
COMP 212 Spring 2023
Final Non-Collaborative Challenge Problems

Remember that non-collaborative challenge problems are to be done indepen-
dently. You are not allowed to communicate with anyone about the problems,
except to ask the instructor clarification questions (not hints). Additionally,
you are not allowed to search for help on the specific problem from any sources
besides the course materials.

In this final assignment, you will write components of a 2-player deterministic (no ran-
domness like dice rolls) zero-sum (if one player wins then the other player loses) game. In
class, we discussed the following signature for games:

signature GAME =

sig

type board

val show_board : board -> string

type state = board * Player.player

val start : state

val hash : state -> string

val check_status : state -> Player.status

type move

val parse_move : state * string -> move option

val show_move : move -> string

val possible_moves : state -> move Seq.seq

val make_move : state * move -> state

end

1

The type board represents a game board. The show board function displays a board as
a user-readable string.

A state is a pair of a board and a player, describing whose turn it is. The start state
represents the beginning of a game. A player is

datatype player = X | O

The check status function returns the status of a game state:

datatype status = Playing | Won of player | Draw

where Playing means that the game is still ongoing, Won means that a player won, and Draw

means it was a tie.
The type move represents a game move. The function parse move determines whether a

given user input string represents a valid move in the given game state, and returns SOME(m)
if so and NONE if not. The function show move converts a move to a string for printing.

The function possible moves enumerates all possible moves from a game state; this can
be used to print the possible moves for a human player to choose from and for an AI player
to search for the best move.

The function make move updates a game state by making a move (which can be assumed
to be valid for that state).

One function that we didn’t discuss in class: the hash function should convert a game
state to as short a string as possible, to be used as the key of a dictionary.

For your reference, an implementation of the subtraction game from class is included in
the handout code. The board of this game is a number representing a pile of “coins”; the
initial state is typically 21, and player X starts. At each turn, a player removes 1 or 2 or 3
coins from the pile (up to the current contents of the pile). The goal of the game is to take
the last coin, leaving the other player with 0 coins left.

There are three independent tasks in this assignment, so you can try each of them even
if you don’t finish the previous one.

To compile this assignment, use CM.make "sources.cm". The CM file for this assignment
assumes that your files look like this

some folder/src

some folder/hw10-handout

some folder/final-handout

and uses the sequence code from src and your dictionary solution from homework 10.

1 Implementation of Tic Tac Toe

Task 1.1 (25 pts). Write a structure TicTacToe :> GAME implementing the game tic-
tac-toe. For full credit, your implementation should work for an N ×N square game board,
with N pieces in a row to win, though for the rest of this description we assume N = 3. The
rules should be as follows: The game board consists of a 3x3 grid. Each square of the grid

2

is either empty or contains an X or an O. At each turn, a player can place their mark (X or
O) on any empty square. The first player to get 3 in a row (horizontally, vertically, or on
either diagonal) wins, which ends the game. If all spots are non-empty but no player has 3
in a row, then the game ends in a draw.

Note on testing: if you want to test this part before writing the next part, I suggest
temporarily removing the :> GAME signature ascription so that SMLNJ treats the types in
your implementation as public information. Then in SMLNJ you can test the functions
interactively. Some examples for CountDown:

- CountDown.parse_move (CountDown.start, "1");

val it = SOME 1 : int option

- CountDown.parse_move (CountDown.start, "a");

val it = NONE : int option- CountDown.parse_move (CountDown.start, "1");

- CountDown.start;

val it = (21,X) : int * Player.player

- Seq.tolist (CountDown.possible_moves(CountDown.start));

val it = [1,2,3] : int list

- CountDown.make_move(CountDown.start, 1);

val it = (20,O) : int * Player.player

The rest of the project (the AI player and the controller) refers to a module Game :>

GAME, which is defined to be CountDown initially; to play tic-tac-toe instead you should
change the definition of Game to be TicTacToe.

