COMP 212 Spring 2025
Homework 08

In this homework you will implement n-body simulation using the Barnes-Hut algorithm.

See the instructions in Section 2.3 for how to compile and run your code:
because the project consists of many files, you will need to use CM.make rather
than use.

1 Sequence Library

For this assignment, you will use the implementation of sequences that you downloaded in
lab. It is important that you unzip the homework code so the src directory from sequences
and hwO8-handout are next to each other. You can find the signature for sequences in the
files src/sequence/sequencecore-sig.sml and src/sequence/sequence-sig.sml. For
your reference, we describe the functions you can use here:

e Seq.length : ’a Seq.seq -> int
Seq.length s evaluates to the number of items in s.

e Seq.empty : unit -> ’a Seq.seq
Seq.empty () evaluates to the sequence of length zero.

e Seqg.cons : ’a * ’a Seq.seq -> ’a Seq.seq
If the length of xs is 1, Seq.cons (x, xs) evaluates to a sequence of length 1+1 whose
first item is x and whose remaining 1 items are exactly the sequence xs.

e Seq.singleton : ’a -> ’a Seq.seq
Seq.singleton x evaluates to a sequence of length 1 where the only item is x.

e Seq.append : ’a Seq.seq —> ’a Seq.seq —> ’a Seq.seq
If s1 has length [; and s2 has length 5, Seq.append evaluates to a sequence with
length [y + I3 whose first [; items are the sequence s1 and whose last [items are the
sequence s2.

e Seq.tabulate : (int -> ’a) * int -> ’a Seq.seq
Seq.tabulate (f, n) evaluates to a sequence s with length n where the i** item of s
is the result of evaluating (f i). Seq.tabulate (f, i) raises Range if n is less than
zZero.

e Seq.nth : int * ’a Seq.seq -> ’a
nth i s evaluates to the " item in s. This is zero-indexed. Seq.nth (i, s) will
raise Range if i is negative or greater than (Seq.length s)-1.

e Seq.filter : (’a -> bool) * ’a Seq.seq —> ’a Seq.seq
Seq.filter (p, s) returns the longest subsequence ss of s such that p evaluates to
true for every item in ss.

e Seq.map : (’a -> ’b) * ’a Seq.seq -> ’b Seq.seq
Seq.map (f, s) maps f over the sequence s. That is to say, it evaluates to a sequence
s’ such that s and s’ have the same length and the i*" item in s’ is the result of
applying f to the " item of s.

e Seq.reduce : ((’a * ’a) -> ’a) * ’a * ’a Seq.seq —> ’a
Seq.reduce(c, b, s) combines all of the items in s pairwise with ¢ using b as the
base case. ¢ must be associative, with b as its identity.

e Seq.mapreduce : (’a -=> ’b) * ’b * (b * ’b -> ’b) * ’a Seq.seq -> ’b
Seq.mapreduce(1, e, n, s) isequivalent to Seq.reduce(n, e, Seq.map (1, s)).

e Seq.toString : (’a -> string) * ’a Seq.seq —> string
Seq.toString (ts, s) evaluates to a string representation of s by using ts to convert
each item in s to a string.

e Seq.repeat : int * a -> ’a Seq.seq
Seq.repeat (n, x) evaluates to a sequence consisting of exactly n-many copies of x.

e Seq.flatten : (’a Seq.seq) Seq.seq -> ’a Seq.seq
Seq.flatten ss is equivalent to Seq.reduce(Seq.append, Seq.empty (), ss)

e Seq.zip : (’a Seq.seq * ’b Seq.seq) -> (’a * ’b) Seq.seq
Seq.zip (s1,s2) evaluates to a sequence whose n'” item is the pair of the n'* item
of s1 and the n'* item of s2.

e Seq.split : int * ’a Seq.seq —> ’a Seq.seq * ’a Seq.seq
If s has at least i elements, Seq.split (i, s) evaluates to a pair of sequences
(s1,s2) where s1 has length i and Seq.append (s1, s2) is the same as s. Oth-
erwise it raises Range.

e Seq.take : int * ’a Seq.seq —> ’a Seq.seq
Seq.take (i, s) evaluates to the sequence containing exactly the first i elements of
s if 0 < i < length s, and raises Range otherwise.

e Seq.drop : int * ’a Seq.seq -> ’a Seq.seq
Seq.drop (i, s) evaluates to the sequence containing all but the first i elements of
s if 0 <7 < length s, and raises Range otherwise.

'Here we use the term “subsequence” to mean any subsequence of a sequence, not necessecarily one
whose elements are consecutive in the original sequence. For example, (), (3), and (2,4) are subsequences of
(1,2,3,4).

