
15-150 Lecture 11:

Higher-Order Functions

Lecture by Dan Licata

Februrary 16, 2012

1 Functions as Arguments

Next, we’re going to talk about the thing that makes functional programming functional :

functions are values that can be passed to, and returned from, other functions

Consider the following two functions:

fun double (x : int) : int = x * 2

fun doubAll (l : int list) : int list =

case l of

[] => []

| x :: xs => double x :: doubAll xs

fun raiseBy (l : int list , c : int) : int list =

case l of

[] => []

| x :: xs => (x + c) :: raiseBy (xs,c)

How do they differ? They both do something to each element of a list, but they do different
things (adding one, multiplying by c).

We want to write one function that expresses the pattern that is common to both of them:

fun map (f : int -> int , l : int list) : int list =

case l of

[] => []

| x :: xs => f x :: map (f , xs)

The idea with map is that it takes a function f : int -> int as an argument, which represents
what you are supposed to do to each element of the list.

int -> int is a type and can be used just like any other type in ML. In particular, a function
like map can take an argument of type int -> int; and, as we’ll see next time, a function can
return a function as a result.

For example, we can recover doubAll like this:

fun doubAll l = map (double , l)

If you substitute add1 into the body of map, you see that it results in basically the same code as
before.

1

Anonymous functions Another way to instantiate map is with an anonymous function, which
is written fn x => 2 * x:

fun doubAll l = map (fn x => 2 * x , l)

The idea is that fn x => 2 * x has type int -> int because assuming x:int, the body 2 * x : int.
To evaluate an anonymous function applied to an argument, you plug the value of the argument
in for the variable. E.g. (fn x => 2 * x) 3 |-> 2 * 3. Functions are values: The value of
fn x => x + (1 + 1) is fn x => x + (1 + 1). You don’t evaluate the body until you apply the
function.

doubAll can be defined anonymously too:

val doubAll : int list -> int list = fn l => map (fn x => 2 * x , l)

Closures A somewhat tricky, but very very useful, fact is that anonymous functions can refer to
variables bound in the enclosing scope. This gets used when we instantiate map to get raiseBy:

fun raiseBy (l , c) = map (fn x => x + c , l)

The function fn x => x + c adds c to its argument, where c bound as the argument to raiseBy.
For example, in

raiseBy ([1,2,3] , 2)

|-> map (fn x => x + 2 , [1,2,3])

|-> (fn x => x + 2) 1 :: map (fn x => x + 2 , [2,3])

|-> 1 + 2 :: map (fn x => x + 2 , [2,3])

|-> 3 :: map (fn x => x + 2 , [2,3])

|-> 3 :: (fn x => x + 2) 2 :: map (fn x => x + 2 , [3])

== 3 :: 4 :: map (fn x => x + 2 , [3])

== 3 :: 4 :: (fn x => x + 2) 3 :: map (fn x => x + 2 , [])

== 3 :: 4 :: 5 :: map (fn x => x + 2 , [])

== 3 :: 4 :: 5 :: []

the c gets specialized to 2. If you keep stepping, the function fn x => x + 2 gets applied to each
element of [1,2,3]. The important fact, which takes some getting used to, is that the function
fn x => x + 2 is dynamically generated : at run-time, we make up new functions, which do not
appear anywhere in the program’s source code!

Here’s a puzzle: what does

let val x = 3

val f = fn y => y + x

val x = 5

in

f 10

end

evaluate to?
Well, you know how to evaluate let: you evaluate the declarations in order, substituting as

you go. So, you get

2

let val x = 3

val f = fn y => y + 3

val x = 5

in

f 10

end

The fact that x is shadowed below is irrelevant; the result is 13. This is one of the reasons why
we’ve been teaching you the substitution model of evaluation all semester; it explains tricky puzzles
like this in a natural way.

Polymorphism Another instance of the same pattern is:

fun showAll (l : int list) : string list =

case l of

[] => []

| x :: xs => Int.toString x :: showAll xs

However, this is not an instance of map, because it transforms an int list into a string list.
We can fix this by giving map a polymorphic type:

fun map (f : ’a -> ’b , l : ’a list) : ’b list =

case l of

[] => []

| x :: xs => f x :: map (f , xs)

Then both doubAll and showAll are instances:

fun doubAll l = map (fn x => 2 * x , l)

fun showAll l = map (Int.toString , l)

map is an example of what is called a higher-order function, a function that takes a function as
an argument.

