
15-150 Lectures 24 and 25:

Scheduling; Introduction to Effects

Lectures by Dan Licata

April 12 and 17, 2011

1 Cost Semantics

A cost graph is a form of series-parallel graphs. A series-parallel graph is a directed graph (we
always draw a cost graph so that the edges point down the page) with a designated source node
(no edges in) and sink node (no edges out), formed by two operations called sequential and parallel
composition. The particular series-parallel graphs we need are of the following form:

. . G1 .

| | / \

. G2 G1 G2

\./

The first is a graph with one node; the second is a graph with two nodes with one edge between
them. The third, sequential combination, is the graph formed by putting an edge from the sink
of G1 to the source of G2. The fourth, parallel combination, is the graph formed by adding a new
source and sink, and adding edges from the source to the source of each of G1 and G2, and from
the sinks of each of them to the new sink. We also need an n-ary parallel combination of graphs
G1 ... Gn

.

/| \

/ | \

G1 G2 Gn

\ | /

\ | /

.

The work of a cost graph is the number of nodes. The span is the length of the longest path,
which we may refer to as the critical path, or the diameter. We will associate a cost graph with
each closed program, and define the work/span of a program to be the work/span of its cost graph.

These graphs model fork-join parallelism: a computation forks into various subcomputations
that are run in parallel, but these come back together at a well-defined joint point. These forks
and joins are well-nested, in the sense that the join associated with a later fork precedes the join
associated with an earlier fork.

For example, the expression

(1 + 2)

1

has cost graph

.

/ \

. .

\ /

.

|

.

This says that the summands 1 and 2 are evaluated in parallel; because 1 and 2 are already values,
the middle graphs have only one node. After the parallel combination, there is one step for doing
the addition. The work of this graph is 5 and the span is 4. (Note: these numbers are a constant-
factor higher than we have said earlier in the course, because we count both the fork and the join
as separate nodes, and we count a step for evaluating a value to itself; asymptotically, this doesn’t
matter.)

2 Cost graphs for sequence operations

The cost graph for length s is

.

|

.

The cost graph for nth i s is

.

|

.

Each function application may be evaluated in parallel. This is represented by the cost graph

.

/ | \

/ | \

f x1 f x2 f xn

\ | /

\ | /

.

where we write f x1, etc. for the cost graphs associated with these expressions.
The cost graph for reduce� b 〈x1, . . . xn〉 is

.

x1 o x2 x3 o x4 ...

\ |

\ |

\ |

\ |

.

2

o |

\ |

\ |

\|

o

.

.

.

(with the last pair being either xn-1 o xn or xn o b depending on the parity of the length). That
is, it is the graph of the balanced parenthesization described above.

The cost graph (and therefore time complexities) for tabulate is analogous to the graph for map:

.

/ | \

/ | \

f 0 f 1 f (n - 1)

\ | /

\ | /

.

3 Brent’s Principle

In lectures 17 and 18, we discussed cost graphs, which can be used to reason abstractly about the
time complexity of your program, independently of the schedule. For example, we showed how to
associate a cost graph with each operation on sequences, so that you can reason about the work
and span of your code via these graphs, without knowing the particular schedule.

But what do work and span predict about the actual running time of your code? The work
predicts the running-time on one processor; the span on “infinitely many” (which you are unlikely
to have). What can we say about the 2 processors in your laptop, or the 1000 in your cluster?

Theorem 1 (Brent’s Theorem). An expression with work w and span s can be run on a p-processor
machine in time O(max(w/p, s).

That is, you try to divide the total work w up into chunks of p, but you can never do better
than the span s. For example, if you have 10 units of work to do and span 5, you can achieve the
span on 2 processors. If you have 15 units of work, it will take at least 8 steps on 2 processors. But
if you increase the number of processors to 3, you can achieve the span 5. If you have 5 units of
work to do, the fact that you have 2 processors doesn’t help: you still need 5 steps.

Brent’s theorem should be true for any language you design; otherwise, you have gotten the
cost semantics wrong! Thus, we will sometimes refer to it as Brent’s Principle: a language should
be designed so that Brent’s Principle is in fact a theorem.