2 n-Body Simulations

The main portion of this programming assignment is modeling movements of bodies through
a universe represented by a two-dimensional Euclidian plane. To make this model, we must
pick an SML representation of points in the plane that allows us to meaningfully measure
the distance between points—that is to say, we must pick a way to measure the universe. We
will represent a point in the plane by a pair of floating point numbers, represented by a pair
of values of type real. The type Scalar.scalar is a synonym for real (mathematically, a
“scalar” is part of the structure of a “vector space”, but we won’t go into more detail here).

2.1 The Plane
2.1.1 Points and Vectors

We have provided an implementation of the plane, which consists of points and vectors, based
on the code from class. These are represent by the types Plane.point and Plane.vec. In
order to write our implementation of the Barnes-Hut algorithm, we need several operations
on vectors and points in space, many of which we discussed in lecture. The type Plane.point
is used to represent a point in space, and the type Plane.vec is used to represent vectors of
velocity, acceleration, etc. In the implementation, we define the type of points and vectors
as in lecture:

type Plane.point = Scalar.scalar * Scalar.scalar
type Plane.vec = Scalar.scalar * Scalar.scalar

In your implementation, these types are abstract, which means you should code only in terms
of the provided operations on points and vectors.
You can see the full signature for the plane in space.sig. Some operations include:

e Plane.vecFromPoints : Plane.point * Plane.point -> Plane.vec
the vector whose tail is the first point and whose head is the second point

e Plane.zero : Plane.vec
the zero vector

e Plane.add : Plane.vec *x Plane.vec —-> Plane.vec
add two vectors

e Plane.scale : Plane.vec x Scalar.scalar -> Plane.vec
scale a vector by a constant

e Plane.origin : Plane.point
the origin point of the vector space.

e Plane.distance : Plane.point * Plane.point -> Scalar.scalar
Plane.distance(pl, p2) evaluates to the distance between the points p1 and p2.

e Plane.midpoint : Plane.point * Plane.point -> Plane.point
Plane.midpoint(pl, p2) evaluates to the midpoint of the points p1 and p2.

3

e Plane.head : Plane.vec -> Plane.point
Plane.head v evaluates to the point that corresponds to the head of v if the tail of v
is at the origin.

2.1.2 Bounding boxes

The type BoundingBox.bbox represents a rectangular region in two-dimensional space. You
will want to use the functions whose types and specs are given in bbox.sig. These functions
are implemented in bbox.sml. Here some useful functions:

e BoundingBox.contained : (bool * bool * bool * bool)
* Plane.point * BoundingBox.bbox -> bool
BoundingBox.contained(bs, p, bb) evaluates to true if and only if the point p is
in the box b. The four booleans control whether the left /right /top/bottom edges of
the box are included or excluded, where true means to exclude an edge.

For example, BoundingBox.contains((false,false,false,false),p,b) returns true
if p is in the box b including all of the edges, while

BoundingBox.contains ((true,false,false,false),p,b) is the same except it will
return false if p is directly on the left edge of the rectangle. The order of the booleans
is

(exclude left side, exclude right side, exclude top side, exclude bottom side)

and a corner is excluded if either of the sides containing it are excluded.

e BoundingBox.diameter : BoundingBox.bbox -> Scalar.scalar
Computes the diameter of the box, i.e. the length of the diagonal.

e BoundingBox.from2Points : Plane.point * Plane.point -> BoundingBox.bbox
BoundingBox.from2Points (pl, p2) returns the smallest bounding box containing
both p1 and p2

e BoundingBox.fromPoints : Plane.point Seq.seq -> BoundingBox.bbox
Computes the minimum bounding box containing every point in a sequence of points,
assuming the sequence is non-empty.

e BoundingBox.center : BoundingBox.bbox -> Plane.point
Computes the center point of the bounding box.

e BoundingBox.corners : BoundingBox.bbox ->
Plane.point * Plane.point * Plane.point * Plane.point
Returns the four corners of the bounding box in order

(top left, top right, bottom left, bottom right)

2.2 Barnes-Hut

In lecture, we discussed how to solve the n-body problem in the naive, quadratic manner.
The code for this is given in mechanics.sml and naiveNBody.sml. Recall that the pieces
of information we need about a body in space are its mass, location, and velocity. This is
represented by the type definition

type body = Plane.scalar * Plane.point * Plane.vec

The type body is used to represent the different bodies in the n-body simulation. Specifically,
in an expression (m, p, v) of type body, m is the mass of the body, p is its position, and v
is the vector representing its velocity.

