
15-150 Lecture 20:

Dictionaries, using Type Classes and Functors

Lecture by Dan Licata

March 29, 2012

1 Dictionaries, Take 1

Here is the signature for dictionaries that you implemented in lab:

signature LABDICT =

sig

type (’k, ’v) dict

(* the empty mapping *)

val empty : (’k, ’v) dict

(* insert cmp (k1 ~ v1, ..., kn ~ vn) (k,v)

== (k1 ~ v1, ..., ki ~v,...) if cmp(k,ki) == EQUAL for some ki

== (k1 ~ v1, ..., kn ~ vn, k ~ v) otherwise

*)

val insert : (’k * ’k -> order) -> (’k, ’v) dict -> (’k * ’v) -> (’k, ’v) dict

(* lookup cmp (k1 ~ v1,...,kn ~ vn) k

== SOME vi if cmp(k,ki) == EQUAL for some ki

== NONE otherwise

*)

val lookup : (’k * ’k -> order) -> (’k, ’v) dict -> ’k -> ’v option

end

Here, we’ve annotated the signature with a specification of the behavior of each operation, in
terms of a mathematical dictionary notation (k1 ~ v1,...,kn ~ vn). E.g. (1 ~ true, 2 ~ false)

represents the dictionary that maps 1 to true and 2 to false. These mathematical dictionaries model
the actual dictionaries as a set of key-value pairs. This way, you can reason about the behavior of
your code in terms of this abstraction, without knowing the particular implementation.

Here’s an example implementation as trees:

structure TreeDict : LABDICT =

struct

(* Invariant: BST *)

datatype (’k, ’v) tree =

Empty

1



| Node of (’k, ’v) tree * (’k * ’v) * (’k, ’v) tree

type (’k, ’v) dict = (’k, ’v) tree

val empty = Empty

fun lookup cmp d k =

case d of

Empty => NONE

| Node (L, (k’, v’), R) =>

case cmp (k,k’) of

EQUAL => SOME v’

| LESS => lookup cmp L k

| GREATER => lookup cmp R k

fun insert cmp d (k, v) =

case d of

Empty => Node (empty, (k,v), empty)

| Node (L, (k’, v’), R) =>

case cmp (k,k’) of

EQUAL => Node (L, (k, v), R)

| LESS => Node (insert cmp L (k, v), (k’, v’), R)

| GREATER => Node (L, (k’, v’), insert cmp R (k, v))

end

Does this implementation of dictionaries as trees meet the above spec?
In fact, it doesn’t. The reason is somewhat subtle: a type can be ordered in more than one way.

For example, in addition to Int.compare, which compares integers using the normal less-than,

(* compare x and y mod 1024 *)

fun compareMod (x:int,y:int) = ...

compares integers mod 1024.
If you insert using Int.compare:

fun isins d p = TreeDict.insert Int.compare d p

val t1 = isins (isins (isins TreeDict.empty (1023,"c")) (111,"a")) (1025,"b")

then your tree will be sorted in increasing order according to Int.compare; in particular, 1025 will
be to the right of 1023. If you then lookup using compareMod, according to which 1025 (i.e. 1) is
less than 1023, lookup will go left, rather than right, and not find it!

That is, there is an invariant violation: compareMod (1025,1025) == EQUAL and 1025 ~ "b"

is in the model of the dictionary, but lookup returns NONE.
What is the problem here? The root of the issue is that the

(* Invariant: BST *)

invariant on the datatype doesn’t make sense: which comparison function is the tree sorted accord-
ing to?

One solution is to change the spec: What you want to say is that, if you lookup cmp d where
d is sorted according to cmp, then you will get the appropriate result. That is, which dictionaries

2



are appropriate to pass to lookup cmp depends on cmp. To do this, you need an abstract notion of
a dictionary being sorted for use in the signature, which would then be instantiated to something
specific (e.g. “this tree is a BST” for each implementation).

However, instead of putting this in and doing these proofs, we instead use the type system
to enforce this invariant, by bundling the comparison together with the key type, and making
dictionaries with different comparison functions be different types. To accomplish this, we need the
idea of a type class.

2 Type Classes

A type class is a mode of use of signatures, where you describe a type equipped with a (probably
non-exhaustive) collection of operations on it. For example:

signature ORDERED =

sig

type t

val compare : t * t -> order

end

This signature describes a type t equipped with a comparison function. It would not be useful
for this to be the only thing you know about t—there is no way to construct any values!

Here are some structures that satisfy this signature:

structure IntLt : ORDERED =

struct

type t = int

val compare = Int.compare

end

structure IntMod : ORDERED =

struct

type t = int

val compare = compareMod

end

structure StringLt : ORDERED =

struct

type t = string

val compare = String.compare

end

This illustrates that the same type can be ORDERED in different ways, and that different types
can be ORDERED.

What do clients of these modules know? They know that IntLt.t = int, IntMod.t = int,
StringLt.t = string. These types are not abstract! Why not?

Methodology: If you define a type to be a datatype that is not exported in the
signature, the type is abstract. If you don’t, it’s not.

3



In the former case, where you make a type abstract, the signature is prescriptive: it prescribes
exactly what you can do with the type.

In the latter, where you don’t, the signature is descriptive: it describes some of the operations
that a type supports. This is usually the right choice for a type class, because you want to use the
operations on values that you have around. E.g. you can write IntLt.compare (3,5)—if you made
the type abstract, you could never actually call compare. This is why SML automatically propagates
type definitions: when you write IntLT : ORDERED, SML writes down that IntLT.t = int, because
that’s what’s in the structure. Thus, if you want a type to be abstract, you have to define it to be
a type that no one else an do anything with—e.g. a datatype that is not exported.