4 Scheduling

A schedule says, for each time-step, what unit of work each processor is doing. How dooes the
compiler actually schedule work onto processors? It turns out cost graphs are a helpful data
structure for scheduling. Let’s take a little time to understand how the compiler might do this.

3

A schedule can be generated by pebbling a graph. To schedule a cost graph onto p processors,
you play a pebble game with p pebbles. The rules of the pebble game are: you can pick up a pebble
from a node or from your hand and place it on a node all of whose predecessors have been visited,
marking that node as visited.

To generate a schedule that says what each pebble (processor) is doing at each time step, we
will divide the pebbling up into steps, and say that at each step you can play at most p pebbles.
The nodes played on are the units of work completed in that timestep. The restriction to playing
on nodes whose predecessors have been visited ensures that dependencies are respected. At any
time, the nodes whose predecessors have been visited, but have not themselves been visited, are
the frontier.

Consider the following cost graph:

a

b g

c d

e

f

h i

j

A 2-pebbling with pebbles X and O might start out like this:
Step X O
1 a
2 b g
3 c

In the first step, we can only play a pebble on the source (all of it’s zero predecessors have been
pebbled), because no other node in available. This corresponds to a processor being idle because
there is not enough available work to be done. In the second, we can play on both of the next two
nodes. In the third step, we can play on any of the four nodes at the next level, but we can choose
to play on only one of them. This corresponds to a processor being idle, even though there is work
that could be done. A greedy schedule assigns as many processors as possible work at each time
step. (A non-greedy scheduler might be more efficient overall if not all units of work took the same
time.)

Two scheduling algorithms are pDFS (p depth-first search) and pBFS (p breadth-first search).
DFS prefers the left-most bottom-most available nodes, whereas BFS prefers higher nodes (but
then left-to-right). At each step, you play as many pebbles as you can.

Here is a schedule using 2DFS (let’s say we prefer processor X if only one unit of work is

4

available):

Step X O
1 a
2 b g
3 c d
4 e h
5 i
6 j
7 f

In step 4, we prefer node e to node i because e is bottom-most.

Consequently, in the remaining steps there is only one node available to work on.

Here’s a schedule using 2BFS:

Step X O
1 a
2 b g
3 c d
4 h i
5 e j
6 f

This time, we prefer i to e because it is higher.

Consequently, in step 6, two units of work are available to do, so we can finish in 6 steps instead of
7.

Thus: different scheduling algorithms can give different overall run-time. Additionally, they
differ in how many times a processor stops working on the computation it is working on, and starts
working on an unrelated computation. E.g. in BFS, in step 4, both processors jump over to the
other side of the graph. This can be bad for cache (the small amount of memory very close to your
processor) performance, but the details are subtle.

5 Parallelism and Effects

Effects are things your program might do instead of, or in addition to, returning a value. Examples
we have seen so far: non-termination, I/O (printing, reading input, sending something over a
network, . . .), and exceptions.

Parallelism is about efficiency: running code on multiple processors at once. There are different
ways to achieve parallelism. One is determinstic parallelism: you make sure that the behavior of
a program is independent is independent of the schedule. This is what we consider in this course.
An alternative is concurrency : thinking about multiple processes/threads at the language level. In
concurrency, it is common to embrace non-terminism and effects. But for deterministic parallelism,
we need to consider, for each effect, whether it may be used in parallel code while preserving
determinacy. We consider the three aforementioned effects here.

5.1 Non-termination

Is non-termination dangerous in parallel code? What happens if you run

Seq.map f <1,2>

where f 1 terminates but f2 loops. Then no matter the schedule, the expression loops: whether it
works on f 1 first and then f 2, or vice verse, it eventually has to do all of the work in f 2, and
so will it the loop. This is because, in the kind of parallelism we have discussed, programs always
do all of the same work—in parallel execution, they just might do it faster.