The naive, quadratic implementation of an n-body simulation is given by the function

accelerations : body Seq.seq —-> Plane.vec Seq.seq

in naiveNBody.sml. This function transforms a sequence of bodies into a sequence in which
the element at position i represents the acceleration for the element at position i of the
sequence of bodies.

One of the vital helper functions for this is

accOn : body * body -> Plane.vec

found in mechanics.sml. Recall the specification is that accOn (bl, b2) calculates the
acceleration on bl due to b2. Using this function, the calculation is fairly straightforward:

fun accelerations (bodies : body Seq.seq) : Plane.vec Seq.seq =
Seq.map (fn bl => Plane.sum (fn b2 => accOn (b1, b2), bodies), bodies)

where Plane.sum(f,s) is Seq.reduce(Plane.add,Plane.zero,Seq.map(f,s))

However, on large inputs, this implementation is accurate, but unacceptably slow for an
actual simulation. There are many different approximations that have been developed; the
one we will look at is called Barnes-Hut.

2.2.1 The algorithm

Barnes-Hut groups bodies into quadrants and uses a fixed threshold value 6 (e.g. 0.5) to
determine whether each individual body is “far enough” away from a group of other bodies.
If a body is far enough away from a quadrant, the algorithm uses a pseudobody representing
a weighted average of the bodies in that quadrant or the acceleration calculation, instead of
using each individual body composing the pseudobody. This results in a loss of accuracy,
but a dramatic speedup in terms of runtime—while the old algorithm had work in O(n?),
this algorithm’s work is in O(nlogn) if the threshold value is well-chosen.

To calculate the effect of a pseudobody on another body, it is important to know the
total mass of all the bodies represented by the pseudobody and also their center of mass
or barycenter. Therefore, when we form a pseudobody, we will compute a tuple (m, c¢)
such that m : Plane.scalar is the total mass of the bodies and ¢ : Plane.point is the

barycenter. To compute the barycenter, we compute a weighted average of the vectors
corresponding to the displacement of each body’s position from the origin. For bodies
(mq, p1,v1), (M2, P2, Va), - .. (Mp, Pn, vy), we compute the following vector:
_mury + Moly + ... M,Tr,
my+mo+...Mmy

where r; is the vector from the origin to position p;. The barycenter is then the head of this
vector.

To approximate the acceleration on a body using a pseudobody, we represent the accel-
eration due to all the bodies in a group as the acceleration due to a single body located at
the barycenter with mass equal to the total mass.

2.2.2 Computing the barycenter

Rather than computing the barycenter for each quadrant of space from all of the points in
that quadrant, we will approximate the barycenter as an average of the averages of the four
subquadrants of a region of space. This means that all we ever need to do is to compute the
barycenter of four pairs of masses and points.

Task 2.1 (10 pts). In barnes-hut.sml, write the function

Plane.point),
Plane.point),

fun barycenter ((ml,pl) : (Scalar.scalar
(m2,p2) : (Scalar.scalar
(m3,p3) : (Scalar.scalar * Plane.point),
(m4,p4) : (Scalar.scalar * Plane.point))
Scalar.scalar * Plane.point = ...

*
*
*
*

that computes the pair (m, c) where m is the total mass of the four bodies (i.e., the sum of
the first components of the pairs) and c is the barycenter.

2.2.3 Grouping bodies

We still have not discussed exactly how to group bodies. There are many different ways
of doing so, but the most straightforward is by grouping things into quadrants (for the 2D
case). That is, starting at the center of the area, we divide the field into quadrants, then
recursively group the bodies in each quadrant, stopping when a region has either zero or
one body in it. This yields a tree-structured division of space, where each node has four
subtrees, corresponding to the four quadrants of it. We can represent this tree structure as
a datatype in SML:

datatype bhtree =
Empty
| Single of body
| Cell of (Scalar.scalar * Plane.point) * BB.bbox
* bhtree * bhtree * bhtree * bhtree

Empty represents a region with no bodies in it. Single b represents a region with exactly
the body b in it. Cell ((m, c), bb, sq) is somewhat more complicated:

6

m is the total mass of the bodies contained in the region.

c is the barycenter of the bodies contained in the region.

bb is a bounding box of the region.

The four subtrees represent the subdivisions of the four quadrants of the region. The
four child bhtree’s are, in order, the top-left, top-right, bottom-left, and bottom-right
quadrants of the region, respectively.

As a first step in constructing this tree, we will write the quarters function to split a
bounding box into four equally sized quadrants.

Task 2.2 (10 pts). Write the function

quarters : BoundingBox.bbox
—-> BoundingBox.bbox * BoundingBox.bbox *
BoundingBox.bbox * BoundingBox.bbox

to compute the four bounding boxes that correspond to the top-left, top-right, bottom-left,
and bottom-right quadrants of the argument bounding box. Use the bounding box functions
described above.