2 Exists

Here’s another example of a higher-order function, which captures the pattern of “is there some
element of a list such that . . . ”:

fun evenP (x : int) : bool = (x mod 2) = 0

fun hasEven (l : int list) : bool =

case l of

[] => false

| x :: xs => evenP x orelse hasEven xs

fun doctor (l : string list) : bool =

case l of

[] => false

3

| x :: xs => (x = "doctor") orelse doctor xs

fun exists (p : ’a -> bool, l : ’a list) : bool =

case l of

[] => false

| x :: xs => p x orelse exists (p, xs)

fun hasEven (l : int list) : bool = exists(evenP, l)

fun doctor (l : string list) : bool = exists((fn x => x = "doctor"), l)

3 Currying

Currying is the idea that a function with two arguments is roughly the same thing as a function
with one argument, that returns a function as a result. For example, here is the curried version of
map:

fun map (f : ’a -> ’b) : ’a list -> ’b list =

fn l =>

case l of

[] => []

| x :: xs => f x :: map f xs

Instead of taking two arguments, a function and a list, it takes one argument (a function), and
returns a function that takes the list and computes the result. Note that function application left-
associates, so f x y gets parsed as (f x) y. Thus, a curried function can be applied to multiple
arguments just by listing them in sequence, as in map f xs above. This is really two function
applications: one of map to f, producing map f : ’a list -> ’b list; and one of map f to xs.

Thus far, currying may seem undermotivated: is it just a trivial syntactic thing? We will
eventually discuss several advantages of curried functions:

• Today: It is easy to partially apply a curried function, e.g. you can write map f, rather than
fn l => map (f,l), when you want the function that maps f across a list. This will come
up when you want to pass map f as an argument to another higher-order function, or when
you want to compose it with other functions, as we will see below. This is a difference in
readability, but not functionality.

• Another motivation for currying is that it lets you write programs that you wouldn’t otherwise
be able to write. But we won’t get to this for a couple of lectures, when we talk about
something called staged computation. Another example is function-local state, but we won’t
get to that until much later. The general idea is that currying lets you do real computation
between the arguments to a function.

Because of this, there is special syntax for curried functions, where you write multiple arguments
to a function in sequence, with spaces between them:

fun map (f : ’a -> ’b) (l : ’a list) : ’b list =

case l of

[] => []

| x :: xs => f x :: map f xs

This means the same as the explicit fn binding in the body, as above.

4

3.1 Fusion

If you have two maps in succession, this transforms a list, and then immediately transforms the
resulting list again (and does nothing else with it). Thus, you might as well just compute the third
tree right away, in one pass. This saves time (one traversal instead of two) and space (no need to
create and then throw away the second tree).

In general, when f and g are total, we have

map f o map g == map (f o g)

which is called fusion. You’ll look at the proof of this in HW. It is a generalization of the theorem
about raiseBy from the lecture introducing lists.

4 Reduce

Consider the following two functions:

fun sum (l : int list) : int =

case l of

[] => 0

| x :: xs => x + (sum xs)

fun join (l : string list) : string =

case l of

[] => ""

| x :: xs => x ^ join xs

The pattern is “give some answer for the empty list, and for a cons, somehow combine the first
element with the recursive call on the rest of the list.” Here’s is a curried version of reduce from
lab:

fun reduce (c : ’a * ’a -> ’a) (n : ’a) (l : ’a list) : ’a =

case l of

[] => n

| x :: xs => c (x , reduce c n xs)

fun sum (l : int list) : int = reduce (fn (x,y) => x + y) 0 l

fun join (l : string list) : string = reduce (fn (x,y) => x ^ y) "" l

5 Functional Decomposition of Problems

In functional programming, one way to think about problems is to decompose them into a series of
tasks, represented as functions, and to solve the problem by composing these functions together.

Function composition is a builtin o, which is defined as follows:

fun (g : ’b -> ’c) o (f : ’a -> ’b) : ’a -> ’c =

fn x => g (f x)

Function composition makes things more succinct. For example, the theorem on HW3 about
zip and unzip is saying that unzip o zip ∼= fn x => x.

5

5.1 wordcount and longestline

For example, let’s count all the words in a string. We can represent this as three tasks:
Start with a string

"hi there"

First, divide it up into a list of words:

["hi","there"]

Second replace each element with 1

[1,1]

Third, sum up the list:

+ (1, 1)

Let’s assume a function words : string -> string list for the first task. We can implement
the second using map (fn _ => 1) : string list -> int list. And we defined sum above for
the third.

Thus, we can implement

val wordcount : string -> int = sum o map (fn _ => 1) o words

by composing these tasks together.
Suppose we want to know the length of the longest line in a file:

val longestlinelength : string -> int =

reduce Int.max 0 o map wordcount o lines

Divide the file into lines, compute the number of words in each, and then take the max.

5.2 Stocks

Functional programming makes it easy to express computations as compositions of tasks, where
the tasks themselves can often be expressed concisely using higher-order functions like map and
reduce. This leads to short and elegant solutions to problems.