5

5.2 I/O

What happens if you do

List.map (fn x => let val () = print (Int.toString x) in x + 1) [10,20,30]

?
The value is [11,21,31], as you would expect, and you see 102030.
What about

Seq.map (fn x => let val () = print (Int.toString x) in x + 1)

(seqfromlist [10,20,30])

?
The value is <11,21,31>, but what do you see?
Possibilities include:

102030

201030

302010

321000

(Draw the cost graph, and look at the possible schedules.)
That is, the order in which things get printed depends on the order in which things get exe-

cuted! The meaning of a program that uses input/output in parallel code is not well-defined. It is
dependent on the schedule. Moreover, as the last possibility shows, it might not even correspond to
any particular execution of what the program-level tasks are: there is no guarantee that, when you
print "12", the two characters get printed out together, without something happening in some
other task in between!

This is bad, because it means you need to think about parallelism when reasoning about the
behavior of your program, not just the efficiency. This is much harder.

To avoid this, we advocate keeping I/O out of parallel code by pushing effects to the
periphery. At the end of the day, you want your program to read and print stuff. That’s why
you run it. But in this implementation of game, the effects are at the “outside”—in the referee’s
loop, and in the human player. In the interesting, computationally intensive code, like the game
tree search and the board update, we program functionally, so that we may exploit parallelism.

5.3 Exceptions

Similar problems come up with exceptions. For example, in

Seq.map (fn x => raise Fail (Int.toString x)) (seqFromList [1,2,3])

what exception do you see?
If the program just raised whichever exception happened to actually be raised first, then you

might see any of Fail "1" or Fail "2" or Fail "3" depending on how the program was scheduled.
This is bad, because the program now no longer has a well-defined meaning.

We can fix this by defining the meaning to be that the program raises the “leftmost” exception
that gets raised—i.e. it agrees with the sequential semantics where map is evaluated left-to-right.
This means that, at the join-point of a fork-join parallelism construct, like map, the program must
wait for all tasks to complete, and choose the appropriate exception to propagate.

6

In fact, even if Seq.map did the wrong (ill-defined) thing, we could implement our own emap

that does the right thing. The reason we can do this is that you can handle an exception and turn
it into an option—this lets us implement the necessary join-point logic ourselves. It illustrates how
the join-point logic in the implementation of Seq.map works.

First, we define a result to be either a success (carrying a value), or a failure (carrying an
exception packet, which has type exn):

datatype ’a result = Success of ’a | Failure of exn

Next, we can write generic operations for converting a function that may raise an exception
into a function that never does, but optionally returns an exception packet instead of a result, and
back:

fun reify (f : ’a -> ’b) : ’a -> ’b result =

fn x => Success (f x) handle e => Failure e

fun reflect (f : ’a -> ’b result) : (’a -> ’b) =

fn x => case f x of Success v => v | Failure e => raise e

Next, we implement the join-point logic:

fun leftToRight (s : ’b result Seq.seq) : ’b Seq.seq result =

Seq.mapreduce (fn Success v => Success (Seq.singleton v)

| Failure e => Failure e)

(Success (Seq.empty()))

(fn (Success v1 , Success v2) => Success (Seq.append (v1,v2))

| (Failure e , _) => Failure e

| (Success _ , Failure e) => Failure e)

s

The final argument implements a binary join: If both sides come back as a success, the result is a
success. If the left-side raises an exception, that exception gets raised. If the left-side succeeds and
the right raises, only then does the right exception get raised.

Finally, we chain these functions together to wrap map: compute an explicit success/failure;
then do the join-point logic; and finally raise the appropriate exception if one was raised during
the map:

fun emap (f : ’a -> ’b) : ’a Seq.seq -> ’b Seq.seq =

reflect (leftToRight o (Seq.map (reify f)))

What is the span? Unfortunately, this adds a logarithmic factor to map, because the exception
propagates in a tree-like manner. A primitive implementation of map can track which exception to
raise in constant time. Thus, you are free to use exceptions in parallel code, and you will see a
deterministic, left-to-right semantics for which exception gets raised.

7

	Cost Semantics
	Cost graphs for sequence operations
	Brent's Principle
	Scheduling
	Parallelism and Effects
	Non-termination
	I/O
	Exceptions