2.2.4 Growing the tree

We now have the tools we need to compute a bhtree from a sequence of points and a
bounding box.

Task 2.3 (30 pts). Write the function
compute_tree : body Seq.seq * BoundingBox.bbox -> bhtree

such that compute_tree (s, bb) evaluates to T, where T is the tree decomposition of s in
the bounding box bb. You may assume that all of the bodies in s are within the bounding
box bb and that no two bodies in s occupy the same position (i.e., have equal position
components).

In the recursive calls, you will need to divide s into four sequences corresponding to those
bodies in each of the four quadrants of bb. If a body is on the border between two quadrants,
it should be placed in the first quadrant that it is in, in the following order: top left, top
right, bottom left, bottom right.

Note: The barycenter of the bodies in a bounding box should be computed as the barycen-
ter of the four quadrants’ barycenters. You can use the helper function center _of mass :
bhtree -> Plane.scalar * Plane.point to project the relevant data from the result of a
recursive call.

2.2.5 Computing acceleration

Now that we can calculate the tree determined by a group of bodies, we can use it to
efficiently compute an approximation of the acceleration of all the bodies at this particular
timestep. This brings us back to the threshold value # mentioned above.

The reason Barnes-Hut is more efficient than the naive approach is that it does not
compute the exact acceleration—instead, it uses a parameter # to determine exactly how
precise to be. Whenever your algorithm reaches a region with more than one body in it
(that is, a Cell in the tree), it checks to see if 4¥% < §, where diam is the diameter of
the region (the length of the diagonal) and d is the distance from the body being checked
to the region’s barycenter. If it is, then the region is treated as one large body located at
its barycenter (which we have conveniently already calculated!). Otherwise, the respective

accelerations from the bodies in each quadrant are computed recursively and then summed.

Task 2.4 (5 pts). Write the function
val too_far : Plane.point * Plane.point * BoundingBox.bbox * Scalar.scalar -> bool

such that given a point p1 (position of body whose acceleration is being computed), a point
c (center of a region), and bounding box bb (bounding box of that region) and a threshold

t (0), too_far (p1, c, bb, t) evaluates to true if 4 < § and false otherwise.

Task 2.5 (25 pts). Write the function
bh_acceleration : bhtree * Plane.scalar * body -> vec

such that bh_acceleration (T, threshold, b) computes the acceleration on b from the
tree T according to the algorithm described above. (Hint: Use a function from mechanics.sig,
which is the mechanics code from lecture.)

Task 2.6 (20 pts). Finally, write a function
barnes_hut : Scalar.scalar * body Seq.seq -> vec Seq.seq

that uses your compute_tree and bh_acceleration functions to form the Barnes-Hut tree
for a sequence of bodies and then use it to compute the acceleration on each body in the
sequence.

2.3 How to Load the Project

To load your code using the floating point implementation of the plane, in SMLNJ issue the
command

- CM.make "sources.cm";

CM.make uses the SMLNJ compilation manager to load many different files, including
all of our support code and the code that you write. Every time you edit your file,
you should re-run CM.make to reload your code—do this in place of “using” the
homework file.

2.4 Testing

Because your solution consists of several functions that build on each other, it is in your
interest to test each function in isolation, which will help you figure out where your bugs
are. For barycenter, quarters, and compute_tree, we have provided some tests, and you
can write more (if you want) using the helper functions and hard-coded points/bounding
boxes/bodies in the module TestData. You can run BarnesHut.test_X() for the test
functions in BarnesHut.sml.

To test the overall behavior, you will generate transcripts describing the position of each
body and look at them in a visualizer.

Use the following tests first:

e Transcripts.run_solar_inner : int * string -> unit
run_solar_inner (days, outfilename) generates a transcript for running the solar
system for that many days and puts the results in the file data/outfilename. The
transcript file tells the visualizer to show only the planets up to Mars.

For example:
- Transcripts.run_solar_inner (365, "year.txt.sim");

will create a file data/year.txt.sim that should show the earth (the blue circle)
orbiting the sun once and the other planets orbiting as well.

e Transcripts.run solar : int * string -> unit Same as the above, except the
visualization radius includes all planets.

Once you have produced a transcript file, you can visualize it by navigating to
https://dlicata.wescreates.wesleyan.edu/teaching/fp-f24/visualizer/visualizer.html

You can then load a transcript file in one of two ways: either dragging and dropping the
transcript file into the dashed box, or using the file browser to select the file manually. You
should refresh the page before running another transcript.

