
COMP 212 Spring 2023
Lab 09

1 Introduction

In this lab, you will experiement with the module system. In lecture, we discussed the
module system as a way to clearly mark and enforce abstraction boundaries. In this lab,
you will use modules from the perspective of both a client and an implementer.

One of the functions you will write returns an option, which are the following datatype:

datatype ’a option =

NONE

| SOME of ’a

That is, an option is like a boolean, except in one case it carries some data. For example,
a function int -> int option can return —NONE— to signal that the function “failed”
(didn’t want to return a number), and might return —SOME 7— to “succeed” in produding
the value 7.

2 Dictionaries

A dictionary is a datastructure that acts as a finite map from keys and to values. We
represent a dictionary by a type

(’k, ’v) dict

dict is a type constructor that takes two type arguments (unlike e.g. ’a list, which takes
only one). The first, ’k, represents the type of keys, whereas the second, ’v represents the
type of values. For example, an (int,string) dict maps integers to strings.

There are many possible implementations of dictionaries, including using lists, trees, and
functions. Since there are so many different ways to implement dictionaries, it would be nice
if we could have an abstract interface to them that is the same regardless of the underlying
implementation. This is where the module system comes in.

In LabDict.sig, we have provided the following signature for you to implement for
dictionaries (see Figure 1).

The type and values in it have the following specifications:

1



signature LABDICT =

sig

(* We model a dictionary as a set of key-value pairs written k ~ v:

(k1 ~ v1, k2 ~ v2, ...) *)

type (’k, ’v) dict

(* the empty mapping *)

val empty : (’k, ’v) dict

(* insert (cmp, (k1 ~ v1, ..., kn ~ vn), (k,v) )

== (k1 ~ v1, ..., ki ~ v,...) if cmp(k,ki) ==> EQUAL for some ki

or == (k1 ~ v1, ..., kn ~ vn, k ~ v) otherwise

*)

val insert : (’k * ’k -> order) * (’k, ’v) dict * (’k * ’v) -> (’k, ’v) dict

(* lookup (cmp, (k1 ~ v1,...,kn ~ vn), k) == SOME vi

if cmp(k,ki) ==> EQUAL for some ki

== NONE otherwise

*)

val lookup : (’k * ’k -> order) * (’k, ’v) dict * ’k -> ’v option

val toString : (’k * ’v -> string) * (’k, ’v) dict -> string

end

Figure 1: Dictionary Signature

2



• (’k, ’v) dict is an abstract type representing the type of the dictionary. Note that
it is parametrized over two different types—’k, the type of keys, and ’v, the type of
values.

• empty is a dictionary that contains no mappings.

• insert is a function that takes a comparison function for keys, a dictionary, and a key-
value pair and returns the dictionary with the mapping added. If the key is already in
the dictionary, the new value supersedes the old one.

• lookup is a function that takes a comparison function, a dictionary, and a key, and
returns SOME v if that key maps to the value v in the dictionary, or NONE if there is no
mapping from the key.

• toString is a function that takes a way to show a key-value pair and displays a
dictionary as a string — you can use this for testing

We have called this signature LABDICT because it is a version of dictionaries that is small
enough for you to implement in lab; a real dictionary library would provide more operations.

3 Implementation: Binary Search Trees

First, you will implement dictionaries using a binary search tree (BST). Recall the discussion
of binary search trees from when we implemented mergesort on trees: the key invariant is
that, for every Node(l,x,r), everything in l is less than or equal to x, and everything in r

is greater than or equal to x.
To implement dictionaries, we will store both a key and a value at each node, using the

following datatype:

datatype (’k, ’v) tree =

Empty

| Node of (’k, ’v) tree * (’k * ’v) * (’k, ’v) tree

The type (’k,’v) tree is parameterized by two type variables, ’k for keys and ’v for
values. For example, an (int,string) tree represents a dictionary mapping integers to
strings. Note that we write (’k,’v) tree with a comma separating the two type param-
eters, while in the Node constructor we write ’k * ’v for the type of key-value pairs. In
Node(l,(k,v),r), k is the key and v is the value. Every key in l should be less than or
equal to k, and every key in r should be greater than k. That is, the keys are sorted in the
order we discussed earlier in the class; the values are just along for the ride.

Task 3.1 In the file TreeDict.sml, implement a structure TreeDict matching the signature
LABDICT. You should use the datatype above as the internal representation of a dictionary.

To test your implementation, you can run the command

- CM.make "sources.cm";

3



from the REPL.

To test your code from the REPL, you will need to refer to functions inside your
TreeDict structure as components of the module. (i.e. as TreeDict.<function name>

where <function name> is the name of the function you want to run). Recall that you can
only refer to functions that have been defined in the signature.

Note about the compilation manager: If you compile your code using CM.make, the
compilation manager will compile all of the files specified in the .cm file. So you should use
CM.make every time you want to compile.

Have us check your code for insert and lookup after writing each function!

4 Client: Word counts

Now you will write some client code in the module Count in count.sml.
We use a (string,int) TreeDict.dict sorted according to String.compare to map

words to numbers.

Task 4.1 Write a function

val increment : (string,int) TreeDict.dict

* string

-> (string,int) TreeDict.dict

such that increment (d, w) increments the number associated with the word w if w occurs
in d, or maps w to 1 if it does not already occur.

Task 4.2 Why should or shouldn’t increment be in the client code, as opposed to the
implementation of dictionaries?

Task 4.3 Write a function

count : string list

* (string,int) TreeDict.dict

-> (string,int) TreeDict.dict

The input to count is a list of strings and a dictionary mapping words to the frequencies
with which they have appeared. The function should return an updated dictionary, which
includes the counts for all of the words in any string in the input. Use the provided words

function to divide a string into a list of strings, where each string in the result is a single
word.

Have us check your code!

4


	Introduction
	Dictionaries
	Implementation: Binary Search Trees
	Client: Word counts

