COMP 212 Spring 2025
Lab 8

The code you download for this lab is in a bundle called a TAR file. To unzip it, save
the TAR file to your comp212 directory and then double-click it.
If that doesn’t work, you can do it manually as follows:

% cd comp212
% tar -xf <the name of the downloaded tarfile>

Download and unzip both the 1ab08-handout . tar file and and the sequence-uncurried.tar
file. Unpacking the sequence library should create a directory named src, and unpacking
the lab code should create a directory named 1ab08-handout. You should unpack them so
that two directories should be next to each other in your comp212 directory.

cd into 1ab08-handout and then start smlnj from there.

1 Sequences Cheat-Sheet

For your convenience a brief description of some of the functions on sequences is given here.
See the lecture notes for more details.

e Seq.map : (’a -> ’b) * ’a Seq.seq —> ’b Seq.seq, which takes a function and
a sequence and returns a sequence whose elements are the result of applying the given
function to the corresponding element in the given sequence.

e Seq.reduce : ((’a * ’a) -> ’a) *x ’a x ’a Seq.seq —-> ’a, which combines all
the elements of a sequence using a particular function and base case.

e Seq.filter : (’a -> bool) * ’a Seq.seq —> ’a Seq.seq, which computes the
sequence that contains only those elements satisfying the given predicate.

e Seq.length : ’a Seq.seq —-> int, which returns the number of elements in the
sequence.

e Seq.nth : int * ’a Seq.seq -> ’a, which returns the element of the given se-
quence at the indicated index, assuming it is in bounds.

e Seq.tabulate : (int -> ’a) * int -> ’a Seq.seq, which computes a sequence
of the given length such that the value of each element of the sequence is the result of
applying the function to its index.

e Seq.empty : unit -> ’a Seq.seq, which forms an empty sequence.

e Seq.cons : ’a * ’a Seq.seq —> ’a Seq.seq, which inserts the given element at
the beginning of the sequence.

e Seq.append : ’a Seq.seq * ’a Seq.seq -> ’a Seq.seq, which combines two se-
quences by inserting the elements of the second sequence after the elements of the first
sequence.

e Seq.zip : ’a Seq.seq * ’b Seq.seq -> (’a * ’b) Seq.seq, which combines two

sequences into a sequence of pairs, dropping any extra elements in the longer sequence
if the two have different lengths.

e Seq.drop : 1int * ’a Seq.seq -> ’a Seq.seq, where Seq.drop k s removes the
first k elements from s, or raises Range if there are not enough elements to drop

e Seq.take : 1int * ’a Seq.seq —-> ’a Seq.seq, where Seq.take k s returns the
sequence consisting of the first k elements from s, or raises Range if there are not
enough elements to take.

Task 1.1 Rewrite your solution to the “eligible for signup” problem from last lab so that it
works for sequences instead of lists.

fun eligible (1 : (string * int) Seq.seq) : (string * int) Seq.seq =

Have us check your work before proceeding!

2 Exists

Recall from last week’s lecture the function exists : (’a -> bool) * ’a list -> bool,
which determines whether an element of the list satisfies the given predicate. You will write
an analogous function for sequences:

Task 2.1 Write the function
seqExists : (’a -> bool) * ’a Seq.seq —-> bool

to determine if the sequence has an element that satisfies the given predicate.
You can use

Seq.fromlist : ’a list -> ’a Seq.seq
Seq.tolist : ’a Seq.seq -> ’a list

to write tests, but you should never use these in homework problems (except to test), because
they will usually ruin the span, defeating the point of writing code for sequences instead of
lists.

Have us check your work before proceeding!

3 Tabulate Puzzles

The following functions ask you to become familiar with Seq.tabulate, Seq.length, and

Seq.nth.
Seq.tabulate (f,n) behaves like Seq.map(f,(0,1,2,3,...,n — 1)). Le. it computes
the sequence (£ 0, £ 1, £ 2, ..., f(n-1)). It has the same work and span as that

use of Seq.map.

3.1 Increasing
Using tabulate, write a function
fun increasing (n : int) : ’a Seq.seq = ...

that returns the sequence <0,1,2,...,n-1>

3.2 Reverse

Write a function
fun reverse (sl : ’a Seq.seq) : ’a Seq.seq = ...

that reverses the order of elements in its input sequence.
On a sequences of length n, your solution should have O(n) work and O(1) span.

3.3 Append

There is a function Seq.append that appends two sequences. Suppose there wasn’t, and
write

fun myAppend (sl : ’a Seq.seq, s2 : ’a Seq.seq) : ’a Seq.seq = ...

On sequences of length n and m, your solution should have O(n + m) work and O(1)
span.

3.4 Transpose

Write a function tranpose that transposes a sequence of sequences. For example,

transpose (< <1,2,3>,
<4.,5,6>>)

<<1,4>,
<2,5>,
<3,6>>

Write

fun transpose (s : ’a Seq.seq Seq.seq) : ’a Seq.seq Seq.seq = ...

that transposes a sequence of sequences. You may assume that s is rectangular, with di-
mensions m x n, where m,n > 0. Your solution should have O(m x n) work and O(1)
span.

Have us check your code before proceeding!

4 Stocks

Task 4.1 Translate the bestGain function (and all necessary helper functions) from the
Higher-order Functions II lecture from lists to sequences. Analyze the work and span.

	Sequences Cheat-Sheet
	Exists
	Tabulate Puzzles
	Increasing
	Reverse
	Append
	Transpose

	Stocks