3 Substructures

We can tie the comparison function to the key type using a substructure. Substructures express
hierarchical abstraction: you can build modules out of other modules. Here is the revised dictionary
signature:

signature DICT =

sig

structure Key : ORDERED

type ’v dict

val empty : ’v dict

val insert : ’v dict -> (Key.t * ’v) -> ’v dict

val lookup : ’v dict -> Key.t -> ’v option

end

The first component is a structure that matches the ORDERED signature. The later components
can refer to the type components of a substructure using dot notation—Key.t.

This siganture says that an implementation comes with a particular key type, rather than
supplying a type dict that is parametrized by the key type.

For example, here is a dictionary where the keys are integers:

structure IntLtDict : DICT =

struct

structure Key : ORDERED = IntLt

datatype ’v tree =

Empty

| Node of ’v tree * (Key.t * ’v) * ’v tree

type ’v dict = ’v tree

val empty = Empty

fun lookup d k =

case d of

Empty => NONE

| Node (L, (k’, v’), R) =>

4



case Key.compare (k,k’) of

EQUAL => SOME v’

| LESS => lookup L k

| GREATER => lookup R k

fun insert d (k, v) =

case d of

Empty => Node (empty, (k,v), empty)

| Node (L, (k’, v’), R) =>

case Key.compare (k,k’) of

EQUAL => Node (L, (k, v), R)

| LESS => Node (insert L (k, v), (k’, v’), R)

| GREATER => Node (L, (k’, v’), insert R (k, v))

end

In later components, we refer to the components of substructures using dot notation (Key.compare).
In these components, we know that Key.t = int, so we could equivalently have written

| Node of ’v tree * (int * ’v) * ’v tree

and

case Int.compare (k,k’) of

However, the above form is to be preferred for reasons that will become clear later.
In client code, you can refer to components of substructures using dot notation (e.g. IntLtDict.Key.t

and IntLtDict.Key.compare).
How do you make a dictionary whose keys are integers compared mod 1024?

structure IntModDict : DICT =

struct

structure Key : ORDERED = IntMod

datatype ’v tree =

Empty

| Node of ’v tree * (Key.t * ’v) * ’v tree

type ’v dict = ’v tree

... copy and paste same code as before ...

How about a dictionary whose keys are strings?

structure StringDict : DICT =

struct

structure Key : ORDERED = StringLt

datatype ’v tree =

Empty

5



| Node of ’v tree * (Key.t * ’v) * ’v tree

type ’v dict = ’v tree

... copy and paste same code as before ...

end

Questions:

• Is IntDict.dict equal to StringDict.dict? On the surface, it looks like they are defined
by the same datatype declaration. But in one case, Key.t is int and in the other its string.
So it would be unsound to consider these types equal—your program would crash!

• Is IntDict.dict equal to IntModDict.dict? This would be sound, but it is undesirable—
we would still be able to insert using Int.compare, and lookup using compareMod, which is
exactly the problem we’ve been trying to solve all lecture!

Fortunately, SML gets this right:

every time you evaluate a datatype declaration, you get a new type

So the type IntLtDict.tree is different than the type StringDict.tree, because they come from
different evaluations of the “same” datatype declaration (the two declarations have the same text).
Using this mechanism, we can make different types for dictionaries sorted by different comparison
functions, which avoids the above confusion.

4 Functors

Unfortunately, we’ve also introduced a lot of code duplication, because we had to copy and paste
the dictionary implementation for each key type.

We can fix this with a functor, which is a function from modules to modules. For example:

functor TreeDict(K : ORDERED) : DICT =

struct

structure Key : ORDERED = K

datatype ’v tree =

Empty

| Node of ’v tree * (Key.t * ’v) * ’v tree

type ’v dict = ’v tree

val empty = Empty

fun lookup d k =

case d of

Empty => NONE

| Node (L, (k’, v’), R) =>

case Key.compare (k,k’) of

EQUAL => SOME v’

6



| LESS => lookup L k

| GREATER => lookup R k

fun insert d (k, v) =

case d of

Empty => Node (empty, (k,v), empty)

| Node (L, (k’, v’), R) =>

case Key.compare (k,k’) of

EQUAL => Node (L, (k, v), R)

| LESS => Node (insert L (k, v), (k’, v’), R)

| GREATER => Node (L, (k’, v’), insert R (k, v))

end

TreeDict is the name of the functor; it takes an argument module K which has signature
ORDERED; and it produces a DICT. The implementation is the same code that we had been cutting
and pasting before, after defining the Key component of the result to be the structure K. This is
why we wrote Key.t and Key.compare above, even though we didn’t have to: in fact the code
works generically in any key type and comparison function.

We can recover the above modules by applying the functor to an argument, which must satisfy
the declared argument signature:

structure IntLtDict : DICT = TreeDict(IntLt)

structure IntModDict : DICT = TreeDict(IntMod)

structure StringDict : DICT = TreeDict(StringLt)

Questions:

• Is IntLtDict.Key.t equal to int? Yes! ML propagates the definitions: In the functor body,
Key is defined to be the argument K, and K is instantiated by IntLt, and IntLt.t is int.
None of these abstract types (datatypes that aren’t exported), so the definitions propagate
through.

• Is IntMod.dict equal to IntLt.dict? No! Each time you apply a functor, you evaluate its
body, which generates a new copy of each datatype in it. So the abstract types provided by
different applications of a functor are different.

7


	Dictionaries, Take 1
	Type Classes
	Substructures
	Functors

