analysis.

First, let d be the depth of the tree. Then

SsplitAt(d) = k + SsplitAt(d− 1)

because peeling off the Node constructor decreases the depth by 1. Thus, SsplitAt(d) is O(d).
Let d1 and d2 be the depths of t1 and t2. Then

Smerge(d1, d2) = k + SsplitAt(d2) + max(Smerge(d1 − 1, d21), Smerge(d1 − 1, d22))

7

where d21 and d22 are the depths of the result of the split. These are no deeper than the original
tree, so we can overapproximate as

Smerge(d1, d2) ≤ k + SsplitAt(d2) + max(Smerge(d1 − 1, d2), Smerge(d1 − 1, d2))
≤ k′d2 + Smerge(d1 − 1, d2)

Expanding this out, you can see that we do k′d2 work d1 times, so Smerge(d1, d2) is O(d1 · d2).
Now for mergesort. Let n be the size of the tree, and assume it is balanced, so the depth is

about log n.

Smergesort(n) = k + max(Smergesort(n/2), Smergesort(n/2)) + Smerge(log n, log n) + Smerge(2 log n, 1)
≤ k + Smergesort(n/2) + k1(log n)2 + k2 log n
≤ Smergesort(n/2) + k3(log n)2

The second call to merge is on the output of the first, so we need to know how merge changes the
depth of the tree. Fortunately, we can prove that

depth (merge(l,r)) ≤ depth l + depth r

Overall the recurrence says that we do O((log n)2) steps (the divisions inside the log don’t help
you, because it’s just subtracting off a constant) log n times, so the overall span is O((log n)3).
Thus (ignoring constants), when we try to sort a billion elements, the length of the longest critical
path is about 27000 operations, so we can exploit over a million processors!

Or it would be, if there wasn’t a bug in this analysis! When instantiated Smerge(log n, log n)
and Smerge(log n, 1), we were relying on the fact that the trees we passed to merge were balanced.
However, this is not necessarily the case, because we call these functions on the output of mergesort.
Moreover, mergesort doesn’t necessarily produce a balanced tree. We can fix this by rebalancing
each time through:

fun mergesort (t : tree) : tree =

case t of

Empty => Empty

| Node (l , x , r) =>

rebalance(merge(merge (mergesort l , mergesort r),

Node(Empty,x,Empty)))

You’ll look at the code for rebalance in the homework; it doesn’t change the overall work or span.

8

	Span
	Trees
	Lists as a Datatype
	Tree Datatype

	Sorted Trees
	Mergesort on Trees
	Code
	Correctness
	Analysis

