
COMP 212 Spring 2023
Lab 10

1 Unit

The type unit represents an “empty tuple”, and has value (). It is useful for functions that
do their work imperatively (by updating things) rather than functionally (by creating new
values).

2 Input and output

In this lab, you will use functions from the TextIO structure; see https://www.cs.princeton.
edu/~appel/smlnj/basis/text-io.html.

The types TextIO.instream and TextIO.outstream represent “something you can read
from” and “something you can write to”, respectively.

2.1 Text Input/Output from the Terminal

Here are some input and output streams for reading from/writing to the terminal:

• TextIO.stdIn : TextIO.instream (“standard input”) reads input you type in the
terminal

• TextIO.stdOut : TextIO.outstream (“standard output”) writes output to the ter-
minal

Here are some functions for reading and writing:

• TextIO.inputLine : TextIO.instream -> string option read a line of input, re-
turning NONE if no further input is available, or SOME(input) if a line of input was
available. This was used in the controller code for the shopping cart problem, for
example.

• TextIO.output : TextIO.outstream * string -> unit write a string to the given
output stream.

1

https://www.cs.princeton.edu/~appel/smlnj/basis/text-io.html
https://www.cs.princeton.edu/~appel/smlnj/basis/text-io.html


Unlike all of the functions we have seen so far, inputLine and output change
the provided input stream and output stream — by requesting data from the
user, by making text appear on the screen, or (using the streams we’ll use later
in the lab) reading/writing files.

Task 2.1 In smlnj, try out these functions, using them to read and write from the terminal:
what do the following do?

• TextIO.output (TextIO.stdOut, "hello world")

One place where you have seen output before is the function print s (used in the
tester functions all semester), which is defined to be TextIO.output(TextIO.stdOut,

s).

• let val () = TextIO.output (TextIO.stdOut, "hello")

val () = TextIO.output (TextIO.stdOut, "world")

in () end

• TextIO.inputLine TextIO.stdIn

Note: you have to type some text and then press enter for the inputLine to proceed.

• val a = TextIO.inputLine TextIO.stdIn;

val b = TextIO.inputLine TextIO.stdIn;

Explain what is unusual about this.

Task 2.2 Write a function

val copy : TextIO.instream * TextIO.outstream -> unit

that copies the entire input stream to the output stream. Try it out interactively:

- copy (TextIO.stdIn, TextIO.stdOut);

hi there [you type this and press enter]

hi there [it prints this]

how are you [you type this and press enter]

how are you [it prints this]

[waiting for more input]

You can use Control-c to stop the loop from running.

Have us check your work before proceeding!

2



2.2 Text Input/Output from Files

The following functions create input and output streams from files; the argument is the file
name:

• TextIO.openIn : string -> TextIO.instream

• TextIO.openOut : string -> TextIO.outstream

WARNING: overwrites the file specified by the file name

Task 2.3 Write a function

val copy_files : string * string -> unit

that takes two filenames and copies the contents of the first to the second.

Task 2.4 Try this out on some file. Make sure your file has more than one line, and
that they are all copied.

Have us check your work before proceeding!

3 Mapreduce on a file

The signature

signature MAP_REDUCE =

sig

type ’a mapreducable

val mapreduce :

(’a -> ’b)

* ’b

* (’b * ’b -> ’b)

* ’a mapreducable -> ’b

end

represents a data source that we can do a map-reduce on.
We can implement this signature using a TextIO.instream (which can stand for a file

or for the terminal). However, to think of a file or the terminal as an ’a mapreducable for
some specific type ’a, we need to have a way to convert lines of the file into ’a’s. Thus, we
say that the type

TextIO.instream * (string -> ’a)

is map-reducable, where the second component of the pair is used to parse each line of the
file into a piece of data.

Task 3.1 Implement the mapreduce function in FileMR. Your implementation should
not use any space beyond what is necessary to store the ’b values that are
produced—in particular, it should not first read the file as a sequence.

3



Have us check your work before proceeding!

Task 3.2 Make a value

val numbersFromStdIn : int FileMR.mapreducable

that reads numbers from TextIO.stdIn; you can use the provided intFromString’ function.

Task 3.3 Write a function

val add : int FileMR.mapreducable -> int

that adds the numbers in an int mapreducable.

Task 3.4 Test this on numbersFromStdIn. Note that you will need to type Control-d to
signal the end of input, which will also (unfortunately) quit SMLNJ.

Task 3.5 Make an int FileMR.mapreducable that reads from a file and test your function
on a file too.

Have us check your work!

4


	Unit
	Input and output
	Text Input/Output from the Terminal
	Text Input/Output from Files

	Mapreduce on a file