2 Controller

Task 2.1 (25 pts). Write a function

fun controller (s : Game.state) : unit

that implements the top-level input-output loop for any GAME.
Here is a sample top-level loop for the CountDown game:

Controller.go();

21 pieces left

Player X enter your move. The possibilities are

1, 2, 3,

[you type] 1

20 pieces left

Player O is choosing a move

3

17 pieces left

Player X enter your move. The possibilities are

1, 2, 3,

[you type] 2

15 pieces left

Player O is choosing a move

12 pieces left

Player X enter your move. The possibilities are

1, 2, 3,

[you type] 3

9 pieces left

Player O is choosing a move

8 pieces left

Player X enter your move. The possibilities are

1, 2, 3,

[you type] 2

6 pieces left

Player O is choosing a move

4 pieces left

Player X enter your move. The possibilities are

1, 2, 3,

[you type] 3

1 pieces left

Player O is choosing a move

0 pieces left

O wins!

The only input-output functions you should need are:

• TextIO.inputLine(TextIO.stdIn) : string option reads a line of input that the
user types into the console every time you call it

• print : string -> unit prints the given string. You will want to include the newline
ASCII character \n in your strings to make line breaks.

See Lab 10 / the controller from homework 6 for examples.
For this task, you can either make both players play by requesting human input (if you are

not planning to do the AI player task, this way you can play against yourself or a friend), or

4

you can make one player human and the other an AI. The function Train.best_next_state

contains a stub AI player that just always picks the first available move.

3 AI Player

Write an AI player that can play a 2-player deterministic zero-sum game. Here is a suggested
algorithm.

Associate a “score” with each state of the game. The score of a Win/Draw state is 1.0 if
X won and ~1.0 if O won, and 0.0 if it is a draw. For the Playing states, start by assigning
every state score 0.0, and then update these scores as the AI player plays many games against
itself. You can store the updated scores in a dictionary mapping game states to scores. In
the Train module, the type

type memory = (string,real) Dict.dict

represents such a dictionary. You can change the type of the keys if you want to, but for
efficiency, you may want to use as keys a short string representation of the states determined
by the Game.hash function.

Task 3.1 (12 pts). Write a function

best_next_state : memory * Game.state -> Game.state * real

that is given a memory and a game state and chooses the best next state available by making
one of the possible moves of the game from that state. best_next_move should choose the
best state using the scores learned so far and stored in the given memory (or the 1.0/0.0/-1.0
scores described above if the game is over). “Best” means that if the game state indicates
that it is X’s turn, the function picks the state with the highest score; if the game state
indicates that it is O’s turn, the function picks the next state with the lowest score. The
function should return the best next state along with its score.

One subtlety is that there will often be more than one state with the same maximal score.
For the player to learn to play from enough states, it is helpful to choose one of the tied states
randomly, rather than picking a fixed one. You can use the function randRange(low:int,

high:int) : int to choose a random number between low and hi (inclusive, assuming low
≤ high).

Task 3.2 (13 pts). Write a function

fun train (n : int, mem : memory, s : Game.state) : memory

that trains the player by making it play n turns of the game against itself, choosing the
best next state at each turn, and updating the scores in the memory after each turn. The
function should return the memory containing the final scores learned from this training.
When in the process of training the game ends, the training continues with a new game on
Game.start.

5

After each turn’s move is chosen, the score of one state is updated as follows: when the
AI player moves from a state s1 to a state s2, the memory is updated so that

new score of s1 = old score of s1 + 0.3(old score of s2 − old score of s1)

That is, the score of s1 is nudged closer to the score of the state s2 that the player moved
to. The 0.3 is a “learning rate” that influences how “much” the player learns from a given
move. In this way, the AI player “learns” how good or bad s1 is, based on the state that it
will move to next after s1.

The line

val mem = Train.train(1000000, Dict.empty, Game.start)

in the Controller trains the player on 1,000,000 plays. For my implementation/computer
this takes less than a minute, but you can decrease the number of plays if this is too slow
on your computer.

6

	Implementation of Tic Tac Toe
	Controller
	AI Player