Next, you should run some larger simulations. The support code contains initial condi-
tions for the following:

N-Body data files

galaxyl0k.txt 10,000 bodies orbiting in an elliptical galaxy.
galaxy20k.txt 20,000 bodies orbiting in an elliptical galaxy.
galaxy30k.txt Two 15,000 particle galaxies collide.
saturnrings.txt Saturn with its 9 rings containing 11,987 particles.
cluster2.5k.txt A star cluster containing 2,582 particles.
collisionl.txt Two large irregular galaxies collide and mostly pass
through each other.
collision2.txt Collision of two 1000 particle elliptical galaxies.

galaxyform2.5k.txt A 2,500 particle dust cloud collapses under gravity

9

galaxymergel.txt
galaxymerge2.txt
galaxymerge3.txt

galaxyl.txt
galaxy2.txt
galaxy3.txt
galaxy4.txt
spiralgalaxy.txt

asteroids1000.txt

To run them:

e Transcripts.run_file :

and forms into a galaxy.

Two 1,000 particle clouds gravitate together and eventually
combine into a galaxy.

Four 1,000 particle clouds gravitate together and combine
into a galaxy.

A 900 particle spinning elliptical galaxy collides with a big
expanding galaxy and combines with it.

A lighter galaxy is torn apart by a dense galaxy.

A galaxy orbits a heavier one and forms a spiral.

A dense galaxy sucks stars out of a lighter galaxy that orbits it.
Galaxies orbiting each other.

A round galaxy becomes a spiral due to two small galaxies
that fly by it.

Near earth asteroids and the earth in orbit around the sun.

string * int * real -> unit

run file (filename, num iters, timestep) runs the simulation on an input file
specified by filename, for num_iters steps, with time given by timestep. The output
is written to filename.sim.

For example:

- Transcripts.run_file ("data/galaxy2.txt", 2000, (1.0/10.0));

produces a file data/galaxy2.txt.sim. See data/datafiles.txt for descriptions of
the simulations.

Here are some good timesteps and numbers of iterations.

Transcripts.run_file ("data/asteroids1000.txt", 1000, (1.0/10.0)); (* 62 seconds*)
Transcripts.run_file ("data/cluster2582.txt", 2000, (1.0/10.0)); (* 555 seconds *)
Transcripts.run_file ("data/galaxyl.txt", 2000, (1.0/10.0)); (x 130 seconds *)
Transcripts.run_file ("data/galaxy2.txt", 2000, (1.0/10.0)); (* 83 seconds *)
Transcripts.run_file ("data/galaxy3.txt", 1500, (1.0/10.0)); (* 304 seconds *)
Transcripts.run_file ("data/galaxy4.txt", 2000, (1.0/10.0)); (* 41 seconds *)
Transcripts.run_file ("data/spiralgalaxy.txt", 2000, (1.0/10.0)); (* 94 seconds *)
Transcripts.run_file ("data/galaxymergel.txt", 5000, (1.0/5.0)); (* 820 seconds *)
Transcripts.run_file ("data/galaxymerge2.txt", 2500, (1.0/10.0)); (x 626 seconds *)
Transcripts.run_file ("data/galaxymerge3.txt", 2500, (1.0/10.0)); (x 655 seconds *)
Transcripts.run_file ("data/galaxyform2500.txt", 2000, (1.0/10.0)); (* 294 seconds
Transcripts.run_file ("data/collision2.txt", 2500, (1.0/10.0)); (* 330 seconds *)
Transcripts.run_file ("data/collisioni.txt", 1500, (1.0/10.0)); (* 299 seconds *)
Transcripts.run_file ("data/saturnrings.txt", 100, (1.0/100.0)); (* 112 seconds *)
Transcripts.run_file ("data/galaxylOk.txt", 100, (1.0/10.0)); (* 93 seconds *)
Transcripts.run_file ("data/galaxy20k.txt", 50, (1.0/10.0)); (* 188 seconds *)
Transcripts.run_file ("data/galaxy30k.txt", 800, (1.0/10.0)) (x 1736 seconds *)

10

Some of them take a while (the comment is how long they took for me). You don’t
need to run all of them — you can pick a few to try. Or you can either turn down the
number of iterations to see less of the movie, or run them overnight. The total size of
all files produced is about 2GB.

e The command
- Transcripts.run_files();

runs all of the above.

11

	Sequence Library
	n-Body Simulations
	The Plane
	Points and Vectors
	Bounding boxes

	Barnes-Hut
	The algorithm
	Computing the barycenter
	Grouping bodies
	Growing the tree
	Computing acceleration

	How to Load the Project
	Testing