Suppose we have the prices for stocks for a stock over time:
Day 1 Day 2 Day 3 Day 4
$20 $25 $24 $30

Let’s write a function bestGain : int list -> int that computes the best profit you could
have made on the stock, were you to buy and sell on any two days. Here’s the algorithm, on the
above example:

1. Form pairs (buy, sells), where buy is a price you could have bought at, and sells is the prices
you could then sell at:

(20, [25,24,30])

(25, [24,30])

(24, [30])

(30, [])

6

We can do this by pairing each price with the suffix of the data after that point.

2. For each pair (buy, sells), for each element sell of sells, compute the difference sell − buy:

[5,4,10]

[~1,5]

[6]

[]

3. Take the max of all of these. In this case, the answer is 10.

Note that the output of each step is the input to the subsequent step. This means we can
implement this algorithm as a composition of three functions, one for each step.

We use the following helper functions:

(* See homework 3 *)

val zip : (’a list * ’b list) -> (’a * ’b) list

(* compute a list whose elements are all the suffixes of the input *)

val suffixes : ’a list -> (’a list) list

For step (1), we implement a function withSuffixes that pairs each price with the suffix of
the list after that price.

fun withSuffixes (t : int list) : (int * int list) list = zip (t, suffixes t)

For step (3), we want to take the max of all of the int’s in a list of lists. This should be familiar
from Lecture 1:

val maxL : int list -> int = reduce Int.max minint

val maxAll : (int list) list -> int = maxL o map maxL

Note that minint is an int that is ≤ all other int’s.
Now we can implement bestGain as a composition of three functions:

val bestGain : int list -> int =

maxAll (* step 3 *)

o (map (fn (buy,sells) => (map (fn sell => sell - buy) sells))) (* step 2 *)

o withSuffixes (* step 1 *)

For step (1), we use withSuffixes.
For step (2), the input is the (int * int tree) tree resulting from step (1). We use a map

to do something to each pair (buy,sells) (e.g. the pairs (20, <25,24,30>) and (25, <24,30>)

. . . in the above example). Note that this outer map is partially applied, because the argument to o

is a function. The body of the outer map is again a call to map, time over sells, to do something to
each sell price—in particular, to compute sell - buy. This leaves us with an (int tree) tree,
whose leaves are all of the sell - buy differences.

For step (3), we use maxAll.
In case currying is confusing you, here is what the above example looks like if we uncurry

everything:

7

fun map (f : ’a -> ’b, l : ’a list) : ’b list =

case l of

[] => []

| x :: xs => f x :: map (f,xs)

fun reduce (c : ’a * ’a -> ’a, n : ’a, l : ’a list) : ’a =

case l of

[] => n

| x :: xs => c (x , reduce (c, n, xs))

fun maxL (l : int list) : int = reduce (Int.max , minint , l)

fun maxAll (l : (int list) list) : int = maxL (map (maxL, l))

fun withSuffixes (l : int list) : (int * int list) list =

zip (l, suffixes l)

fun bestGain (l : int list) : int =

maxAll (map (fn (buy,sells) => (map (fn sell => sell - buy, sells)),

withSuffixes l))

6 Functions as Data

Now that we know that functions can be returned as results from other functions, we can start
to put this idea to use. For example, returning to the polynomial example from before, we can
represent a polynomial

c0 + c1 x + c2 x^2 + ... cn x^n

How can we represent such a table? As a function that maps each exponent to its coefficient:

fn x => case x of

0 => c0

| 1 => c1

| 2 => c2

| ...

| n => cn

| _ => 0

This carries the same information as the coefficient list representation, but it also scales to series,
which may have infinitely many terms.

Here’s an example polynomial:

type poly = int -> int

(* x^2 + 2x + 1 *)

val example : poly =

fn 0 => 1

| 1 => 2

| 2 => 1

| _ => 0

8

The function that adds two polynomials takes two functions as input, and produces a function
as output:

fun add (p1 : poly, p2 : poly) : poly = fn e => p1 e + p2 e

This is like Jeopardy: the answer of add(p1,p2) has the form of a question—what exponent would
you like the coefficient of? In the case of addition, the answer is that the coefficient of e is the sum
of the coefficients in the summand. Note that the function we return refers to the arguments p1

and p2—this is called a closure, and we say that the function closes over p1 and p2. When you
call add, you generate a new function that mentions whatever polynomials you want to sum.

For multiplication, we need to do a convolution: the coefficient of e is

e∑
i=0

cide−i

We render this in SML by writing a simple local, recursive helper function, which loops from e

to 0:

fun mult (c , d) =

fn e => let

fun convolution i =

case i of

~1 => 0

| _ => (c i) * (d (e - i)) + convolution (i - 1)

in

convolution e

end

More generally, we could represent a dictionary mapping keys to values as functions key -> value.

9

	Functions as Arguments
	Exists
	Currying
	Fusion

	Reduce
	Functional Decomposition of Problems
	wordcount and longestline
	Stocks

	Functions as Data

